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Abstract

Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have
developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this
purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network
by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA
on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core,
fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient,
parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network
can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant
improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network
inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome
scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA
is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated
networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as
ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/).
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Background

Genetic regulatory networks capture the complex relationships
between biological entities, which help us to identify putative
driver and passenger genes in various diseases [1, 2]. Many ap-
proaches have been proposed to infer genetic networks using

gene expression data, for example, co-expression networks [3],
mutual information-based methods [4, 5] Bayesian networks
[6–8], ordinary differential equations [9, 10], regression-based
methods [11–15], and ensemblemethods [16]. In addition, meth-
ods have been proposed to infer gene networks using multi-
ple data sources (e.g., [17–20]). We have previously described
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ScanBMA [14], an implementation of Bayesian model averag-
ing (BMA) [21] for inferring regulatory networks. ScanBMA is
available from the “networkBMA” Bioconductor package [22],
written in R and C++. It has been shown that ScanBMA
generates compact accurate networks that can incorporate
prior knowledge.

In this paper, we present fastBMA, which is completely writ-
ten in C++ and uses more efficient and scalable regression and
hashing methods. The algorithmic improvements increase the
speed by a factor of 30 on smaller sets (Fig. 4A), with greater
increases observed on larger sets due to improved scalability
(Fig. 4B). fastBMA is parallelized using both OpenMP and MPI,
allowing for further increases in speed when using multiple
cores and processors. Although fastBMA uses the same core
methodology as ScanBMA, the increased scalability allows for
more thorough sampling of the search space to increase accu-
racy. The new probabilistic hashing procedure used by fastBMA
is faster and utilizes 100 000 times less memory when analyzing
large numbers of variables (see the fastBMA Methodology sec-
tion). This allows fastBMA to operate on genome-scale datasets
without limiting the possible regulators of a given gene to a
smaller subset.

A final feature of fastBMA is the implementation of a new
method for eliminating redundant indirect edges in the net-
work. The post-processing method can also be used separately
to eliminate redundant edges from networks inferred by other
methods. The code is open source (M.I.T. license). fastBMA is
available from GitHub [23], in R as part of the networkBMA
package [24], and as Docker images [25]. The Docker contain-
ers include all the supporting dependencies necessary for MPI
and make it much easier to run fastBMA on a local or cloud
cluster.

Bayesian model averaging

We can formulate gene network inference as a variable selection
problem where the dependent variable (target gene expression)
is modeled as a function of a set of predictor variables (regu-
latory gene expression). A regression model can be formed by
fitting equation (1).

Xi = β0 +
∑

h∈H
βh,i Xh + εi,, (1)

where Xi, is the expression level of gene i, H is the set of regula-
tors for gene i in a candidate model, β ′s are the regression coef-

ficients, and εi N iid∼ (0, σ 2
ε ) is the error term for gene i = 1. . .n.

Time series data can also bemodeled by using the expression
at the previous time point to predict the next time point.

Xi,t = β0,i +
∑

h∈H
βh,i Xh,t−1 + εi,t, (2)

where Xi,t is the expression level of gene i at time t,H is the set of
regulators for gene i in a candidate model, β ′s are the regression

coefficients, and εi,tN iid∼ (0, σ 2
ε ) is the error term for gene i= 1. . .n

and time t = 2, . . .T.
Different candidate models can be constructed from differ-

ent sets of regulator genes. Models can be evaluated based upon
a measure of their goodness of fit, such as the sum of resid-
uals. However, in genetic analyses, the number of genes of-
ten exceeds the number of samples, and many different mod-
els can fit the data reasonably well. The core idea behind the

BMA methods is that, given a set of starting prior model prob-
abilities, we can find the posterior probability of each model
and make a consensus prediction giving proportionately more
weight to the more probable models. In terms of gene regula-
tion, the posterior probability that gene j is a regulator of gene
i is the sum of the posterior probabilities of all candidate mod-
els that include gene j in the set of regulators of i. This posterior
probability becomes the weight of the edge drawn from gene j
to gene i in the gene network. Estimates of the weights from
prior knowledge can be used to seed the calculation of mod-
els to increase accuracy. Alternatively, a set of uniform start-
ing weights based on the average number of edges observed
in biological networks can be used when there is no additional
information [26].

