
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Xiangsong Wu,
Shanghai Jiao Tong University School
of Medicine, China

REVIEWED BY

Weiqi Rong,
Chinese Academy of Medical Sciences
and Peking Union Medical College,
China
Shaocheng Lyu,
Beijing Chaoyang Hospital, Capital
Medical University, China

*CORRESPONDENCE

Yinlu Ding
dingyinlu@126.com;
celestinajohn60@gmail.com

SPECIALTY SECTION

This article was submitted to
Cancer Molecular Targets
and Therapeutics,
a section of the journal
Frontiers in Oncology

RECEIVED 09 May 2022

ACCEPTED 13 July 2022
PUBLISHED 12 August 2022

CITATION

Mranda GM, Xiang Z-P, Liu J-J, Wei T
and Ding Y (2022) Advances in
prognostic and therapeutic targets for
hepatocellular carcinoma and
intrahepatic cholangiocarcinoma: The
hippo signaling pathway.
Front. Oncol. 12:937957.
doi: 10.3389/fonc.2022.937957

COPYRIGHT

© 2022 Mranda, Xiang, Liu, Wei and
Ding. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 12 August 2022

DOI 10.3389/fonc.2022.937957
Advances in prognostic and
therapeutic targets for
hepatocellular carcinoma
and intrahepatic
cholangiocarcinoma: The hippo
signaling pathway

Geofrey Mahiki Mranda, Zhi-Ping Xiang, Jun-Jian Liu,
Tian Wei and Yinlu Ding*

Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine,
Shandong University, Jinan, China
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and

the third leading cause of cancer-related death. The majority of the primary liver

cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma.

Worldwide, there is an increasing incidence of primary liver cancer cases due to

multiple risk factors ranging from parasites and viruses to metabolic diseases and

lifestyles. Often, patients are diagnosed at advanced stages, depriving them of

surgical curability benefits. Moreover, the efficacy of the available

chemotherapeutics is limited in advanced stages. Furthermore, tumor

metastases and recurrence make primary liver cancer management

exceptionally challenging. Thus, exploring the molecular mechanisms for the

development and progression of primary liver cancer is critical in improving

diagnostic, treatment, prognostication, and surveillance modalities. These

mechanisms facilitate the discovery of specific targets that are critical for novel

and more efficient treatments. Consequently, the Hippo signaling pathway

executing a pivotal role in organogenesis, hemostasis, and regeneration of

tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion

molecules and cellularmetabolic status are some of the biological activators of the

pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is

critical to the development of novel targeted therapies. This study reviews the

advances in identifying therapeutic targets and prognostic markers of the Hippo

pathway for primary liver cancer in the past six years.
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Introduction

Worldwide, primary liver cancer is the sixth most frequently

diagnosed malignancy and the third leading cause of cancer-

related mortality. Primary liver malignancies comprise

hepatocellular carcinoma, which accounts for 75-85% of the

cases, and cholangiocarcinoma (CCA), accounting for 10-15% of

the cases, plus other rare subtypes. Several risk factors for

primary liver malignancies have been pointed out, ranging

from metabolic diseases, viral infections, parasitic infections,

food toxins, and lifestyle (1). Of note, primary liver cancer has

seen a rapidly growing pace with the reported aggressive nature

of the disease and difficulties in treatment (2). Most patients with

primary liver cancer present with advanced disease due to the

asymptomatic nature of disease. Moreover, primary liver cancers

have diverse and complex molecular pathogenetic patterns that

render the disease hard to treat and with high recurrences.

The Hippo pathway regulates cell proliferation and

programmed cell death and maintains tissue homeostasis and

stem cell function. Several upstream and downstream regulators

comprising a kinase cascade chain are responsible for the

functionality of the Hippo signaling system (3, 4). The core

kinases include the mammalian STE20-like protein kinase

(MST1/2) and the large tumor suppressor kinase 1/2 (LATS1/

2). The two primary downstream regulators of the Hippo

pathway are Yes-associated protein (YAP) and PDZ binding

motif (TAZ). In contrast, the upstream effectors include Kidney

and brain expressed protein (KIBRA), Ajuba, FAT1-4, Ras

association domain family (RASSF), and Merlin. When MST1/

2 binds to human Salvador 1 (SAV1), it causes phosphorylation

and activation of LATS1/2. Subsequently, LATS1/2

phosphorylates and secludes YAP and TAZ by facilitating

YAP/TAZ association with 14-3-3 proteins in the cytoplasm.

Furthermore, MST1/2 can interact with the Monopolar spindle

1-binder kinase (MOB1), which also regulates LATS1/2 activity.

YAP1 is phosphorylated and retained in the cytoplasm when the

Hippo pathway is activated. Contrary, the Hippo pathway’s

repression causes YAP/TAZ dephosphorylation and their

translocation into the nucleus. Eventually, Yap1/TAZ interact

with other transcription factors such as TEA domain (TEAD),

Runt-related transcription factor (RUNX), and SMAD to induce

the expression of genes such as CTGF, Survivin, CYR61, and

JAG1, that facilitate migration and proliferation of tumor cells,

and inhibition of apoptosis (5–12).

