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Over the past decades, hematopoietic stem cell transplantation (HSCT) has been evolving
as specific treatment for patients with severe and refractory autoimmune diseases (ADs),
where mechanistic studies have provided evidence for a profound immune renewal
facilitating the observed beneficial responses. The intestinal microbiome plays an
important role in host physiology including shaping the immune repertoire. The
relationships between intestinal microbiota composition and outcomes after HSCT for
hematologic diseases have been identified, particularly for predicting the mortality from
infectious and non-infectious causes. Furthermore, therapeutic manipulations of the gut
microbiota, such as fecal microbiota transplant (FMT), have emerged as promising
therapeutic approaches for restoring the functional and anatomical integrity of the
intestinal microbiota post-transplantation. Although changes in the intestinal
microbiome have been linked to various ADs, studies investigating the effect of
October 2021 | Volume 11 | Article 7224361

https://www.frontiersin.org/articles/10.3389/fonc.2021.722436/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.722436/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.722436/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.722436/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.722436/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.722436/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.722436/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:tobias.alexander@charite.de
mailto:greco.raffaella@hsr.it
https://doi.org/10.3389/fonc.2021.722436
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.722436
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.722436&domain=pdf&date_stamp=2021-10-22


Alexander et al. Microbiome in HSCT for AD

Frontiers in Oncology | www.frontiersin.org
intestinal dysbiosis on HSCT outcomes for ADs are scarce and require further attention.
Herein, we describe some of the landmark microbiome studies in HSCT recipients and
patients with chronic ADs, and discuss the challenges and opportunities of microbiome
research for diagnostic and therapeutic purposes in the context of HSCT for ADs.
Keywords: autoimmune diseases, autoimmunity, fecal transplantation, intestinal, microbiome, stem cell
transplantation, HSCT = hematopoietic stem cell transplant
INTRODUCTION

Intestinal microbiota may positively affect many aspects of the host
physiology, including absorption of nutrients, prevention of
overgrowth by potential pathogens, maintenance of epithelial
barrier function, and shaping the immune system (1). Studies of
the microbiome in the setting of hematopoietic stem cell
transplantation (HSCT) demonstrated that intestinal flora are of
particular importance in determining treatment outcomes,
influencing immune reconstitution, and impacting complications
such as infections or graft-versus-host disease (GvHD) (2, 3). In
addition, changes in the microbial composition and function have
been associated with various autoimmune diseases (ADs), and,
although the precise mechanistic links between the microbiome
and ADs remain largely unknown, increasing evidence suggests
that disturbed gut microbiota contribute to pathogenesis (4).
Among the potential mechanisms in the complex interplay
between gut microbiota and host immune system, abnormal
microbial translocation, molecular mimicry, and dysregulation of
local and systemic immunity have been postulated.

This article will summarize the current evidence supporting
the relationship between the microbiome and specific ADs, its
impact on transplant outcomes, and potential therapeutic
interventions, such as fecal microbiota transplantation (FMT).
Moving forward, we propose how we may evaluate and influence
the microbiome in the setting of HSCT for ADs to affect immune
reconstitution and potentially improve clinical outcomes.
INTERACTION BETWEEN GUT
MICROBIOTA AND THE HOST
IMMUNE SYSTEM

While the primary function of the intestinal microbiota for the
host has been considered to be the digestion of complex sugars
and the provision of essential vitamins, it has become clear that
the microbiota play an important role in the education and
shaping of a functioning immune system. Evidence for this
comes from the analysis of germ-free mice, which in the
absence of any microbiota have underdeveloped lymph organs
and reduced innate immune competence resulting in increased
susceptibility to infection (5). Most likely for similar reasons,
germ-free mice are resistant to genetic and induced models of
autoimmunity. While the molecular mechanisms are still poorly
understood, several pathways involved in the microbiota–host
interaction have been identified, ranging from provision of
ligands for innate receptors, such as Toll-like receptors for
2