Estimating model posterior probabilities

Estimation of the posterior probabilities of the models can be
accomplished by a variety of methods, some of which are very
computationally intensive [12]. The original BMA [21] and iter-
ative BMA (iBMA) methods [27] use the Bayesian Information
Criterion (BIC) [28], which is simple to calculate and penalizes
largermodels that are easier to fit. However, BIC is an asymptotic
approximation that is most accurate for large sample sizes. As
an alternative, ScanBMA provided the option of using Zellner’s
g prior [29] to compute the posterior probabilities. The g prior
parameter can be estimated as the value that maximizes the to-
tal posterior probability of the models. Adjusting the range of
possible values for the g prior allows us to tune the method for
smaller sample sizes and produce better networks. fastBMA ex-
clusively uses the g prior to estimate the posterior probabilities
and replaces ScanBMA’s R code with a faster C++ implementa-
tion for the expectation maximization (EM) optimization of the
g parameter.

Sampling candidate models

The number of possible candidate models grows exponentially
with the number of possible regulators, necessitating an effi-
cient methodology to find a subset of reasonable models. In
the original implementation of BMA for genetic regulatory net-
work inference, the leaps and bounds algorithm [30] was used
to identify the n best models for a given number of variables.
Occam’s window [31] was then used to discard models with
much lower posterior probabilities than the best model. The
leaps and bounds algorithm scales poorly and is limited in prac-
tice to fewer than 50 variables. Iterative BMA (iBMA) uses a pre-
processing step to rank all variables (genes), iteratively applies
the original BMA to the top w variables (w = 30 by default), and
discards predictor variables with low posterior inclusion proba-
bilities [13]. In the iterative step, new variables from the ranked
list are added to replace the discarded variables. This procedure
of repeatedly applying BMA and variable swaps is continued un-
til the w top-ranked variables have been processed. In contrast
to iBMA, ScanBMA removes the restriction of the search space to
an initial list of variables [14]. ScanBMA keeps a list of the best
current linear regression models found so far and adds or re-
moves a variable from these models to search for better models.
The process is repeated until no new models are added or re-
moved from the best set of models. ScanBMA’s greedy approach
and the implementation of its core routines in C++ enable it to
typically run faster than iBMA. In this paper, we present fastBMA
that uses the ScanBMA approach but exploits the fact that
new models are based upon existing models. In particular, new



fastBMA: scalable network inference 3

Table 1: Differences between BMA implementations

BMA iBMA ScanBMA fastBMA

Max variables 50 100 3500 10 000+

Parallel No No No MPI/OpenMP
Post-processing No No No Transitive reduction
Prior specification BIC BIC BIC/g prior g prior
Implementation R/Fortran R/Fortran R/C++ C++

Figure 1: Outline of fastBMA algorithm.

models are fitted using the results from the existing models,
which increases the speed and scalability of the search.

Post-processing graphs by transitive reduction

BMA and other methods for reconstructing biological networks
can generate edges between genes that are the result of indirect
regulation through 1 or more intermediate genes. While having
edges that represent either direct or indirect interactions is per-
fectly acceptable in a graph, biological networks are usually rep-
resented by edges that represent direct interactions. Such net-
works allow for more straightforward identification of potential
driver genes. For genetic networks, it is therefore desirable to
remove edges between nodes where the regulation is indirect
(transitive reduction). This can be done through post-processing
of the inferred network. One intuitive approach is based on elim-
inating direct edges between 2 nodes when there is a better in-
direct path [32]. For example, Bosnacki recently proposed com-
paring P-values of the best edge in an indirect path with that of
the direct path [33]. fastBMA introduces a similar approach that
reduces transitive reduction to a shortest-path problem, which
can be solved more efficiently for the sparse graphs typically
found in gene regulatory networks.

Table 1 summarizes the key differences between the different
BMA implementations.

fastBMA Methodology

Fig. 1 shows an outline of fastBMA. In this section, we report our
algorithmic and implementation contributions in fastBMA and
our evaluation procedure. The pseudocode for the entire imple-
mentation is provided in the supplementary materials.

Algorithmic outline of fastBMA

The core approach for fastBMA is similar to that used by
ScanBMA. The best models are found using ScanBMA’s search
strategy with a starting value of g in the interval [1. . . Num-
berOfSamples]. Brent minimization [34] is then used to find the
value g in the interval that gives rise to the set of models with
the highest total marginal probability. A graph is constructed by
drawing edges between genes with an edge weight equal to the
average posterior probability of the regulator over the set of rea-
sonable models. Transitive reduction is applied to this graph to
remove edges that can be adequately explained by a better in-
direct path. A final graph is constructed by retaining edges with
weights greater than a given cutoff.