YAP overexpression has been associated with poor survival

rates, intrahepatic metastases, vascular invasion, tumor size,

diversity, and liver cirrhosis in patients with primary liver

cancers (13, 14). Furthermore, among HCC experimental

models, YAP/TAZ peritumoral activity tends to exhibit tumor-

suppressive roles, and dual suppression of PI3KCA/YAP

expression has been associated with the death of HCC and

CCA cells (15, 16). Thus, this study examines publications on the
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Hippo signaling pathway identifying novel targets with

prognostic and therapeutic potential for HCC and

cholangiocarcinoma in the past six years.
Hepatocellular adenocarcinoma

YAP/TAZ optimization for therapeutic
purposes

Reorganizing YAP/TAZ signaling and targeting Yap has

been proposed to abrogate Sorafenib resistance. YAP/TAZ

promotes Sorafenib-induced ferroptosis resistance via a

TEAD-dependent route by three mechanisms, which include

induced expression of SLC7A11, increased activating

transcription factor 4 (ATF4) activity, and upregulation of

Survivin gene expression (17, 18). Furthermore, targeting TAZ,

which also regulates the BCL2L12 gene, represents a promising

drug target among patients with c-myc-induced HCC patients

(19). Amino acid metabolism is an essential aspect of cancer

biologics. YAP and TAZ have been reported to control cancer

metabolism by increasing the uptake of amino acids via

SLC38A1 and SLC7A5 transporters, which are thought to be

potential treatment targets (20). It has also been observed that,

among YAP-positive malignancies, targeting a2b1 integrin and

NUAK family kinase 2 (NUAK2) expression blocks tumor

progression by inhibiting the MST-YAP cascade and actin-

myosin activity (21–23).

Interestingly, some scientists observed that dual suppression

of YAP and TAZ expression in hypoxic carcinoma cells results in

increased apoptosis of cancer cells (24). The targeting of tumor

lineage plasticity mechanism of HCC involving an interactive

axis (CLDN6/TJP2/YAP1) has shown improved antitumor

efficacy of a de novo anti-CLDN6 (claudin 6) monoclonal

antibody conjugated to a cytotoxic agent, Mertansine DM1

(CLDN6-DM1) as a monotherapy or combined with Sorafenib

(25). Lastly, the repression of TAZ expression by Diosgenin, a

phytosteroid sapogenin, is reportedly an effective antitumor

therapy working via apoptosis induction, cell migration/

invasion repression, and cell proliferation inhibition

(26) (Table 1).
Significant long chain noncodingRNAs
(lncRNAs) in HCC treatment

Long-chain noncoding RNAs play crucial roles in regulating

microRNAs that are involved in carcinogenesis. The distortion

of their activity as regulators of cancer predisposes to cancer

growth. Thus, novel lncRNAs mediating their effects by CUL4A-

mediated ubiquitination of large tumor suppressor kinase 1

(LATS1), enhancing YAPS127 phosphorylation, and activating
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the tumor-suppressive Hippo pathway (miR-106b-5p/LATS1)

have been deemed potential HCC treatment options leading to

tumor growth inhibition (27, 28) (Table 1).
Drugs and plant derivatives with
therapeutic actions on HCC

Drugs such asMetformin,Artemisinin, Evodiamine, tankyrase

inhibitors, Xiaoping, Wogonin, statin, and Dercusin have been

deemed promising agents in treating HCC. These drugs exert their

antitumor effects via mechanisms such as inhibition of IL-2 and

LATS1 expression, Mst1/2 activation, and upregulation of LATS1

phosphorylation, N-cadherin-Snail-E-cadherin axis regulation,

proliferation suppression, apoptosis induction, angiomotin-like

protein 1/2 (AMOTL1/2) upregulation, Hippo, Wnt, hedgehog

pathway, and cell cycle inhibition (Figure 1). Statins consumption,

in particular, is associated with prolonged recurrence-free survival

(29–36). In research reports from other investigators, several drug

combinations with improved antitumor efficacy exhibited tumor

growth suppression and enhanced apoptosis, such as a pan-

inhibitor of Aurora Kinases (SNS-314) and Hippo pathway

inhibitors and Hypocrellin A and Oleanolic acid, have been

proposed (37, 38). Furthermore, in myc/Ras-induced HCC, a

combination of tadalafil (a phosphodiesterase 5 inhibitor) and

JQ1 (Bromodomain and Extra-Terminal domain inhibitor)

evades the BET inhibitor’s resistance influenced by YAP/TAZ
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expression (39). The antitumor activity of Cisplatin in HCC

improved when it was administered with Melatonin due to

downregulation of YAP and caspase-3 and poly ADO-ribosome

polymerase cleavage (40).

Moreover, targeting the S100A1 gene seemed to enhance

Cisplatin’s inhibitory effects (41). Reportedly, reactive oxidative

species (H2O2)-induced actuation of YAP1 by the c-Myc pathway

represents a possible treatment option that rejuvenates the

unfolded protein pathway (42) (Table 2). Recently, a-hederin has

been reported as an agonist of the Hippo pathway that augments

effects such as apoptosis, proliferation inhibition, YAP nuclear

levels reduction, and upregulates the Hippo pathway-related

proteins and genes. Notably, a-hederin suppressed tumor growth

and weight in the mouse model (43). Finally, targeting RNA-

binding protein Dnd1 suppresses spheroid formation and

expression of stemness-related genes and enhances Sorafenib

sensitivity making it a probable drug target for HCC treatment

(44) (Table 2).
Significant interacting pathways for
HCC treatment

Interacting pathways play critical roles in hepatocellular

carcinogenesis, and their optimization provides opportunities for

developing targeted therapeutic strategies. The inhibition of YAP/

AKT in the Hippo/PI3K-PTEN-mTOR pathways and regulation
TABLE 1 Summary of therapeutic and prognostic targets for HCC.