“trained” immunity (6), to the production of short-chain fatty
acids, a product of the metabolizing of dietary fibers by certain
bacteria, which have been described to enhance immune
regulation (7, 8). Reciprocally, the host controls the microbiota
through the production of antimicrobial peptides by intestinal
epithelial cells and copious amounts of IgA antibodies, which are
actively transported into the gut lumen by the intestinal epithelial
cells, controlling the growth, mobility and attachment of
intestinal bacteria (9). Alterations to this intricate microbiota –
host interaction, e.g. genetic defects disrupting microbial sensing
of the host or loss of bacterial diversity, often summarized under
the term dysbiosis, resulting in loss of microbial functions for the
host, has been associated with the development of chronic
inflammatory diseases (10). Mechanistically, several pathways
have been discussed by which intestinal microbiota might
contribute to the development or perpetuation of autoimmune
diseases (11). They include gut dysbiosis, which disrupts local gut
homeostasis and may promote translocation of commensal or
pathobionts to tissues where they facilitate chronic inflammation.
In addition, microbiota may trigger autoimmunity directly by
providing antigenic stimuli resulting in cross-reactivity of
autoreactive lymphocytes and autoantibodies with bacterial
orthologues. Finally, microbiota may modulate the immune
system through their metabolites and may facilitate immune
regulation by stimulating regulatory immune elements
(summarized in Figure 1).
MICROBIAL PROFILING

The introduction of molecular biological methods for the
characterization of the microbiota, in particular high-
throughput sequencing , has great ly advanced our
understanding of the diversity and function of the microbiota
(22). Sequencing of the single or a combination of the 9 variable
regions of the gene for the 16S ribosomal RNA of the small 30S
ribosomal subunit is the mainstay to describe the composition of
a microbial community. While 16S rRNA sequencing has
become the method of choice due to its simplicity, it is often
limited in the taxonomic resolution and is prone to bias e.g. PCR
amplification and sampling depth (23). More extensive
sequencing approaches include whole 16S rRNA gene
sequencing allowing resolution of the microbiome to the
species level, however often at the cost of sampling depth, and
shot-gun metagenomics sequencing which will additionally yield
information on the genetic repertoire, i.e. potential functional
genes, of the bacterial community, the latter requiring
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extensive bioinformatics resources. Other “omics”, such as
metaproteomics can also be used to define the composition as
well as the function of the microbiota, while metabolomic
profiling identifies the mediators with which the microbiota
could interact within itself and with the host [reviewed in
(24)]. Recently, the combination of absolute quantification of
the microbiota by flow cytometry with 16S rRNA gene profiling
was shown to better reflect clinically relevant changes of the
microbiome in patients with inflammatory bowel diseases (IBD)
(25). Flow cytometric analysis of the microbiota also has the
potential to rapidly identify alterations in the microbiota on the
single cell level for monitoring purposes (26) and when
combined with cell sorting and 16S rRNA gene analysis could
lead to the identification of relevant bacteria in a more
targeted fashion.
ROLE OF INTESTINAL MICROBIOTA IN
AUTOIMMUNE DISEASES