There are 4 major algorithmic improvements that increase
the speed, scalability, and accuracy of fastBMA:

1. Parallel and distributed implementation
2. Faster regression by updating previous solutions
3. Probabilistic hashing
4. Post-processing with transitive reduction

Parallel and distributed implementation

Parallelization can be accomplished by using a shared memory
system, such as OpenMP [35], which is designed for assigning
work to different threads in a single CPU with multiple cores. In
contrast, Message Passing Interface (MPI) [36] launches multiple
processes on 1 or more CPUs and passes messages between pro-
cesses to coordinate the distribution of work. Both of these ap-
proaches have their respective advantages and disadvantages.
OpenMP is applicable only to CPUs on a single machine and
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is a bit slower for fastBMA. MPI is usable on a single machine
or a cluster but requires some work to set up. fastBMA imple-
ments both approaches, allowing the user to choose the pre-
ferred methodology based on their requirements.

Inferring the entire regulatory network involves finding the
regulators for every gene in the set. Since each of these de-
terminations is carried out separately, each thread or process
can be assigned the task of finding the regulator for a subset of
genes in the set. When OpenMP is used, it provides a scheduler
that dynamically assigns the regression calculations for a given
gene to each thread. Threadswork simultaneously on their tasks
and receive a new task when they finish the previous task. All
threads share access tomemory, and the same input data for the
regression is available to all the threads. The parallel code only
extends to the regression loop; the final transitive reduction
post-processing and output is done by a single thread.

When MPI is used, we initially split the tasks evenly among
the available CPUs. In the case of MPI processes, memory is not
shared. Instead the input data is read by a master process and
distributed to all the participating processes using MPI’s broad-
cast command. All processes then work on their tasks simulta-
neously in parallel and sendmessages to all the other processes
so that all processes know which tasks are being worked upon.
The length of time required for each calculation varies consid-
erably, and, as a result, some processes will finish before others.
A process that finishes early then works on tasks initially as-
signed to other processes that have not yet been started. When
all the regulators for all the genes have been found, amaster pro-
cess gathers the predictions, performs transitive reduction post-
processing, and outputs the final complete network. OpenMP
can also be used in conjunction with MPI to further subdivide
the tasks among threads available to a CPU.

Faster regression by updating previous solutions

Even with the above parallel implementation, each individual
calculation of regulators is still accomplished by a single pro-
cess. If the regression procedure is too slow, this step can be rate-
limiting for large numbers of genes regardless of the number
of processors available. ScanBMA uses Cholesky decomposition
to triangularize the regression matrix and obtain the regression
coefficients through back substitution. These calculations have
a time complexity of O(n3), where n is the number of variables
in the model. However, in the case of fastBMA, new regression
models are based upon the previous models and involve the ad-
dition or removal of a single variable. It is possible to use the tri-
angular matrix of the previous model to calculate the triangular
matrix and regression coefficients for the new model. fastBMA’s
new C++ implementation of this update algorithm is based on
the Fortran code from the qrupdate library [37].

The time required for Cholesky decomposition becomes
O(n2) when updating the previous solution. Average sampled
model sizes for typical applications range between 5 and 20, and
this would be the expected speedup when using a single thread.
However, fastBMA further optimizes the implementation by
pre-calculating matrix multiplications and using lower-level
linear algebra routines from OpenBLAS [38] for further speed
increases. OpenBLAS is an optimized open source implementa-
tion of the Basic Linear Algebra Subprograms (BLAS) routines.
Custom wrappers were added to allow the use of the OpenBLAS
Fortran libraries. Our initial prototyping indicated that the im-
provements in the regression procedure account for the major-
ity of the 30-fold increase in speed observed for smaller search
spaces on a single thread.

Replacing the hash table with a constant time and
constant space probabilistic filter

In order to understand the necessity and efficacy of the new
probabilistic filter used by fastBMA, we must first understand
the limitations of the simple hash table used by ScanBMA.
Before evaluating a newly generated model, ScanBMA checks
to see if that model has been previously evaluated. This is
done by using a hash table to store a string representing the
indices of the variables in the model. For smaller sets, the
time and space required for this operation are negligible com-
pared to the time and space required to calculate the regres-
sion coefficients. However, when the number of variables is in
the thousands, this operation becomes the bottleneck. A reg-
ular hash table uses a hash function to map the model to a
bucket. When the number of models is small relative to the
number of buckets (small load factor), it is unlikely that 2
models will be put in the same bucket, and the time taken
to look up a model is just the time to map the model to a
bucket. For lexicographical strings, the hash function is applied
to small substrings and the values are combined. The time re-
quired for hashing the whole string is proportional the length of
the string. In the case of ScanBMA, the length of the strings
formed from the concatenated variable indexes is proportional
to the number of variables n. Thus for small numbers of mod-
els, the time complexity of the lookup operation will also
be O(n).