Therapeutic targets grouped by the inhibited outcomes

Apoptosis induction and inhibition of cell proliferation, migration, and cytoskeleton function
• BCL2L12 gene, a2b1 integrin, NUAK2, lncRNA uc.134, LOC107985656, YAP/AKT, CD44S/YAP1 feedback loop, HMGB1, MTA2, COX-2&YAP, miR-1254, miR-

665, miR-186, miR-29c-3p, miR- 3127-5p, miR-590-5p, SEPT6, PLD1, MCP-1, MEIS2C, MEIS2D, YAP/NR4A1, KCTD11, FAM83D, EGFR, NATB, NEDD4/LATS1
pathway, HAUSP, CIZ1, p-Ezrin, YAP/HIF-1a, TICs, RSPON2/Hippo/YAP, S1P2, ErBB2, PI3K/AKT, JCAD/LATS1, YAP/TAZ, HIF-2a, HBXIP.
Epithelial-mesenchymal-transition, vascular mimicry, cell stemness, recurrence and metastases

• miR-103, Frizzled 2, MORC2, USP11, Yki/YAP-Src42A/SRC, METTL3, LMO3, ACTN1, ACADL/YAP, YAP/FOXM1

Prognostic targets grouped by outcome

Poor overall, disease-free, progression-free, and relapse-free survival, early recurrence and metastases
• YAP/TAZ, YAP/GPX4, PDLIM1, ACTN1, ACADL, SPON2, PLG, LATS1 rs7317471, ARID1A, RDH5, MARC2, LKB1, TNFAIP8, SPRY4-AS1, TEAD, DNMT3B,

Stathmin, LMNB2, ITGAV, YAP and SPH2, SOH, MAGL, Rac GTPase activating protein 1, PAI-1, YAP and FOXM1, FAM83D, NEK2,MAGL, MOB2, miR-29c-3p,
USP11, KCTD11, S100A1 gene.
Worst prognosis

• Aurora A, Aurora B
Better 5-year overall survival

• WWC2
BCL2L12, Bcl-2-like protein 12; YAP, Yes-associated protein; HMGB1, High mobility group box 1; MTA2, Metastasis Associated 1 Family Member 2; COX-2, Cyclooxygenase-2; SEPT6,
Septin 6; PLD1, Phospholipase D1; MCP-1, Monocyte Chemoattractant Protein-1; MEIS2C/D, Meis Homeobox 2C/D; NR4A1, Nuclear receptor subfamily 4 group A member 1; KCTD11,
Potassium Channel Tetramerization Domain Containing 11; FAM83D, Family with Sequence Similarity 83 Member D; NATB, NatB-mediated protein N-a-terminal acetylation; NEDD4,
Neuronally Expressed Developmentally Downregulated 4; LATS1, Large tumor suppressor kinase 1; HAUSP, Human deubiquitinating Enzyme; CIZ1, Cip1-interacting zinc finger protein;
p-Ezrin, Phosphorylated Ezrin; TICS, Tumor-initiating cells; RSPON2, R-spondin-2 precursor; S1P2, Sphingosine 1-phosphate receptor 2; ErBB2, Erb-B2 receptor Tyrosine Kinase 2; PI3K,
Phosphoinositide 3-kinase; JCAD, Junctional Cadherin 5 Associated with coronary artery disease; HIF, Hypoxia-inducible factor; HBXIP, Hepatitis B X-interacting protein; MORC2,
MORC Family cw-Type Zinc Finger 2; USP11, Ubiquitin-specific protease 11; METTL3, Methyltransferase 3, N6-Adenosine Methyltransferase Complex Catalytic Subunit; ACADL, Acyl-
CoA Dehydrogenase Long Chain; GPX, Glutathione Peroxidase 1; PDLIM1, PDZ and LIM Domain 1; SPON2, Spondin 2; PLG, Plasminogen; ARID1A, AT-Rich interaction Domain 1A;
RDH5, Retinal dehydrogenase 5; MAGL, Monoacylglycerol Lipase; NEK2, Never in mitosis gene-A-related kinase 2; TEAD, TEA Domain Transcription factor 1; TNFAIP8, TNF Alpha
Induced Protein 8; MARC2, Mitochondrial Amidoxime Reducing Component 2; LKB1, Liver kinase B1; DNMT3B, DNA methyltransferase 3 beta; LMNB2, Lamin B2; ITGAV, Integrin
Subunit Alpha V; SPH2, S-protein homolog 2; PAI-1, Plasminogen activator inhibitor 1; WWC2, WW and C2 Domain Containing 2.
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of the Hippo/YAP and PI3K/AKT pathways are associated with

induced apoptosis and suppressed tumor growth by FR5

compound and poplar propolis extract (45, 46). Blockage of a

feedback loop involving CD44S and YAP1 (CD44S regulates YAP

expression via PI3K/AKT pathway and YAP/TEAD axis regulates

CD44S) inhibits vascular invasion and more severe form of liver

cirrhosis (47). Furthermore, utilizing genetic or pharmacologic

blockage involving HMGP1/YAP/HIGF1a, MTA2-FRDM6-

Hippo, COX-2-PGE2-EP2-Gas-b-catenin-YAP-COX-2, and their

respective targets (i.e., high mobility group box one protein

(HMGB1), metastatic associated protein 2 (MTA2),

cyclooxygenase 2 (COX-2) &YAP) prevents tumorigenesis,

excessive glycolysis, and metastases. Lastly, utilizing a FUS-

LATS1/2 axis inhibited HCC progression by activating the

Hippo pathway (48–51) (Table 1).
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MicroRNAs in HCC treatment