Inflammatory Bowel Diseases
The intestinal tract, home to the largest density and diversity of
microorganisms in healthy humans, is the target organ of IBD
comprising Crohn’s disease (CD) and Ulcerative Colitis (UC).
The chronic intestinal inflammation in IBD is characterized by
effector and tissue resident memory T cell responses to aspects of
the intestinal microbiota (27). Despite large inter-individual
variability, genetic analyses of microbial populations in stool
and/or mucosal biopsies has revealed an overall decrease in
diversity, a loss of symbionts and an increase in pathobionts
(essentially Gram-negative proinflammatory microbes) in both
UC and CD (27, 28). Whether these changes in microbial
composition and IBD pathogenesis are a cause or consequence
of intestinal inflammation remains a key area of study (29).
Alterations in gut microbiota can disrupt epithelial and immune
Frontiers in Oncology | www.frontiersin.org 3
homeostasis, leading to increased permeability and eventual
immune activation. Alternatively, the documented genetic and/
or microbial-independent environmental factors associated with
IBD may promote inflammation and oxidative stress, which
subsequently results in a shift in microbial composition. A
recent study has shown that increased fecal proteolytic activity
and microbiota changes precede diagnoses of ulcerative colitis
(30). In addition, the altered humoral and cellular acquired
immune responses towards bacterial antigens that characterize
IBD, particularly Crohn’s disease (31), may predate disease onset
(32). This suggests that immune responses towards microbes,
rather than microbial composition itself, drives epithelial barrier
disruption and altered innate responses at disease onset. Thus, in
marked contrast to the impressive efficacy seen in Clostridium
difficile infection (33), FMT has shown some benefit in mild UC
but no impact in CD (34–36). Nonetheless, regardless of whether
dysbiosis is the initial event or the result of overt inflammation,
shifts in microbial composition may help perpetuate disease, as
well as impact response to therapy in IBD (37, 38), and thus
represent a desirable target for future therapies.
Systemic Sclerosis
In systemic sclerosis (SSc), a rare systemic autoimmune disease
characterized by vasculopathy, immune activation and
consequent progressive fibrosis, multiple genetic, epigenetic,
and environmental factors are regarded as potential triggers for
the onset and progression of the disease (39). Over the past
decades, emerging evidence suggests that alterations of microbial
populations colonizing epithelial surfaces (i.e., gastrointestinal
tract, skin and lung), known as dysbiosis, may contribute to
chronic inflammation and autoimmunity (4). Since the
gastrointestinal tract is one of the organs highly affected in SSc,
recent studies have aimed to investigate gastrointestinal
microbiota alterations to elucidate the possible interaction with
disease phenotype and clinical outcome of the disease (40).
FIGURE 1 | Potential mechanisms by which autoimmune diseases are linked to gut microbiota and intestinal immunity. Modified according to (12). APS,
antiphospholipid syndrome; CNS, central nervous system; SLE, systemic lupus erythematosus; T1D, type I diabetes (13–21).
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Initial studies found that specific bacteria, particularly beneficial
commensal genera (Faecalibacterium, Clostridium and
Rikenella) and, conversely, more potentially pathobiont genera
(Bifidobacterium, Fusobacterium and Prevotella) were decreased
in SSc patients compared to healthy controls (41–43). Notably, SSc
patients with more severe gastrointestinal symptoms exhibited a
prevalence of the pathobiont Fusobacterium compared to patients
with mild or no gastrointestinal symptoms (41–43). Furthermore,
overabundance of opportunistic pathogenic Clostridium and
typically oral Streptococcus species was recently described in SSc,
while Alistipes, Bacteroides, and butyrate-producing species were
depleted, congruent with findings in patients with IgG4-related
disease, suggesting a common signature in both fibrosis-prone
autoimmune diseases (44). Altogether, these studies confirm the
existence of a shift in gut microbiota population in SSc patients.
Whether these changes are causative or rather reflect the
gastrointestinal involvement by inflammatory and fibrotic
processes remains to be demonstrated. The role of intestinal
dysbiosis in the disease pathogenesis is further complicated by the
possibility that, as showed in other diseases, the intestinal
microbiota in SSc might modulate local immunological
mechanisms possibly responsible of local and systemic
alterations (45).
Multiple Sclerosis
Multiple sclerosis (MS) is a chronic immune-mediated disease of
the central nervous system (CNS), which results from
interactions of genetic and environmental factors (46). The
underlying pathological process is complex but includes the
abnormal activation of T and B cells targeting foreign and/or
self-antigens, which could be primed within the CNS or in the
periphery (47, 48). A potential source of such antigens is the gut
microbiome, which exhibits a level of homology to human
myelin proteins and may trigger cross-reactivity through the
mechanism of ‘molecular mimicry’ (49, 50). Immune
reconstitution studies have shown that gut Mucosal Associated
Invariant T (MAIT) cells, which express chemokine receptor 6
(CCR6) to facilitate their transmigration into the CNS, are
reduced following autologous HSCT, suggesting that they may
play a role in crosslinking gut microbiome with the neuroaxis
(51). In one experimental model, the presence of intestinal
microbiota was necessary to induce CNS autoimmunity,
suggesting that the gut has the ability to control systemic
autoimmune responses (52, 53). Germ-free mice recipients
receiving feces from patients with MS develop severe
Experimental Allergic Encephalomyelitis (EAE) and the
administration of Lactobacilli seems to suppress this process
(54, 55). A number of case control studies have reported reduced
gut microbiome diversity in patients with MS, particularly in
those with active disease, although a consistent microbiome
phenotype has not been identified (56, 57). Furthermore, some
MS orally administered disease modifying therapies have been
found to inhibit the growth of Clostridium in vitro, which may
contribute to their anti-inflammatory mechanism of action (58).
Given the increasing evidence that gut microbiome plays a role in
the immune system homeostasis and in the pathogenesis of MS,
Frontiers in Oncology | www.frontiersin.org 4
changes in the microbiome in patients with MS undergoing
HSCT warrant investigation.
ROLE OF INTESTINAL MICROBIOTA
IN HEMATOPOIETIC STEM CELL
TRANSPLANTATION

Correlation With HSCT Outcomes
The intestinal microbiome undergoes profound changes during
the course of transplantation. Multiple transplant-related factors
(i.e. conditioning regimen, broad-spectrum antibiotics,
nutrition) drive microbial shifts. At the same time, the
alteration in the composition of gut flora is associated with
transplant outcomes, including overall survival (OS),
progression-free survival (PFS), treatment-related mortality
(TRM) and GvHD (Table 1). Bacterial diversity largely
decreases after HSCT, and is correlated with increased risk of
major transplant complications such as infections or GvHD,
potentially affecting the outcome of the procedure (81, 82). A
large multicenter observational study has confirmed lower
mortality rates in patients showing higher diversity of
intestinal microbiota at engraftment (3). Recently, microbiota
injury has been observed also in recipients of autologous HSCT,
who undergo similar antibiotic exposures and nutritional
alterations after high-dose chemotherapy and transplant
procedure (80). Reduced OS and PFS have been reported in
patients with lower peri-engraftment microbiome diversity.