However, when the load factor is large, it is likely that mul-
tiple models map to the same bucket. The resulting collisions
must be resolved by searching through themodels in the bucket.
For the C++ unordered set container used by ScanBMA, this has
worse-case O(m) time complexity where m is the number of
models giving a total time complexity of O(nm) for the lookup
procedure when m is large. In addition, the memory required to
store the hash table will be O(m). Unfortunately, when a large
number of mostly uninformative variables are coupled with a
large Occam’s window, m grows very rapidly. In these cases, we
observed that the memory and time requirements of the hash-
ing procedure soon become limiting. For example, even though
it only runs a single thread, ScanBMAwill run of out memory on
a 56 GB machine when there are large numbers of variables and
no informative priors.

It is vital that the ScanBMA algorithm does not sample a
model more than once to ensure that the method will con-
verge and terminate. However, the methodology is quite toler-
ant of falsely excluding models that have not been sampled.
ScanBMA only explores a small sample of the possible models—
the vast majority of models are normally excluded. Further-
more, in the BMA approach, many models are averaged to ob-
tain the final edges. Variables that are important appear in
many models. In the rare case where a good model is falsely
excluded, the impact is minimized because the key regulators
in the falsely excluded model will be found in other models.
When such false negatives are tolerated, an alternative to us-
ing a hash table is to ignore the collisions. This saves both time
and space by removing the dependence on m for both time and
space complexity. An example of a noisy or probabilistic hash-
ing approach is the Bloom filter [39], which has been used for
bioinformatics applications [40] due to fast computation and low
memory requirements.

fastBMA includes an optimized implementation of a prob-
abilistic hash (see Fig. 2) that has constant time and constant
memory complexity. The dependence of the computation time
on m is eliminated by ignoring collisions, and the dependence
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(A) (B)

Figure 2: ScanBMA hash table vs fastBMA bit filter. The differences between the hashing methods used by ScanBMA (A) and fastBMA (B) are shown. ScanBMA con-

catenates the indices of the regulator variables in the model to form a unique string. The string is then mapped to 1 of a set of buckets. Strings mapping to the same
bucket are kept in a second data structure, which must be navigated to look up the string. In contrast, fastBMA pre-calculates the hashes for all the possible variables.
New regression models are based upon the previous models and involve the addition or removal of a single variable. The hash value for the new model is obtained
by XORing the hash value for the variable to be added or deleted with the hash value of the previous model. The hash value is used to map the model to a position

in a 512-kB bit table, with the row dependent on the number of variables. Mapping different sized models to different rows prevents the large number of collisions
that would otherwise arise when using the XOR operator to combine hash values. A bit is set in the bit table to indicate that the model has been observed. Collisions
are ignored; it is possible to falsely conclude that a novel model has been evaluated when it has not. As discussed in the Methods section, this type of error is well

tolerated by the fastBMA protocol.

Figure 3: Transitive reduction post-processing. A simple example of the transitive reduction procedure is illustrated. The 3 edge weights in the mini-graph are the

posterior probabilities that A regulates B, B regulates C, and A regulates C. The probability of A regulating C through an indirect path through edges A→B→C is the
product of the edge weights for A→B and B→C. We take the negative log of the probabilities (middle panel) to transform the multiplication into distances. The indirect
path A→B→C is shorter than the direct path A→C, which is equivalent to the probability of A regulating C through B being greater than the probability of A directly
regulating C. As a result, the edge between A and C is removed.

on n is eliminated by using an updatable hash function (Mur-
murHash3 [41]) that calculates the hash value of a model based
on the hash value of the previous model. fastBMA uses the hash
value of the model to map it to a location in a 2-dimensional bit
table. The bit at that location is then set to 1. Any model that
hashes to a table location with a set bit will not be processed.
The error rate for the filter is initially very low, and errors are
more likely near the end of the search when more bits in the
table have been set. This meshes well with the search process
used by fastBMA: errors at the end of the search have even less
impact because almost all changes to good models are rejected
at that point.

Our benchmarking confirms that ignoring collisions does not
degrade the accuracy of fastBMA. Using a bit table of just 512
kilobytes gives identical results for a smaller synthetic dataset
and almost identical results for the larger genome-wide experi-
mental dataset. This is reflected in Fig. 4A, where the accuracy
of fastBMA is the essentially the same (actually slightly higher)
than ScanBMA when using the same search window. However,
ScanBMA can use hundreds of gigabytes of memory to maintain
a string hash table during wide searches over the yeast dataset.

