
Review Article
Vitamin D Signaling in Myogenesis: Potential for
Treatment of Sarcopenia

Akira Wagatsuma1 and Kunihiro Sakuma2

1 Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
2 Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka,
Tempaku-cho, Toyohashi 441-8580, Japan

Correspondence should be addressed to Akira Wagatsuma; wagatsuma1969@yahoo.co.jp

Received 25 April 2014; Accepted 3 June 2014; Published 30 June 2014

Academic Editor: Giuseppe D’Antona

Copyright © 2014 A. Wagatsuma and K. Sakuma. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Muscle mass and strength progressively decrease with age, which results in a condition known as sarcopenia. Sarcopenia would
lead to physical disability, poor quality of life, and death. Therefore, much is expected of an effective intervention for sarcopenia.
Epidemiologic, clinical, and laboratory evidence suggest an effect of vitamin D onmuscle function. However, the precise molecular
and cellular mechanisms remain to be elucidated. Recent studies suggest that vitamin D receptor (VDR) might be expressed
in muscle fibers and vitamin D signaling via VDR plays a role in the regulation of myoblast proliferation and differentiation.
Understanding how vitamin D signaling contributes to myogenesis will provide a valuable insight into an effective nutritional
strategy to moderate sarcopenia. Here we will summarize the current knowledge about the effect of vitamin D on skeletal muscle
and myogenic cells and discuss the potential for treatment of sarcopenia.

1. Introduction

Muscle wasting is observed in various disease states, in con-
ditions of reduced neuromuscular activity, with ageing. Age-
related muscle wasting is referred to as “sarcopenia” coined
by Irwin H. Rosenberg from the Greek words sarx (meaning
flesh) and penia (meaning loss) [1, 2]. There has been no
consensus about definition of sarcopenia suitable for use in
research and clinical practice [3]. Therefore, some studies
[4, 5] suggest a working definition of sarcopenia: sarcopenia
is a syndrome characterized by progressive and generalized
loss of skeletal muscle mass and strength with a risk of
adverse outcomes such as physical disability, poor quality of
life, and death. Sarcopenia is characterized by the fact that
it progresses very slowly throughout several decades. Muscle
mass fairly consistently decreases at a rate of approximately
0.5–1%/year beginning at 40 years of age [6, 7] and the rate
dramatically accelerates after the age of 65 years [8]. Muscle
strength appears to decline more rapidly than muscle mass.
Muscle strength declines at a rate of 3-4% per year in men
and 2.5–3% per year in women aged 75 years [9]. Although

the precise molecular and cellular mechanisms underlying
age-related loss of muscle mass and strength have remained
unknown [10, 11], multiple contributing factors have been
proposed. The development and progress of sarcopenia have
been thought to be mediated by the combination of these
contributing factors.

Based on large-scale studies [12–16], on average, it is
estimated that the prevalence of sarcopenia reaches 5–13% in
those aged 60–70 years and ranges from 11 to 50% in those
aged over 80 years [17]. In USA in 2000, it was estimated that
direct healthcare costs related to sarcopenia were $18.5 billion
($10.8 billion in men, $7.7 billion in women), which repre-
sented approximately 1.5% of total healthcare expenditures
for that year [18]. Globally, the number of people aged over 60
years is 600 million in the year 2000 [19]. It is predicted that
people aged over 65 years will double by 2020 and will triple
by 2050 [20].Therefore, sarcopenia is being recognized as not
only a serious healthcare problem but also a social problem.
Much is expected of an effective intervention for sarcopenia.
Nutritional interventions would be a promising candidate in
combating sarcopenia.
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Epidemiologic, clinical, and laboratory evidence provide
an effect of vitamin D onmuscle function. Numerous studies
have investigated the effect of vitamin D supplementation
on muscle strength and physical performance in elderly
people. However, the precise molecular and cellular mecha-
nisms remain to be elucidated. Immunohistochemical studies
have demonstrated that vitamin D receptor (VDR) might
be localized in human muscle fibers [21–23] with some
contradictions [24, 25]. In addition, recent studies have
reported that vitamin D signaling via VDR plays a role in the
regulation of myoblast proliferation and differentiation [26–
32]. Understanding how vitamin D signaling contributes to
myogenesis will provide a valuable insight into an effective
nutritional strategy to moderate sarcopenia. Here we will
summarize the current knowledge about effect of vitamin
D on skeletal muscle and myogenic cells and discuss the
potential for treatment of sarcopenia.