The upregulation of some microRNAs is associated with

tumor proliferation, epithelial-mesenchymal transition, and

metastases. Some recently documented mechanisms for these

events include inactivation of the Hippo/Yap via paired box 5

(PAX5), Protein tyrosine phosphatase receptor type B (PTPRB)

downregulation, and LATS2 inhibition. Thus, targeting specific

miRNA molecules (i.e. miR-1254, miR-665, miR-103)

propagating tumorigenesis provides novel drug options against

HCC (52–54). Nonetheless, the overexpression of other

downregulated miRNAs is associated with inhibiting

hepatocarcinogenesis via downregulation of YAP1, DNA

methyltransferase 3 beta (DNMT3B) upregulation leading

to LATS1 methylation, S-phase arrest through upregulating

p21 and p27 expression, and inhibiting PI3K/AKT pathway

(55–57). Reportedly, a microRNA-590-5p represses

Adriamycin chemoresistance via Yap expression regulation

(58). Noteworthy, miR-21 deficiency is associated with

tumorigenesis through increased oncogenes expression and

minute dysregulation of the Hippo signaling pathway, signal

transducer and activator of transcription factor 3 (STAT3), and

mitogen-activated protein kinase (MAPK) pathways. Hence,

prudence is recommended in adopting miR-21 inhibitors in

treating liver cancer (59) (Table 1).
Proposed therapeutic targets for HCC

Seemingly, Septin 6 (SEPT6), Frizzled-2, MORC Family cw-

Type Zinc Finger 2 (MORC2), Ubiquitin-specific protease 11

(USP11), Yki/Yap-Src42A/SRC positive feedback loop, m6A

methyltransferase 3 (METTL3), and family with sequence
FIGURE 1

Illustrating the activity of antitumor drugs in a mouse model and human primary liver cancer cells.
TABLE 2 Summary of therapeutic and prognostic targets for
Cholangiocarcinoma.

Therapeutic targets grouped by inhibited outcomes

Apoptosis induction and inhibition of cell proliferation, migration, and
cytoskeleton function
• Mcl-1, FGFR, PDGFR, MNX1-AS1, FOXM1, G9a, MFAP5, TAZ, HPR

lcnRNA, YAP
Metastasis

• miR-29-3p, Piezo 1 mechanosensitive ion channel, Agrin

Prognostic targets

Poor overall and disease-free survival, early recurrence, metastases
• LCK, circACTN4, YAP/TAZ, Agrin, DEPDC1, FUT4, MDK, PACS1,

PIWIL4 genes, miR-22, miR-551b, cg27362525 and cg26597242 CpG
Mcl-1, Myeloid cell leukemia factor 1; FGFR, Fibroblast Growth Factor Receptor;
PDGFR, Platelet-derived growth factor receptor alpha; FOXM1, Forkhead box M1;
G9a, histone methyltransferase G9a; HPR, Hippo-pathway-related; LCK, Lymphocyte-
specific protein tyrosine kinase; circACTN4, Circular Alpha-actinin-4-Homo sapiens;
DEPDC1, DEP Domain Containing 1; FUT4, Fucosyltransferase 4; MDK, Midkine;
PACS1, Phosphofurin acidic cluster sorting protein 1; PIWIL4, Piwi-like protein 4-Homo
sapiens.
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similarity 83 member D (FAM83D) play crucial roles in HCC

tumorigenesis by promoting vascular mimicry, cell stemness,

migration, invasion, and silencing of the Hippo pathway by

DNAmethylation-dependent mechanism. Targeting these genes

shows prospective benefits such as preventing disease

progression, recurrence post-transplantation, and metastases.

Besides, USP11 overexpression is linked with a 5-fold risk of

all-cause-related mortality (60–65). Furthermore, other crucial

targets and their regulatory loops representing potential

therapeutic options for HCC have been reported, including

Phospholipase 1 inhibited by T-box transcription factor 3

(TBX3), YAP-dependent monocyte chemoattractant protein 1

(MCP-1) in a protumoral microenvironment, Meis homeobox

2C/D (MEIS2C/D) activating Wnt/b-catenin and inhibiting

Hippo pathway, and the YAP/nuclear receptor 4A1 (NR4A1)

(66–69) (Table 1).