The implementation of the methodology is also further op-
timized for speed. New hash values are derived from old ones
by looking up the value of the pre-calculated hash for the vari-
able to be added or deleted and using XOR to combine it with
the previous hash. This procedure is very fast and invertible but

normally would cause severe collision problems, with the same
hash being associated with different sets of variables. This is
solved by mapping hashes from models of different sizes to dif-
ferent rows of the bit table. fastBMA uses a bit table of 64 rows
by 65 326 columns. fastBMA maps the lower 16 bits of the hash
value to obtain the column c and uses bits 21 and 22 combined
with the last 4 bits of the model size to obtain the row r (see
Fig. 2). The value of the bit table at row r and column c is set
to indicate that the hash value has been seen. Thus the hash-
ing/insert/lookup procedure is constant time, using a very small
number of fast bit operations. The tiny size of the bit table (512
kB) also makes the lookup operation very cache friendly. During
our prototyping of different versions of fastBMA, we found that
the optimized bit filter was much faster than using a full hash
table even for small datasets where the load factor is small and
there are few collisions.

Transitive reduction: eliminating edges when there is a
better indirect path

fastBMA’s transitive reduction methodology is based on elim-
inating direct edges between 2 nodes when there is a bet-
ter alternative indirect path. This approach was first described
by Wagner [32]. Bosnacki recently proposed comparing P-values
of the best edge in an indirect path with that of the direct
path [33]. fastBMA uses the stronger criterion of comparing the
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(A) (B)

Figure 4: Graphs of the overall accuracy of networks as a function of running time on the DREAM4 simulated (A) and yeast time series data (B). The area under the
receiver operating character curve (AUROC) and area under the precision recall curve (AUPR) of networks inferred from the DREAM4 dataset using fastBMA (no post-
processing), ScanBMA, and LASSO are plotted against the running times. The different points within a line segment represent fastBMA and ScanBMAwith increasingly

wider searches as determined by the odds ratio (OR) parameter (OR = 100, 1000, 10 000)—the leftmost point representing the smallest OR, which is the fastest and least
accurate. LASSO does not have an equivalent parameter and was run with the default settings. For the yeast datasets, prior probabilities of regulatory relationships
(informative priors) were obtained using external data sources as described in Lo et al. For all methods not using informative priors (including LASSO), variables were

ordered by their absolute correlation to the response variable. For the ScanBMA on the yeast dataset, the search space was restricted to the 100 variables with the
highest prior probabilities. fastBMA was run with a search space of 100 variables using 1 core and all 3556 variables using 8 cores, with and without the Lo et al. prior
probabilities. All tests were conducted using Ubuntu 14.04 on an A10 Microsoft Azure cloud instance, which is an Intel Xeon CPU with 8 cores and 56 GB of RAM and is
the average of 5 runs. Docker images were not used during benchmarking. Error bars are not shown as the variation between runs is too small to appear on the graphs.

overall posterior probability of the entire path. The linear re-
gression model underlying BMA does not distinguish between
direct and indirect paths. However, BMA is usually seeded with
the prior probabilities of a direct interaction between genes, and
the posterior probabilities that constitute the edge weights in
a fastBMA network are intended to be estimates of the con-
fidence that there is a direct interaction. The overall proba-
bility of any path can be estimated (assuming independence)
by multiplying the edge weights together. Equivalently, we can
transform the edge weights by taking the negative log, and
the highest probability path becomes the path with the low-
est sum of negative log edge weights (see Fig. 3). The question
of whether a better indirect regulatory chain exists is thus
mapped to the question of whether a shorter indirect path ex-
ists between the 2 nodes. This is the a shortest path problem
that can be solved by Dijkstra’s method with time complexity
of O(N E logN + N2 logN), where E is the number of edges and
N is the number of nodes. By comparison, the GPU methodol-
ogy of Bosnacki is O(N3) using a less selective criterion of com-
paring the best edge in the path. The search is also bounded:
once a path’s distance exceeds the direct distance, there is no
need to further explore that path. In addition, fastBMA produces
graphs with few high-weight edges, and, in practice, the algo-
rithm is much faster than the worst case as most searches are
quickly terminated.

Datasets used for testing

We have previously benchmarked ScanBMA [14] against other
network inference methods (MRNET [5], CLR [42], ARACNE [4],
DBN [8], and LASSO [11, 43]) on smaller test sets. In this study,
we focus on comparing fastBMA only to ScanBMA and LASSO,
which were the 2 most accurate methods in these bench-
marks and are the only 2 methods that could infer networks
from the larger datasets in a reasonable time. We also com-
pare fastBMA to other methodologies, GENIE3 [44] and Jump3
[45], which have demonstrated high accuracy on the simulated
DREAM datasets.

We used the following 3 datasets for testing.

1. Simulated 10-gene and 100-gene time series data (5 sets
of each) and the corresponding reference networks from
DREAM4 [46–50]. As these datasets are simulated; the true
regulatory relationships are known and are used to evaluate
the accuracy of the predicted networks. For Fig. 4A, all the
10-gene and 100-gene datasetswere used and treated as 1 big
dataset. Individual 100-gene networks were used to generate
Table 2.