Impact of chemotherapy, Diet, and
Antibiotics on the Intestinal Microbiome
in Transplant Recipients
Microbiome and transplant correlations may be influenced by local
practices, antibiotic choices, hospital flora, and diet. Gastrointestinal
disturbances associated with chemotherapy and radiation (83) and
subsequent mucositis can also impact the composition of intestinal
microbiota. A reduction in a-diversity and significant differences in
the composition of the intestinal microbiota have been observed in
response to chemotherapy, such as increase in Bacteroides and
Enterobacteriaceae paralleled by a decrease in Bifidobacterium,
Faecalibacterium prausnitzii, and Clostridium cluster XIVa (84),
and a drastic drop in Faecalibacterium accompanied by an increase
of Escherichia (85). The impact of diet on gut flora is well-recognized
(86). Depletion of the intestinal microbiota reduces visceral adipose
tissue andcaloricuptake fromdiet (87), andenteral feedingmayexert
a beneficial effect on intestinal flora by providing the required
nutrients (88). Interestingly, a lactose-free diet can prevent
microbial overdominance by detrimental commensal bacteria like
Enterococcus (72). Broad-spectrumantibiotic prophylaxis/treatment,
commonly used in HSCT recipients, in the early phase after HSCT
can beneficially reduce the number of transmigrated bacteria.
However, their long-term effects are detrimental, because they limit
microbiota diversity, by killing beneficial commensal bacteria that
inhibit pathogens and promote immune defenses (81). A drastic
decrease in thediversityof entericmicrobiomeafteradministrationof
antibiotic therapy, and the loss of obligate anaerobic commensal
October 2021 | Volume 11 | Article 722436
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TABLE 1 | Impact of microbiome on HSCT outcomes.

Study Study Population Microbiome Analysis Microbiome Biomarker HSCT Outcome

Taur et al.,

2012 (59)

94 adult patients

Allogeneic HSCT

Single center, USA

454 pyrosequencing, V1-V3 region of the 16S

RNA gene

Enterococcus domination (>30%) VRE Bacteremia 9-fold increased risk

Proteobacteria domination (>30%) Gram negative Bacteremia 5-fold

increased risk

Ubeda et al.,

2013 (60)

94 adult patients

Allogeneic HSCT

Single center, USA

454 pyrosequencing, V1-V3 region of the 16S

RNA gene

Barnesiella genus* enteric colonization Protection from VRE domination

Taur et al.,

2014 (61)

80 adult patients

Allogeneic HSCT

Single center, USA

454 pyrosequencing, V1-V3 region of the 16S

RNA gene

Low bacterial diversity at engraftment Lower OS

Higher TRM

Holler et al.,

2014 (62)

31 adult patients

Allogeneic HSCT

Single center, Germany

Roche 454 platform sequencing, V3 region of

the 16S RNA gene

Strain-specific PCR of enterococci

Urinary indoxyl sulfate analysis **

Enterococcus abundance > 20% Increased frequency of GI acute GvHD

Urinary indoxyl sulfate levels decrease during aplasia after HSCT –

Weber et al.,

2015 (63)

131 adult patients

Allogeneic HSCT

Single center, Germany

Roche 454 platform sequencing, V3 region of

16S RNA gene

Strain-specific PCR of enterococci

Urinary indoxyl sulfate analysis **

Low urinary indoxyl sulfate levels within day +10 after HSCT

(Lachnospiraceae and Ruminococcaceae *** » high urinary

indoxyl sulfate levels; Bacilli » low indoxyl sulfate levels)

Low OS

High TRM

Jenq et al.,

2015 (64)

115 adult patients

Allogeneic HSCT

Single center, USA

First cohort (n=64): Roche 454 platform

sequencing, V1-V3 region of the 16S RNA

gene

Second cohort (n=51): Illumina MiSeq platform

sequencing, V4-V5 region of the 16S RNA

gene

Increased bacterial diversity Higher OS

Lower TRM

Lower GvHD related mortality

Blautia genus # abundance Higher OS

Lower GvHD related mortality

Lower incidence of acute GvHD requiring

systemic corticosteroids or steroid-

refractory

Lachnospiraceae abundance

Clostridiales abundance

Clostridia abundance

Lower GvHD related mortality

Shono et al.,

2016 (65)