Strategically, the combined use of inhibitors of YAP and

epidermal growth factor receptor (EGFR) targeting the EGFR-

PI3K-PDK1 pathway shows improved cytotoxicity for HCC cells

(70). Optimizing the tumor-suppressive effects of potassium

channel tetramerization domain containing 11 (KCTD11) (by

p21 activation and suppression of cell cycle proteins) and LATS1

overexpression with YAP1 nucleocytoplasmic translocation by

tumor growth factor-beta 1 (TGF- b1) inhibit HCC cells growth

and development (71, 72). Further, the suppression of LIM

domain only 3 (LMO3) expression exerting its actions via the

LATS1/Hippo pathway evades invasion and metastasis by

cancer cells (73). Otherwise, actinin alpha 1 (ACTN1)

expression, acyl-CoA dehydrogenase Long-chain (ACADL)/

YAP, and YAP/Forkhead Box M1 (FOXM1) are proposed

targets for preventing tumor growth and early recurrence of

HCC (74–76) (Table 1).

The inhibition of cell growth, migration, and proliferation,

as well as disruption of cytoskeleton function, prevent

tumorigenesis. Accordingly, several investigators have revealed

that targeting NatB-mediated protein N-a-terminal acetylation

(NATB) expression, Neuronally Expressed Developmentally

Downregulated 4 (NEDD4)/LATS1 pathway, Herpesvirus-

associated ubiquitin-specific protease (HAUSP) expression,

Cip1-interacting zinc finger protein 1 (CIZ1) expression, and

phosphorylated-ezrin (p-Ezrin) effect ively arrested

carcinogenesis in HCC (77–81). Further, YAP targeting has

shown suppression of cancer cell growth in patients with

hypoxia-mediated HCC metabolism and HBX-induced HCC

(82, 83). Specific targeting of tumor-initiating cells (TICs) seems

to overcome resistance to antiangiogenic therapy in HCC.

Moreover, TICs have been shown to recruit tumor-infiltrated

type II macrophages in the early phase; thus, suppressing TICs

via YAP or M2 macrophages is a valuable treatment option in

HCC (84, 85) (Table 1).

Several other targets inhibit HCC cells proliferation, growth,

and migration and induce apoptosis through different

mechanisms such as RSPO2/Hippo/Yap and S1P2-induced
Frontiers in Oncology 05
Yap activation, EGF-induced Erb-B2 receptor Tyrosine Kinase

2 (ErBB2) and PI3K/AKT activation, and Junctional Cadherin 5

Associated with coronary artery disease (JCAD)/LATS1

interaction (86–89). Furthermore, targeting Hepatitis B

X-interacting protein (HBXIP), which potentiates its effects

by upregulating YAP through the transcription factor c-

myb coactivation in HCC cells, prevents cancer cell

proliferation (90). Succinctly, Hypoxia-inducible factor-2a is a

potential antitumor target that facilitates NASH-induced

hepatocarcinogenesis progression, and HIF-2a inhibitors

reportedly block this activity (91). Recently, suppression of

STK25 expression in HCC cell lines has been proposed as a

new treatment target among cancers expressing miR-4800-3p

(92). Lastly, exploring potential Scrib agonists may provide

potent antitumor drugs as Scrib expression inhibits tumor cell

proliferation via repression of Yap, c-Myc, and cyclin D1

(93) (Table 1).
Prognostic markers for progression,
survival, recurrence or metastasis

Cytoplasmic YAP and nuclear TAZ expression in Keratin 19

negative HCC patients is associated with poor overall and

disease-free survival (94). The overexpression of YAP leads to

Plasminogen activating inhibitor-1 (PAI-1) overexpression,

which is associated with poor survival and early recurrence

rates (23). High YAP and low glutathione peroxidase 4

(GPX4) expression are associated with Sorafenib treatment’s

increased survival. Further, YAP signaling modifications present

a potential biomarker for tumor ferroptosis-induced response

prediction (95). Nevertheless, YAP and Src homology

phosphotyrosine phosphatase 2 (SHP2) expression represents

unfavorable prognostic indicators with poor overall and

recurrence-free survival (96). Other scientists also observed

that overexpression of c-Src had a negative correlation with

patient survival (97). A group of investigators noted that Yap/

TAZ expression in HCC was associated with high serum alpha-

fetoprotein levels, increased proliferation activity, microvascular

invasion, and stemness and epithelial-mesenchymal transition-

related expression markers such as SMAD2/3, CAIX, and p53.

Consequently, they proposed consideration for the status of the

hypoxia markers when using YAP/TAZ to determine the

behavior of HCC (98). Notably, a prognostic nomogram based

on five Hippo-related genes (i.e., the master regulator of cell

cycle and proliferative metabolism (MYC), neurofibromatosis 2

(NF2), misshapen-like kinase 1 (MINK1), baculoviral IAP

repeat-containing 3 (BIRC3), and casein kinase 1 epsilon

(CSNK1E)) has been proposed, outperforming available

clinical parameters in the prognostication of HCC (99). PDZ

and LIM domain 1 (PDLIM1), ACTN1, mitochondrial ACADL,

and matricellular spondin-2 (SPON2) expressions involved in

mechanisms such as enhancing the Hippo pathway activity,
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reducing RhoA GTPases activity, repressing cell proliferation,

repressing tumor growth, facilitating interaction with MOB1,

decreasing phosphorylation of LATS1 and YAP, M1-

macrophage recruitment facilitation, and suppression

hepatocellular carcinoma metastases have been implicated in

prognosticating HCC (75, 100–102) (Table 1).