2. Yeast time series expression data (ArrayExpress E-MTAB-412)
consisting of 3556 genes over 6 time points and 97 replicates
[51]. Being actual data, there is no absolute ground truth.
Instead, we compared the regulatory predictions with the
literature-curated regulatory relationships from the YEAS-
TRACT database [52].

3. Human single-cell time series RNA-Seq data GSE52529 (9776
genes) from GEO [53]. As no satisfactory gold standard was
available, we only used this to demonstrate that fastBMA
could scale to noisy human genome-wide expression data.

Assessment metrics and testing methodology

We define a true positive (TP) as an edge in the inferred network
that is also present in the ground truth or gold standard set. False
positives (FP) are edges in the inferred network that are missing
in the gold standard. False negatives (FN) are missing edges in
the inferred network that are present in the gold standard, and
true negatives (TN) aremissing edges that are alsomissing in the
gold standard. Precision (TP/(TP+FP)) and recall (TP)/(TP+FN) are
useful measures of the positive predictive value and sensitivity
of the methodology. However, precision and recall are depen-
dent on the threshold used for the edge weights. Plots of preci-
sion vs recall over different values for the threshold give a more
complete picture of the accuracy of the network inference. Sim-
ilarly, receiver operating characteristic plots of TP/(TP+FN) vs
FP/(FP+TN) for different thresholds are also useful, though less
so than precision-recall plots because we are more interested
in TP in sparse biological networks. We distill the overall infor-
mation of these plots into a single number by estimating the
area under the curve (AUC), i.e., area under precision recall curve
(AUPR) and area under receiver operating curve (AUROC) for all
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Table 2: Comparison of AUPR on Dream-4100 gene networks for Jump3, GENIE3, and fastBMA

Network 1 Network 2 Network 3 Network 4 Network 5 Running time per network

Jump3 0.2703 0.110 0.200 0.180 0.174 48 hours1

GENIE3 0.228 0.096 0.230 0.157 0.168 N/A
fastBMA 0.232 0.127 0.189 0.227 0.158 3 seconds (using 1 thread)2

1Jump3 timings were from an Intel i7 processor @1.7 GHz.
2fastBMA timings were from an Intel Xeon E5–2670 processor @ 2.6 GHz.
3The highest AUPR for each network are in bold type.

(A) (B)

Figure 5: Precision-recall curves. In (A) the precision-recall curves were plotted for the networks inferred from the DREAM4 data using LASSO, LASSO+post-processing,
fastBMA+post-processing (odds ratio = 10 000). No informative priors were available for this synthetic dataset. In (B), curves were plotted for the networks inferred

from the yeast time series data using LASSO, LASSO+post-processing, fastBMA, and fastBMA with informative prior. For the yeast dataset, curves for post-processed
networks for fastBMA are not shown as they are essentially identical to the curves for networks inferred without post-processing.

possible threshold values. Due to the size of the larger yeast net-
works, all AUC calculations were done using custom software
fastROCPRC [54], written in C++. We primarily use AUPR and
AUROC for the assessment as these metrics measure the over-
all performance of the methods. In practice, however, predict-
ing some edges accurately, even if only for the most confident
predictions, is still valuable for narrowing down a set of poten-
tial interactions to be further explored. Hence, we also plot the
precision-recall graph to assess where the differences in accu-
racy are occurring. Timings for ScanBMA, fastBMA, and LASSO
were the average of 5 runs on the same 8-core 56-GB Microsoft
Azure A10 instance. fastBMA and ScanBMA were compiled on
the instance and the binaries used. For the Jump3/GENIE3 com-
parison, we did not run the software ourselves but relied upon
the published running times.

Results

We applied our fastBMA algorithm to both simulated and real
time series gene expression data. We had previously tested sev-
eral methods on these datasets [14] and found that ScanBMA
and LASSO were the fastest and most accurate methods. There-
fore, we focused on comparing the fastBMA results to ScanBMA
and LASSO [43, 55] in Figs 4 and 5. LASSO is a non-Bayesian linear
regression method that uses a penalty term to prevent overfit-
ting to models with many variables. It is written in Fortran and
is the basis for one of the fastest network inference methods
available. Both fastBMA and ScanBMA control the breadth of the
search by varying the odds ratio threshold that defines the size
of Occam’swindow. The odds ratio is the confidence in the query
model relative to the best model. Models outside of this window
are discarded. Hence, a larger odds ratio threshold drives awider
search, which naturally takes longer to complete.