857 adult patients

Allogeneic HSCT

Single center, USA

Illumina MiSeq platform sequencing, V4-V5

region of the 16S RNA gene

Imipenem-cilastatin treatment

Piperacillin-tazobactam treatment

(associated to loss of Bacteroidetes and Lactobacillus ##)

Higher GvHD related mortality

Higher grades 2-4 acute GvHD

Higher GI acute GvHD

Harris et al.,

2016 (66)

94 adult patients

Allogeneic HSCT

Single center, USA

454 pyrosequencing, V1-V3 region of the 16S

RNA gene

Low baseline diversity

Enterococcus domination (>30%)

Higher risk of pre-engraftment pulmonary

complications

g-Proteobacteria domination (>30%) Higher risk of post-engraftment pulmonary

complications

Peled et al.,

2017 (67)

541 adult patients

Allogeneic HSCT

Single center, USA

Illumina MiSeq platform sequencing, V4-V5

region of the 16S RNA gene

Abundance of Eubacterium limosum and other related bacteria Lower relapse/progression of disease risk

Mancini et al.,

2017 (68)

96 adult patients

Allogeneic HSCT

Single center, Italy

Roche 454 platform sequencing, V3-V5 region

of the 16S RNA gene

Baseline Enterobacteriaceae >5% Higher risk of microbiologically confirmed

sepsis, severe sepsis and septic shock

Baseline Lachnospiraceae ≤10% Lower OS

Higher infectious related mortality

Higher non-infectious related mortality

Doki et al.,

2017 (69)

107 adult patients

Allogeneic HSCT

Single center, Japan

Roche 454 platform sequencing, V1–2 region

of the 16S RNA gene

Higher abundance of Firmicutes, lower abundance of

Bacteroidetes, higher abundance Fecal bacterium and

Eubacterium at baseline

Higher risk of acute GvHD

Lee et al., 2017

(70)

234 adult patients

Allogeneic HSCT

Single center, USA

Illumina MiSeq platform sequencing, V4-V5

region of the 16S RNA gene

Combined abundance of Bacteroidetes phylum,

Lachnospiraceae family, Ruminococcaceae family

Protection from Clostridium difficile

infection

Enterococcus faecalis at various rank designations Higher risk of Clostridium difficile infection

Golob et al.,

2017 (71)

66 adult patients

Allogeneic HSCT

Single center, USA

Illumina MiSeq platform sequencing, V3-V4

region of the 16S RNA gene

Presence of oral Actinobacteria and oral Firmicutes in stool,

deficit of Lachnospiraceae at neutrophil engraftment

Higher risk of acute GvHD

Stein-

Thoeringer

et al., 2019 (72)

1325 adult patients

Allogeneic HSCT

Four centers: USA,

Germany, Japan

Illumina MiSeq platform sequencing, V4-V5

region of the 16S RNA gene

Enterococcus domination (>30%) at early post-transplant period

(day 0 to day +12)

Lower OS

Higher GvHD related mortality

Higher grades 2-4 acute GvHD incidence

Galloway-Peña

et al., 2019 (73)

44 adult patients

Allogeneic HSCT

Single center, USA

Illumina MiSeq platform sequencing, V4 region

of the 16S RNA gene

Low microbial diversity at engraftment Higher risk of intestinal acute GvHD

Higher TRM

Low Coriobacteriia, Coriobacteriaceae at engraftment Higher risk of intestinal acute GvHD

Biagi et al.,

2019 (74)

36 pediatric patients

Allogeneic HSCT

Four centers, Italy

Illumina MiSeq platform sequencing, V3-V4

region of the 16S RNA gene

Pretransplant Blautia genus abundance Lower acute GvHD risk

Pretransplant Fusobacterium abundance Higher severe GI acute GvHD risk

Abundance of

Bacteroides at engraftment

Higher grades 2-4 acute GvHD risk

(Continued)
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bacteria such as Clostridia and Bacteroidetes after piperacillin-
tazobactam and meropenem administration, are recurrent in
literature (89). Metronidazole administration increases
enterococcal domination, whereas fluoroquinolone administration
reduces domination by Proteobacteria (59) and represents an
important variable associated with overall survival (61). Broad
spectrum antibiotics, by inducing loss of bacterial diversity, are also
associated with increased GvHD-related mortality (65, 90).
Frontiers in Oncology | www.frontiersin.org 6
Intestinal Microbiome, Immune
Reconstitution, and Infection Prevention
Effective and appropriate immune reconstitution is central to
successful HSCT. Microbiota populations may influence
immune reconstitution and cell dynamics in humans (91). The
depletion of the intestinal microbiota impairs post-transplant
immune reconstitution (87). Analysis of daily changes in
circulating immune cell counts and extended longitudinal
TABLE 1 | Continued