Among HBV-induced HCC patients, Plasminogen

expression inhibits cell apoptosis and enhances cell line

growth through upregulation of the SRC gene and the

inhibition of the Hippo signaling pathway (103). Expression of

a genetic variant of LATS1 (LATS1 rs7317471) in HCC patients

exhibiting age below 53 years, female gender, smoking, alcohol

drinking, and Barcelona clinic liver cancer stage B is associated

with decreased risk of death (104). Low AT-Rich interaction

Domain 1A (ARID1A), downregulat ion of Retinal

dehydrogenase 5 (visual cycle enzyme), and repressed

Mitochondrial Amidoxime Reducing Component 2 (MARC2)

expression have been associated with poor overall and disease-

free survival, metastasis, and disease progression. These

observations were mediated via mechanisms, including;

immune activity regulation, regulation of genes related to

HCC development, regulation of the epithelia-mesenchymal-

transition process, regulation of p27 levels, and regulation of

HNF4A expression (105–107). Loss of Liver kinase B1

expression correlates with migration and invasion of liver

cancer cells via the ZEB1-induced Yap signaling (108).

Meanwhile, overexpression of genes related to immune

infiltration, actin stress fiber congregation, cell migration, and

invasion leads to poor overall clinical outcomes and disease-free

survival (109, 110). TNF Alpha Induced Protein 8 (TNFAIP8),

novel enhancer RNA (SPRY4-AS1), TEA Domain Transcription

factor 1 (TEAD), DNMT3B, and Stathmin overexpression were

associated with recurrence, poor disease-free, progression-free,

relapse-free, and overall survival. These genes propagated the

poor outcomes via mechanisms such as inhibition of YAP

phosphorylation, decreasing LATS1 phosphorylation,

increasing iron accumulation and consequent oxidative injury,

and activity of several infiltrating immune cells (111–115).

Researchers noted that FAM83D and NEK2 genes were related

to high recurrences, poor survival, and metastases following liver

transplantation and hepatectomy. Apart from MAPK and TGF-

beta, FAM83D enhanced CD44 expression and CD44-cancer

stem cell malignancy. Regarding NEK2, mechanistic studies

revealed that EMT was essential in NEK2-induced HCC cell

invasion (116, 117). Furthermore, an interplay between YAP and

FOXM1 leading to chromosomal instability has been associated

with poor survival, and early recurrences. Otherwise,

inactivation of the Hippo pathway has been linked to overall

poor prognosis (76, 118) (Table 1).

The overexpression of Rac GTPase activating protein 1 is

reportedly associated with shorter survival from enhanced

cytokinesis and suppressed apoptosis. Aurora A/B co-

overexpression is associated with the worst prognosis among
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HCC patients (37, 119). Monoacylglycerol lipase overexpression

has been linked with proliferation and invasion of HCC cells via

Prostaglandin E2 and Lysophosphatidic acid mechanisms (120).

Mps one binder kinase activator-like 2 (MOB2) expression

influences migration and invasion of cancer cells and may

represent a valuable marker of disease progression (121).

Notably, silencing of Hippo signature (SOH) is associated with

a poorer prognosis than non-silencing in HCC patients. SOH was

determined as an independent predictor of poor prognosis on

multivariate analysis (118). Nonetheless, the expression of WW

and C2 Domain Containing 2 (WWC2) is associated with better

5-year overall survival among HCC patients (122) (Table 1).
Cholangiocarcinoma

Proposed therapeutic targets for
CCA treatment

Identifying new molecular targets that may potentially

improve the treatment of cholangiocarcinoma has been an

unceasing expedition (123). Furthermore, molecules that

propagate cancer cell growth, migration, metastasis, or

proliferation are indispensable in achieving intent to cure

goals. As such, investigators observed that depleting myeloid

leukemia 1 (Mcl-1) expression is associated with increased cell

death in CCA cells. Accordingly, administering a pan-Fibroblast

growth factor receptor (FGFR) inhibitor in YAP expressing cells

was associated with cancer cell death. Similar effects were

observed with the inhibition of the platelet-derived growth

factor receptor (PDGFR) in YAP-expressing cells. Thus, YAP

expression may be adopted in assessing FGFR therapies

response, and the PDGFR-SFK cascade regulating YAP

activation presents a novel treatment strategy (124, 125).

Targeting LncRNA MNX1-AS1 expression, which exerts its

actions via MNX1-AS1/c-Myc and MAZ/MNX1/Ajuba/Hippo

pathway, correlates with tumor growth, and migration, and

metastasis inhibition (126). Moreover, inhibiting genes that

downregulate the miR-29-3p family or upregulation of

transcription factor SP1 may prevent the malignant

transformation of ICC cells by expressing ITGA6/ITGB1 genes

(127) (Table 2).

The inactivation of a mechanosensitive ion channel Piezo 1

(acting through the Hippo/YAP axis) and its downstream

effectors, and the inhibition of expression of several other

genes, including; FOXM1 (regulator of CIN25 gene), Agrin,

histone methyltransferase G9a, Microfibril associated protein 5

(MFAP5) (transcriptional target of YAP/TEAD), and TAZ

appears to prevent metastases, induce cell death, and suppress

proliferation. Moreover, targeting these molecules inhibited

colony formation, migration, invasion, tumor angiogenesis,

and enhanced vitamin D3-sensitivity via the p53/CYP24A1

pathway. Some of the mechanisms identified include decreased
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H3K9me2, restoration of LATS1, YAP activity inhibition, and

TAZ inhibition (128–133). Furthermore, inhibition of a Hippo-

pathway-related long noncoding RNA that interacts with

mTORC1 subunit Raptor is associated with suppression of

tumor growth, and YAP/TAZ-directed therapies have shown

benefits in treating CCA patients with chromosomal instability

(134, 135) (Table 2).
Drugs and plant derivatives for
tumor growth suppression and
metastasis prevention

Licochalcone A compound and antiparasitic macrolide

lactones (AML) combined with TGF- b pathway inhibitor

repress Yap expression and transcriptional tendency via

separate mechanisms that ultimately prevent tumor growth.