We ran both ScanBMA and fastBMA with increasingly larger
windows (odds ratios 100, 1000, 10 000) and the time and ac-
curacy, as measured by AUROC and AUPR, plotted as line seg-
ments in Fig. 4. The exception was that in Fig. 4B ScanBMA was
restricted to 100 variables and using priors due to the time and
memory required to run it using all 3556 variableswith the larger
odds ratios. All the line segments have a positive slope, indicat-
ing that larger windows do increase the accuracy, at the expense
of usingmore computation time. For both the synthetic DREAM4
and experimental yeast datasets, with or without prior informa-
tion, the line segments for fastBMA in Fig. 4A (where the con-
ditions are identical) are well to the left of the corresponding
line segments for ScanBMA. The x-axis is logarithmic, indicat-
ing that fastBMA is orders of magnitude faster than ScanBMA
when using the same parameters. Alternatively, one can use a
larger odds ratio with fastBMA and obtain amore accurate result
in the same time it would take to run ScanBMA with a smaller
odds ratio. This is especially important for larger datasets such
as the yeast dataset with non-informative priors, where it is im-
practical to run ScanBMA. On the same datasets, fastBMA is also
more accurate and faster than LASSO, the degree and nature of
improvement depending on whether the user chooses to em-
phasize speed or accuracy through the choice of the odds ratio
parameter.

One of the main advantages of the BMAmethods is that they
are able to incorporate prior information to improve inference.
This was not possible for the DREAM4 dataset as it is a synthetic
dataset, for which relevant prior information is not available. In
this case, an uninformative uniform prior probability is used.
However, for the yeast dataset, we had access to priors from
external data sources [12]. Specifically, we applied a supervised
learning approach to a training dataset consisting of regulator-
gene pairs and various attributes assembled from diverse gene
expression data, genome-wide binding data, protein-protein
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interactions, gene ontology terms, and prior knowledge from the
literature. We computed predicted probabilities of regulatory re-
lationships using this supervised learning approach, and these
predicted probabilitieswere used as priors in the regression step.
These priors are available in the lopriors.tsv file in the supple-
mentary materials. The use of informative priors also allowed
us to triage the variables to be explored to the 100 variables
with the highest prior probabilities, saving considerable com-
putational resources. In addition, using informative priors often
increases computational efficiency by restricting the search to a
smaller space. As expected, using informative priors increases
the accuracy and decreases the running time of fastBMA rela-
tive to LASSO. In addition, we ran fastBMA without informative
priors and without restricting the number of variables (i.e., us-
ing all 3556). This is beyond the capabilities of ScanBMA when
using wider search windows. Even on this computationally de-
manding task, inferring the yeast network without informative
priors, fastBMA is faster than LASSO with increased accuracy as
assessed by AUROC and AUPR.

A common use for computational network inference is to
identify a small set of potential regulators that could be verified
with further experiments. For this use case, an improvement in
the precision of the most confident predictions is more impor-
tant than a small improvement in the overall performance of the
method. As some of the differences in AUC for the yeast dataset
are relatively small, we plotted the precision recall curves in
Fig. 5. We see that the precision of the most confident predic-
tions (i.e., lowest recall) is increased. The advantage of using
informative priors when available is very clear. However, even
when prior knowledge is not available, the fastBMA algorithm is
superior, which is especially evident in the case of the DREAM4
dataset.

The effect of post-processing is more limited. In Fig. 5, the
precision-recall curves for the DREAM4 dataset are almost iden-
tical for fastBMA and LASSO with and without post-processing.
The same result was observed for fastBMA on the yeast dataset,
and for clarity, we did not plot the overlapping precision-recall
curves for the post-processed networks for fastBMA. However,
we do see that post-processing has an effect on LASSO for the
yeast dataset.

We also tested fastBMA on a human single cell RNA-Seq
dataset with 9776 variables. Using a 32-core cluster on Microsoft
Azure (2 nodes of 16 cores), fastBMA was able to obtain a net-
work in 13 hours without using informative priors. Neither
ScanBMA nor LASSO is able to return results for this dataset. We
do not have a gold standard for this test—the purpose was to
demonstrate that fastBMA could handle a very large and noisy
genomic-sized dataset and return a networkwithin a reasonable
time even in the worst case scenario where the data is noisy and
there is no prior information.