Study Study Population Microbiome Analysis Microbiome Biomarker HSCT Outcome

Han et al., 2019

(75)

141 adult patients

Allogeneic HSCT

China

Illumina MiSeq platform sequencing, V3-V4

region of the 16S RNA gene

At day 15 after HSCT:

Low diversity

Low Lachnospiraceae

Low Peptostreptococcaceae

Low Erysipelotrichaceae

High Enterobacteriaceae

Higher acute GvHD risk

Higher acute GvHD grades

Lee et al., 2019

(76)

211 adult patients

Allogeneic HSCT

Single center, Korea

16S rRNA gene sequencing Post engraftment:

Loss of diversity compared to pre transplant sample Depletion

Ruminococcus

Increase of Eubacterium

Increase of Escherichia

Higher risk of intestinal acute GvHD

Peled et al.,

2020 (3)

1362 adult patients

Allogeneic HSCT

Four centers: USA,

Germany, Japan

Illumina MiSeq platform sequencing, V4-V5

region of the 16S RNA gene

Higher intestinal diversity in the peri-engraftment period (between

days 7 and 21 after HSCT)

Higher OS

Lower TRM

Lower GvHD related mortality §
Higher intestinal diversity before HSCT (from day –30 to –6) Higher OS

Lower TRM

Payen et al.,

2020 (77)

70 adult patients (n=35

with GvHD; n=35 without

GvHD)

Allogeneic HSCT

Single center, France

Illumina MiSeq platform sequencing, V3-V4

region of the 16S RNA gene

Lower microbial diversity

Depletion of Blautia

Reduction of Lachnospiraceae and Ruminococcaceae

Increase of Prevotella and Stenotrophomonas §§

Severe acute GvHD

Han et al., 2020

(78)

150 adult patients

Allogeneic HSCT

Two centers, China

Illumina MiSeq platform sequencing, V3-V4

region of the 16S RNA gene

Gut microbiota score: a formula based on selected gut

microbiota features

Risk of grades 2-4 acute GvHD

Greco et al.,

2021 (79)

96 adult patients

Allogeneic HSCT

Single center, Italy

Roche 454 platform sequencing, V3-V5 region

of the 16S RNA gene

Low Diversity at day +10 after HSCT Higher grades 2-4 acute GvHD

Higher grades 3-4 acute GvHD

Higher risk of GI involvement

Higher risk of acute GvHD with skin

involvement

Enterococcaceae > 90% at day +10 Higher grades 2-4 acute GvHD

Higher grades 3-4 acute GvHD

Higher risk of acute GvHD with GI

involvement

<10% Lachnospiraceae at day +10 Higher risk of acute GvHD with GI

involvement

Staphylococcaceae >40% at day +10 Higher risk of acute GvHD with GI

involvement

Higher risk of acute GvHD with liver

involvement

Higher risk of steroid-refractory acute

GvHD

Khan et al.,

2021 (80)

534 adult patients

Autologous HSCT

Two centers, USA

Illumina MiSeq platform sequencing, V4-V5

region of the 16S RNA gene

Increased bacterial diversity at peri-neutrophil engraftment period Higher PFS

Post-engraftment increased bacterial diversity Higher PFS and OS

Abundance of Enterococcus Lower OS
October 2
*Barnesiella genus belongs to the family Porphyromonadaceae, within the phylum Bacteroidetes.
**Urinary indoxyl sulfate originates from the degradation of tryptophan to indole by colonic microbiota, followed by microsomal oxidation to indoxyl and sulfonation.
***Families of Lachnospiraceae and Ruminococcaceae belong to the class of Clostridia, phylum Firmicutes. Eubacterium rectale is a prominent member of the family of Lachnospiraceae.
#Blautia genus is classified as follows: family Lachnospiraceae, order Clostridiales, class Clostridia, and phylum Firmicutes.
##This study analyzed antibiotic treatment impact on GvHD risk, then antibiotic impact on microbiome within the same population.
§GvHD related mortality was significantly lower in patients with higher intestinal diversity in transplant from unmanipulated grafts.
§§Prevotella and Stenotrophomonas respectively belong to the Bacteroidetes and Proteobacteria families.
GvHD, Graft-versus-Host Disease; GI, gastrointestinal; HSCT, Hematopoietic Stem Cell Transplantation; OS, Overall Survival; PFS, Progression-Free survival; TRM, Transplant-related
mortality; VRE, Vancomycin-resistant Enterococcus.
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microbiota analysis revealed consistent associations between gut
bacteria and immune cell dynamics, paving the way for potential
microbiota-targeted interventions to improve immunotherapy
and treatments for immune-mediated diseases (91).