Licochalcone A suppresses PES1 expression and nuclear

localization while AML targets YAP/TAZ activity (136, 137).

A group of investigators reported improved chemosensitivity

of conventional therapies for CCA when administered

concomitantly with histone deacetylase (HDAC) inhibitor

that also allowed dose reduction. The drugs used in the study

were gemcitabine, cisplatin, 5-fluorouracil (5-FU), oxaliplatin,

or gemcitabine plus cisplatin (138),. Further, decreased

phosphatase SPH2 activity in cholangiocarcinoma patients

can induce chemotherapy resistance through the MCL1-

mediated pathway. Thus, targeting the MCL1 pathway

provides promising treatment alternatives for patients

exhibiting chemotherapy resistance from low SPH2

(139) (Table 3).
Prognostic markers for survival,
recurrence, and metastases

Among post-radical CCA resection patients, high

Lymphocyte-specific protein tyrosine kinase (LCK) and

Circular Alpha-actinin-4 (circACTN4) expression are related

to early tumor recurrence and worse prognosis, respectively.

High circACTN4 expression is associated with a worse prognosis

as it enhances proliferation and metastases by molecular miR-

424-5p sponging and interacts with Y-box homolog protein 1

(74, 140). Furthermore, YAP/TAZ dual positivity following

tumor resection correlates with poor overall and disease-free

survival typified by worse TNM stages, poor tissue

differentiation, and high CA19-9 levels (141). Besides, YAP

overexpression in CCA is associated with poor overall survival

(142, 143). Lastly, DEP Domain Containing 1 (DEPDC),

Fucosyltransferase 4 FUT4, Midkine (MDK), Phosphofurin

acidic cluster sorting protein 1 (PACS1), Piwi-like protein 4-

Homo sapiens 1 (PIWIL4) genes, miR-22, miR-551b, and

cg27362525 and cg26597242 CpG have been proposed as
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potential prognostic markers for cholangiocarcinoma

(144) (Table 2).
Conclusion

Although primary liver cancer remains challenging in its

management, the newly proposed targets potentiating their

effects via tumor cell viability, proliferation, migration, and
TABLE 3 Summary of drugs and plant derivatives for HCC and
Cholangiocarcinoma treatment.

Hepatocellular carcinoma

Metformin! Induces apoptosis, inhibits proliferation, migration and invasion
via IL-2 inhibition and LATS1/2 inhibition (29)
Evodiamine! Inhibits proliferation and induces apoptosis via MST1/2
activation and upregulation of LATS1 phosphorylation (31)
Artemisinin! Suppresses cancer cells growth, migration and invasion via N-
cadherin-Snail-E-cadherin axis regulation (30)
Tankyrase Inhibitors! downregulates YAP/TAZ via AMOTL1/2 upregulation
(32)
Xiaoping! Inhibits Hippo, Wnt and Hedgehog pathways and decreased
stemness markers and totipotency factors expression (33)
Wogonin! Induces cell cycle arrest and apoptosis via MOB1/LATS1 signaling
activation (34)
Statin! Induces apoptosis and proliferation suppression via TAZ suppression
(35)
Decursin! Induces apoptosis via LATS1/bTRCP degradation of YAP1 (36)
Hypocrellin A and Oleanolic acid! Suppresses tumor growth via Hippo/YAP
(38)
Apoptosis induction via Aurora Kinases/YAP/P21 axis suppression (37)
• Proposed combination of Aurora kinases inhibitors and Hippo pathway

inhibitors
Targeting tumor lineage plasticity mechanism (CLDN6/TJP2/YAP1
interacting axis) (25)

• A de novo anti-CLDN6 monoclonal antibody conjugated to a cytotoxic
agent !Mertansine DM1
Overcoming chemotherapeutic resistances
YAP/TAZ-induced BET inhibitors resistance in Myc/Ras-induced HCC (39)

• Combine tadalafil(PDE5 inhibitor)+ BET inhibitor
Cisplatin-resistance

• Melatonin-via YAP downregulation (40)
• S100A1 gene targeting (41)

Sorafenib-resistance
• Target YAP/TAZ and ATF4!inhibit ferroptosis resistance and Survivin

expression (17)
• Target RNA-binding protein Dnd1 (44)

Antiangiogenic-resistance
• Target Tumor-initiating cells (84)

Adriamycin-resistance
• Target microRNA-590-5p expression (58)

Cholangiocarcinoma

Licochalcone A ! Inhibit of cell growth through Hippo pathway via PES1
suppression (136)
Inhibition of proliferation and cellular migration via YAP/TAZ repression (137)
• Antiparasitic macrolide lactone + TGF-b pathway inhibitors