2. Vitamin D Signaling Pathways: Genomic
and Nongenomic Pathways

Vitamin D signaling has been extensively investigated in a
variety of cell types. During the past two decades, consid-
erable progress has been made in understanding the action
of 1𝛼,25-dihydroxyvitamin D

3
[1𝛼,25(OH)

2
D
3
] on myogenic

cells.Thebiological effect of 1𝛼,25(OH)
2
D
3
is exerted through

genomic or nongenomic mechanisms (for reviews see [33–
35]). Better understanding of the molecular and cellular
mechanisms of vitamin D action on skeletal muscle will
enable us to develop an effective intervention for sarcope-
nia. We will focus on 1𝛼,25(OH)

2
D
3
signaling via VDR in

genomic and nongenomic mechanism related to myogenic
cells, although rapid alteration in intracellular calcium, which
is nongenomically regulated by 1𝛼,25(OH)

2
D
3
, has been well

demonstrated both in vivo and in vitro; for details, excellent
review article is already available on this subject [36].

An active form, 1𝛼,25(OH)
2
D
3
, acts by binding to VDR

[33]. The binding affinity of 25(OH)D
3
for human vitamin

D receptor (VDR) is approximately 500 times less than that
of 1𝛼,25(OH)

2
D
3
but the circulating level of 25(OH)D

3
is

approximately 1000 times higher than that of 1𝛼,25(OH)
2
D
3

[37, 38]. In genomic mechanism, 1𝛼,25(OH)
2
D
3
binds to

VDR and is transported to the nucleus [35]. VDR is het-
erodimerized with 9-cis-retinoic acid receptor (RXR) and
VDR:RXR complex modulates gene expression via binding
to specific target gene promoter regions, known as vitamin
D response elements (VDREs), to activate or suppress their
expression [35]. In general, VDREs possess either a direct
repeat of two hexanucleotide half-elements with a spacer of
three nucleotides (DR3) or an everted repeat of two half-
elements with a spacer of six nucleotides (ER6) motif, with
DR3s being the most common [39]. Wang et al. [40] investi-
gated direct 1𝛼,25(OH)

2
D
3
-target genes on a large scale by

using a combined approach of microarray analysis and in
silico genome-wide screens for DR3 and ER6-type VDREs.
Microarray analyses, performed with RNA from human
SCC25 cells treated with 1𝛼,25(OH)

2
D
3
and cycloheximide,

an inhibitor of protein synthesis, revealed 913 regulated

genes [40]. Of the 913 genes, 734 genes were induced and
179 genes were repressed by treatment of 1𝛼,25(OH)

2
D
3

[40]. In addition, a screening of the mouse genome iden-
tified more than 3000 conserved VDREs, and 158 human
genes containing conserved elements were 1𝛼,25(OH)

2
D
3
-

regulated on microarrays [40]. These results support their
broad physiological actions of 1𝛼,25(OH)

2
D
3
in a variety of

cell types.
With respect to several genes related to myogene-

sis, we will describe them in more detail. For example,
1𝛼,25(OH)

2
D
3
induced expression of the gene encoding

Foxo1 [40], which is a member of the FOXO subfamily
of forkhead/winged helix family of transcription factors,
governs muscle growth, metabolism, and myoblast differen-
tiation. When transfected C2C12 cells with adenoviral vector
encoded a constitutively active Foxo1 mutant, they effectively
blocked myoblast differentiation [47]. This was partly res-
cued by inhibition of Notch signaling [47], which inhibits
myoblast differentiation [48]. In addition, loss of Foxo1
function precluded Notch signaling-mediated inhibition of
myoblast differentiation [47]. To elucidate the possible role
of Notch signaling in Foxo1-mediated inhibition of myoblast
differentiation, by combining coculture system, transfec-
tion assay, chromatin immunoprecipitation assay, and short
interfering RNA (siRNA) technology, authors showed that
Foxo1 physically and functionally interacted with Notch by
promoting corepressor clearance fromDNA binding protein,
CSL [CBF1/RBPjk/Su(H)/Lag-1], leading to inhibition of
myoblast differentiation through activation of Notch target
genes [47]. Another gene, Id (inhibitor of differentiation)
gene, is also known target of 1𝛼,25(OH)

2
D
3
[49]. Id mRNA

was constitutively expressed in rat osteoblastic osteosarcoma
ROS17/2.8 cells and its level was transcriptionally suppressed
by 1𝛼,25(OH)