The gut microbiota play a critical role in maintaining
colonization resistance against intestinal pathogens, thus
preventing infections. Domination by Enterococcus and
Proteobacteria are associated with the risk of bacteremia by
Vancomycin-resistant Enterococcus and gram-negative rod
respectively (59). A different baseline distribution of the gut
microbiome (68) has been reported in patients at risk for
microbiologically confirmed infection (high level of
Enterobacteriaceae, low level of Lachnospiraceae), sepsis and
septic shock (high level of Enterobacteriaceae). Moreover, a
documented bloodstream infection may be anticipated by
expansion and dominance of pathogenic strains in the gut
flora (59, 68, 92, 93). Overall, a low diversity of the intestinal
microbiota at engraftment has been shown to be an independent
predictor of TRM from both infectious and non-infectious
causes (61).

Intestinal Microbiome, GvHD, and
Immunosurveillance
In the allogeneic transplant setting, a regulatory effect of the gut
microbiota in the maintenance of intestinal homeostasis has
been reported (94). Loss of fecal diversity, as well as increased
abundance of members from Enterococcus or Staphylococcus
species have been associated with the incidence and severity of
acute GvHD (79), while other organisms such as Blautia species
have a protective role (64). Metabolites produced by intestinal
bacteria may promote intestinal tissue homeostasis and immune
tolerance in the context of acuteGvHD (95).Moreover, commensal
bacteria can also play a role in tumor immunosurveillance.
Increased abundance of a cluster of related bacteria including
Eubacterium limosum was associated with decreased risk of
relapse or disease-progression (67).

Altogether, these results indicate that the intestinal
microbiota represent a potentially important factor in the
success or failure of HSCT. As such, the microbiome can be
envisioned both as a biomarker for the identification of patients
at higher risk for transplant-related complications, and also a
target for intervention aiming to impact clinical outcomes
through enhancing microbiota recovery (96).

Modulation of Gut Microbiota by Fecal
Microbiota Transplantation
FMT is a recommended therapeutic strategy for treating
recurrent Clostridioides difficile infection (97, 98). Additionally,
FMT has been investigated for treatment of steroid-resistant
acute GvHD and initial positive results (99) were confirmed by
several case reports (100). A small cohort study recently reported
a complete response in 10 out of 14 patients (71%) with steroid-
refractory or steroid-dependent acute GvHD 28 days after FMT
(101). This response was accompanied by an increase in
microbial a-diversity, a partial engraftment of donor bacterial
Frontiers in Oncology | www.frontiersin.org 7
species, and increased abundance of butyrate-producing bacteria,
including groups in the order Clostridiales, namely Blautia
species. Malard et al. recently reported the use of a next-
generation FMT product “MaaT013”, a standardized, pooled-
donor, high-richness microbiota biotherapeutic, in the largest
cohort of patients to date (n=29) with steroid-refractory or
steroid-dependent intestinal acute GvHD (102). These patients
had previously received and failed 1 to 5 lines of GvHD systemic
treatments. The product was well tolerated and at day 28, overall
response and complete remission rates were 59% and 31%,
respectively. Furthermore, some studies have evaluated the role
of FMT in treating dysbiosis after allogeneic HSCT. Taur et al.
reported that autologous FMT after HSCT was safe and boosted
microbial diversity, restoring bacterial populations lost during
HSCT and reversing the disruptive effects of the broad-spectrum
antibiotics (n=14) (81). Overall, FMT appears to be a promising
strategy and several studies are ongoing to evaluate FMT for
acute GvHD management (NCT03812705, NCGT03492502,
NCT03359980, NCT03720392, NCT03678493). Regarding
prevention of complications, additional studies are warranted
to confirm that restoration of gut microbiota dysbiosis after FMT
translates into clinical improvement after allogeneic HSCT, in
particular a lower incidence of acute GvHD (96).
DISCUSSION