One possible drawback of the fastBMA methodology is the
narrow search algorithm, which restricts sampling to models
similar to the previously optimal models. While this is a prime
reason for the speed of the approach, methodologies that sam-
ple the space more thoroughly, especially on smaller datasets,
may be prove to be more effective. Table 2 compares fastBMA
to the methodology of one of the best performers on the non–
time series data fromDREAM4, GENIE3, and its successor Jump3,
which use an ensemble of decision trees for network inference.
In Huyny-Thu et al. [45], the AUPR for both GENIE3 and Jump3
were given for the DREAM4 time series data, allowing for a di-
rect comparison with fastBMA. For these tests, fastBMA was
run with an odds ratio of 10 000 and the AUPR compared with
those listed in Huynh-Thu et al. [45] in Table 2. The best re-

sults for each of the 5 networks are highlighted. In particular,
Jump3 has higher AUPR than fastBMA for 3 of the networks, and
fastBMA has higher AUPR than GENIE3 in 3 of the networks,
with the AUPRs being fairly similar for all the 3 of the meth-
ods. However, the running time difference is significant, with
fastBMA taking 3 seconds per network and Jump3 taking 2 days.
Running times for GENIE3 time series data were not given in
Huynh-Thu et al. [45].

Discussion and Conclusions

We have described fastBMA, a parallel, scalable, and accurate
method for inferring networks fromgenome-wide data.Wehave
shown that fastBMA can produce networks of increased accu-
racy orders of magnitude faster than other fast methods, even
when using a single thread. Further speed increases are possi-
ble by using more threads or processes. fastBMA is scalable, and
we have shown that it can be used to analyze human genomic
expression data even in the most computationally demanding
situation of noisy data, no informative priors, and considering
all genes as possible regulators.

fastBMA includes a new transitive reduction post-processing
methodology for removing redundant edges where the pre-
dicted regulatory edge can be better explained by indirect paths.
Both fastBMA and LASSO already penalize large models and
favor the exclusion of redundant variables. This explains why
post-processing has minimal impact on the sparse networks
predicted by fastBMA and LASSO. In particular, fastBMA pro-
duces very sparse networks that are not improved by further
processing on any of the datasets tested. LASSO’s networks are
denser. For the small synthetic DREAM4 set, the post-processing
still does not improve the network. However, on the larger ex-
perimentally derived yeast dataset, spurious edges do appear in
the LASSO networks despite the regularization penalty that dis-
courages larger models. Some of these redundant edges are suc-
cessfully removed by the transitive reduction post-processing,
improving the overall accuracy of the network. Thus the transi-
tive reduction methodology may prove useful as an adjunct to
methods and datasets that give rise to denser networks and are
more prone to over-predicting edges than fastBMA. With this in
mind, and given that this methodology is different from other
published methodologies, we have included the ability to run
the transitive reduction module of fastBMA on any set of edges,
not just those generated by fastBMA.

Although we have focused on biological time series data,
fastBMA can be applied to rapidly infer relationships from other
high-dimensional analytics data. Also, the fastBMA methodol-
ogy can be extended for even more demanding applications. For
example, multiple bit filters (i.e., a Bloom filter) could be used
to hash larger search spaces. fastBMA does have some limita-
tions: the speed relies on sampling a small subset of the search
space defined by the initial best set of models. This may not be
an optimal strategy when there are many almost equally good
dissimilar solutions and no prior knowledge to provide a guide
to a set of good starting models. In these cases, especially for
smaller networks, there may be better solutions such as Jump3
that can sample the space more thoroughly within a reasonable
time frame. However, on the 100-gene DREAM4 datasets in Ta-
ble 2, the differences in accuracy between themethods were not
large, but the speed increase was more than 4 orders of magni-
tude. We anticipate that the efficiency of fastBMA will be espe-
cially useful for very large datasets on the cloud where usage is
metered. For this purpose, we have provided Docker images to
facilitate deployment on local or cloud clusters.
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Availability and requirements

Project name: fastBMA
Project home page: https://github.com/lhhunghimself

/fastBMA
Operating system(s): Linux (MacOS and Windows support

provided through the Docker container [25] and Bioconductor
package [24])

Programming language: C++
Other requirements: gcc version >4.8, OpenBLAS, mpich2 (if

MPI desired) to compile code
License: M.I.T.
Any restrictions to use by non-academics: none other than

those required by the license

Availability of supporting data

Simulated 10-gene and 100-gene time series data (5 sets of each)
and the corresponding reference networks from DREAM4 were
obtained from DREAM4 [56]. Yeast time series expression data
(ArrayExpress E-MTAB-412) consisting of 3556 genes over 6 time
points [51] and literature-curated regulatory relationships from
the YEASTRACT database [52].

Human time series RNA-Seq data GSE52529 (9776 genes)
were obtained from GEO [53].

Snapshots of the supporting code are also available from the
GigaScience database, GigaDB [23].

List of abbreviations

AUC: area under the curve; AUPR: area under precision recall;
AUROC: area under receiver operator curve; BIC: Bayesian infor-
mation criterion; BMA: Bayesian model averaging; EM: estima-
tion maximization; iBMA: iterative Bayesian model averaging.
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