2
D
3
[50]. 1𝛼,25(OH)

2
D
3
exerted its negative

effect on Id1 gene transcription via the 57 bp upstream
response sequence (−1146/−1090) [49]. Id proteins (Id1, Id2,
Id3, and Id4) dimerize and neutralize the transcriptional
activity of basic helix-loop-helix (bHLH) proteins [51]. It
has been shown that Id inhibits MyoD activity either by
forming transcriptionally inactive complexes of MyoD-Id
or by forming heterodimers with E-proteins and effectively
blocking the formation of active MyoD/E-protein complexes
[52]. At this time, there are only limited data available on
Id expression and vitamin D during muscle development.
For example, in VDR knockout mice with abnormal muscle
development, there were no differences in expression levels
of Id1 and Id2 [46]. Therefore, we cannot conclude whether
vitaminD regulatesmyogenesis bymodulating Id expression.

A nongenomic response to 1𝛼,25(OH)
2
D
3
is character-

ized by a rapid (the seconds to minutes range) activation
of signaling cascades and an insensitivity to inhibitors of
transcription and protein synthesis [34]. The rapid response
to 1𝛼,25(OH)

2
D
3
has been hypothesized to elicit the classic

VDR translocation to the plasma membrane. When treating
chick myoblasts with 1𝛼,25(OH)

2
D
3
, translocation of VDR

from the nucleus to the plasma membrane rapidly occurred
within 5min after the addition of 1𝛼,25(OH)

2
D
3
[53]. This

translocation was blocked by colchicine, suggesting the pos-
sible role of the intracellular microtubular transport system
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in the distribution of VDR [53]. The VDR translocation
appears to depend on intact caveolae that are specialized
plasmalemmal microdomains originally studied in numer-
ous cell types for their involvement in the transcytosis of
macromolecules [54]. Confocal microscopy revealed that
1𝛼,25(OH)

2
D
3
-induced VDR translocation to the plasma

membrane was abolished by methyl-beta-cyclodextrin, a
reagent to disrupt the caveolae structure [55]. Both disrup-
tion of caveolae and siRNA-mediated silencing of caveolin-
1 suppressed 1𝛼,25(OH)

2
D
3
-dependent activation of pro-

tooncogene c-Src (cellular Src) with tyrosine-specific protein
kinase activity [55]. Immunocytochemical analysis provided
evidence that caveolin-1 colocalized with c-Src near the
plasmamembrane under basal conditions [55].When treated
with 1𝛼,25(OH)

2
D
3
, the colocalization of caveolin-1 and c-Src

was disrupted and theywere redistributed into cytoplasm and
nucleus [55]. On the basis of these results, it can be hypoth-
esized that (1) interaction caveolin-1/c-Src inactivates the
kinase under basal conditions and (2) when 1𝛼,25(OH)

2
D
3

stimulates VDR translocation to the plasma membrane,
it dissociates the caveolin-1/c-Src complex allowing c-Src
activation [55]. Non-genomic action of 1𝛼,25(OH)

2
D
3
might

be required for a reciprocal interaction between c-Src and
caveoline-1. Besides the classical VDR, it has been identified
as a potential candidate as an alternate membrane-associated
receptor for 1𝛼,25(OH)

2
D
3
: 1,25D

3
-MARRS (membrane-

associated, rapid response steroid binding) also known as
ERp57, GRp58, ERp60, and Pdia3 [56]. Since 1,25D

3
-MARRS

has been shown to function in various cell types [57], it also
may potentially mediate vitamin D signaling in myogenic
cells.

The c-Src tyrosine kinase induced by 1𝛼,25(OH)
2
D
3
is

required for activation of mitogen-activated protein kinases
(MAPKs), ERK1/2 (extracellular signal-regulated kinase
1/2) [58], and p38 [59]. 1𝛼,25(OH)

2
D
3
rapidly promoted

phosphorylation of ERK1/2 through c-Src activation [58],
Raf-1/Ras/MEK (MAPK/ERK kinase), and PKC𝛼 (protein
kinase C alpha) [60]. In addition to ERK1/2 activation,
1𝛼,25(OH)

2
D
3
rapidly stimulated MKK3/MKK6 (mitogen-

activated protein kinase kinases 3/6)/p38 MAPK through c-
Src activation [59]. Although another MAPK family mem-
ber, JNK1/2 (c-Jun NH2-terminal kinase 1/2), was also
activated by 1𝛼,25(OH)