It is increasingly accepted that understanding the complex
interactions between the microbiome and immune system will
be crucial to defining the pathogenesis of ADs, whilst optimizing
therapeutic interventions and clinical outcomes. HSCT is
increasingly used specifically to treat severe, resistant ADs,
with now more than 3000 cases being reported to the registry
of the European Society of Bone and Marrow Transplantation
(EBMT) (103, 104). To date very limited data is available
regarding microbiome biology in the setting of HSCT for ADs,
where medium to long-term clinical outcomes are considered to
be due to the induction of altered (or ‘re-booted’) immune
reconstitution post-transplant. The ‘immune re-boot’ has been
increasingly characterized in a range of ADs with a range of
immunological markers, including evidence of generation of ‘re-
educated’ and regulatory populations to support re-induction of
self-tolerance lasting beyond the broad immunosuppressive
effects of autologous HSCT (105, 106). Changes in immune
reconstitution may affect not only on disease activity, but also
adverse events, such as secondary ADs (107–110).

As for ADs outside the transplant setting, and for GvHD in
allogeneic HSCT, the microbiome may significantly influence the
baseline status of the underlying AD pre-transplant, the patients
general condition peri-transplant (which will inevitably be
influenced by the treatment and supportive care, especially
antibiotics), and then the dynamics of the reconstituting
immune system post-transplant. The microbiome may
therefore influence short- and long-term immune recovery and
clinical outcomes following autologous HSCT. Therefore, future
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investigations evaluating microbiome changes pre-, peri- and
post-HSCT in ADs patients are warranted. Table 2 includes
proposed recommendations for studies of the microbiome (111–
115) that could be compared with clinical outcome and
laboratory data related to immune reconstitution in patients
undergoing HSCT for various ADs. Although bio-banking and
testing cannot be regarded as routine care, they could be
integrated into clinical trials or observational studies with
appropriate institutional approvals. In future, a greater
understanding may help design of prospective studies of
interventions, including FMT, to test the proof of principle of
modulation of the microbiome in this setting.

In conclusion, we have summarized the current evidence
supporting the relationship between the microbiome, HSCT
and ADs, and speculated on the potential impact of the
microbiome on clinical outcomes and immune reconstitution
following HSCT for severe, resistant ADs. The evidence in this
specific field is currently very limited, warranting harmonization
of the microbiome monitoring and prospective studies to
evaluate properly any potential impact and/or clinical benefit.
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TABLE 2 | Considerations for the analysis of intestinal microbiome in AD undergoing HSCT.

Summary of considerations

• Standardization of the microbiome field is complex.
• Proper documentation of sample collection, data processing, and analysis methods is crucial to be reproducible.
• The choice of method may also vary, depending on the research interests, simplicity of fecal collection procedures and presence of adequate biobanking

infrastructure (63, 66).
Optimal time-points for sample collection before and after HSCT:
• pre-mobilization (usually cyclophosphamide and G-CSF)
• pre-transplant conditioning (up to 15 days before starting the conditioning regimen)
• peri-engraftment, i.e. within 7 days following stem cell engraftment
• Serial post-transplant samples at time points where other immune reconstitution samples are taken (e.g. 3 monthly in the first year, and yearly thereafter,

in remission or with stable disease),
• in the event of relapse and/or progression
Collection and storage of fecal samples:
• Freshly isolated fecal samples, instantly frozen at -80°C without additives (16S rRNA, flow cytometry), widely regarded as the gold standard (69).
• Samples can be also preserved at −20°C within 15 min after collection, then transferred to a laboratory on dry ice within 24 h of collection and stored at −80°C

thereafter (70).
• Sample collection in tubes containing a DNA stabilizer (e.g. OMNIgene GUT tubes or Stratec stool collection tubes) or 95% ethanol, which allows sample storage at

room temperature (16S rRNA) (63, 66).
Methods of detection:
• 16S rRNA sequencing
• Shot-gun metagenomics sequencing
• Metabolic profiling
• Flow cytometric analysis

The selection of sequencing methods depends on the scientific questions and sample types:
• Amplicon sequencing: taxonomic composition of microbiota, cost effective, feasible for large-scale research.
• Shot-gut Metagenomic sequencing: more information, more expensive than amplicon sequencing.
• The integration of different methods is advisable, as multi-omics provides insights into both the taxonomy and function of the microbiome (71).
Bioinformatics analysis:
Several popular software or pipelines are available for data analysis; QIIME and USEARCH are the most largely adopted (71).
AD, autoimmune diseases; HSCT, Hematopoietic Stem Cell Transplantation; G-CSF, granulocyte colony-stimulating factor; FACS, Fluorescence-activated cell sorting.
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