Overcoming Gemcitabine-resistance (138)
• HDAC inhibitor-induce apoptosis through targeting Hippo pathway via

miR-509-3p expression
AMOTL, Angiomotin Like; BET, Bromodomain and extra-terminal domain; ATF4,
Activating transcription factor 4; PES1, Pescadillo ribosomal biogenesis factor 1; TGF-
b, Transforming growth factor beta; HDAC, Histone deacetylase; MOB1, MOB Kinase
Activator 1A; bTRCP, beta-Transducin Repeat Containing E3 Ubiquitin Protein Lipase;
MST1/2, Mammalian-sterile like 1/2; PDE5, Phosphodiesterase 5.
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apoptosis holds promising outcomes in treating and

prognosticating the disease. Furthermore, targeting the

identified molecules in this study led to inhibition of tumor

cell growth and migration and activated the apoptosis of the

tumor cells. Additionally, the new targets effectively predicted

the prognosis of patients with primary liver cancer in terms of

metastases risk, disease-free, progression-free, and overall

survival. Currently, YAP and TAZ expression serve that

purpose. The discovery of new targets should be coupled with

developing novel nomograms that are key to predicting the

prognosis in primary liver cancer patients. These nomograms

should incorporate individual risk factors likely to influence

treatment outcomes in different patients. Furthermore, it is

commendable to validate further the significance and

applicability of these new targets identified as a critical phase

towards their drugability trials.
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BCL2L12 Bcl-2-like protein 12

YAP Yes-associated protein

HMGB1 High mobility group box 1

MTA2 Metastasis Associated 1 Family Member 2

COX-2 Cyclooxygenase-2

SEPT6 Septin 6

PLD1 Phospholipase D1

MCP-1 Monocyte Chemoattractant Protein-1

MEIS2C/D Meis Homeobox 2C/D

NR4A1 Nuclear receptor subfamily 4 group A member 1

KCTD11 Potassium Channel Tetramerization Domain Containing 11

FAM83D Family with Sequence Similarity 83 Member D

NATB NatB-mediated protein N-a-terminal acetylation

NEDD4 Neuronally Expressed Developmentally Downregulated 4

LATS1 Large tumor suppressor kinase 1

HAUSP Human deubiquitinating Enzyme

CIZ1 Cip1-interacting zinc finger protein;

p-Ezrin Phosphorylated Ezrin

TICS Tumor-initiating cells

RSPON2 R-spondin-2 precursor

S1P2 Sphingosine 1-phosphate receptor 2

ErBB2 Erb-B2 receptor Tyrosine Kinase 2

PI3K Phosphoinositide 3-kinase

JCAD Junctional Cadherin 5 Associated with coronary artery disease

HIF Hypoxia-inducible factor

HBXIP Hepatitis B X-interacting protein

MORC2 MORC Family cw-Type Zinc Finger 2

USP11 Ubiquitin-specific protease 11

METTL3 Methyltransferase 3, N6-Adenosine Methyltransferase Complex
Catalytic Subunit

ACADL Acyl-CoA Dehydrogenase Long Chain

GPX Glutathione Peroxidase 1

PDLIM1 PDZ and LIM Domain 1

SPON2 Spondin 2

PLG Plasminogen

ARID1A AT-Rich interaction Domain 1A;

RDH5 Retinal dehydrogenase 5

(Continued)
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MAGL Monoacylglycerol Lipase

NEK2 Never in mitosis gene-A-related kinase 2

TEAD TEA Domain Transcription factor 1

TNFAIP8 TNF Alpha Induced Protein 8

MARC2 Mitochondrial Amidoxime Reducing Component 2

LKB1 Liver kinase B1

DNMT3B DNA methyltransferase 3 beta

LMNB2 Lamin B2

ITGAV Integrin Subunit Alpha V

SPH2 S-protein homolog 2

PAI-1 Plasminogen activator inhibitor 1

WWC2 WW and C2 Domain Containing 2

Mcl-1 Myeloid cell leukemia factor 1

FGFR Fibroblast Growth Factor Receptor

PDGFR Platelet-derived growth factor receptor alpha

FOXM1 Forkhead box M1

G9a histone methyltransferase G9a

HPR Hippo-pathway-related

LCK Lymphocyte-specific protein tyrosine kinase

circACTN4 Circular Alpha-actinin-4-Homo sapiens

DEPDC1 DEP Domain Containing 1

FUT4 Fucosyltransferase 4

MDK Midkine

PACS1 Phosphofurin acidic cluster sorting protein 1

PIWIL4 Piwi-like protein 4-Homo sapiens

AMOTL Angiomotin Like

BET Bromodomain and extra-terminal domain

ATF4 Activating transcription factor 4

PES1 Pescadillo ribosomal biogenesis factor 1

TGF- b Transforming growth factor beta

HDAC Histone deacetylase

MOB1 MOB Kinase Activator 1A

bTRCP beta-Transducin Repeat Containing E3
Ubiquitin Protein Lipase

MST1/2 Mammalian-sterile like ½

PDE5 Phosphodiesterase 5.

MYC Master regulator of cell cycle and proliferative metabolism

NF2 Neurofibromatosis 2

MINK1 Misshapen-like kinase 1

BIRC3 Baculoviral IAP repeat containing 3

CSNK1E Casein kinase 1 epsilon
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