2
D
3
[59], an upstream mediator of

1𝛼,25(OH)
2
D
3
-dependent JNK1/2 activation was character-

ized less than that of ERK/1/2 and p38. The molecular links
between JNK and c-Src have been shown in Drosophila
melanogaster. The JNK homolog Basket (Bsk) is required
for epidermal closure [61]. Src42A, a Drosophila c-Src pro-
tooncogene homolog functions in epidermal closure during
both embryogenesis and metamorphosis [61]. The severity of
the epidermal closure defect in the Src42A mutant depended
on the Bsk activity. These results suggest the possibility that
JNK activation in mammals may also be required for Src
tyrosine kinase activity. These MAPK signaling pathways
have been shown to contribute to myogenesis [62–65]. For
example, inactivation of the Raf-1/MEK1/2/ERK1/2 pathway
in MM14 cells through the overexpression of dominant neg-
ative mutants of Raf-1 blocked ERK1/2 activity and prevented
myoblast proliferation [62]. Pharmacological blockade of

p38𝛼/𝛽 kinases by SB203580 inhibited myoblast differen-
tiation [63–65]. JNK was involved in regulating myostatin
signaling [66], which is known as a member of tumor growth
factor𝛽 family and functions as a negative regulator ofmuscle
growth [67]. MAPK signaling pathways function at different
stages of myogenesis.

Apart from MAPKs, PI3K (phosphatidyl inositol 3-
kinase)/Akt signaling pathway, which is essential for ini-
tiation of myoblast differentiation [68], also seems to be
activated by 1𝛼,25(OH)

2
D
3
. After exposure to 1𝛼,25(OH)

2
D
3
,

Akt phosphorylation was enhanced through PI3K in C2C12
cells [68]. Intriguingly, suppression of c-Src activity by PP2,
a specific inhibitor for all members of the Src family, and
knockdown of c-Src expression by siRNA decreased Akt
phosphorylation in 1𝛼,25(OH)

2
D
3
-treated C2C12 cells [28].

In addition, when treating C2C12 cells with 1𝛼,25(OH)
2
D
3

in the presence of U0126 or SB203580 to inhibit ERK1/2
and p38 MAPK, respectively, SB203580 but not U0126
markedly blocked both basal and 1𝛼,25(OH)

2
D
3
-inducedAkt

phosphorylation. These results suggest that 1𝛼,25(OH)
2
D
3
-

induced Akt phosphorylation may occur through c-Src and
p38 MAPK [28]. Taken together, 1𝛼,25(OH)

2
D
3
can simul-

taneously activate multiple signaling pathways in myogenic
cells but their relative contribution to myogenesis remains to
be established.

3. Effects of Ageing on Serum
Concentration of Vitamin D, Muscle
Morphology, and Muscle Fiber Type

VitaminDstatusvarieswithage[69]. Serumlevelsof 25(OH)D
3

are qualitatively categorized as deficiency (<20 ng/L or
<50 nM), insufficiency (21–29 ng/L or 50–75 nM), and nor-
mal (30 ng/L or >75 nM) [70]. van der Wielen et al. [69]
measured wintertime serum 25(OH)D

3
concentrations in

824 elderly people from 11 European countries [69]. They
reported that 36% of men and 47% of women had 25(OH)D

3

concentrations below 30 nM [69]. Vitamin D deficiency in
elderly is thought to occur mainly due to restricted sunlight
exposure, reduced dietary vitamin D intake, and decreased
capacity of the skin to produce vitamin D [69]. MacLaughlin
and Holick [71] examined the effects of ageing on the
capacity of the skin to produce previtamin D3 in the skin
by comparing young subjects (8 and 18 years old) with aged
subjects (77 and 82 years old). They showed that ageing
decreased the capacity less than half of young subjects [71],
suggesting that elderly people are potentially at risk for
vitamin D insufficiency/deficiency.

Vitamin D deficiency appears to be associated with
changes in muscle morphology. For example, patients with
osteomalacic myopathy associated with vitamin D deficiency
show degenerative changes such as opaque fibers, ghost-
like necrotic fibers, regenerating fibers, enlarged interfibrillar
spaces, infiltration of fat, fibrosis, glycogen granules, and
type II muscle fiber atrophy [72]. As is the case with
vitamin D-deficient patients, it is well known that elderly
people show aberrant muscle morphology. Scelsi et al. [73]
performed histochemical and ultrastructure analysis using



4 BioMed Research International

biopsies taken from the vastus lateralis of healthy sedentary
men and women aged 65–89 years. They observed myofib-
rillar disorganization, streaming of Z-line, rod formation,
intracellular lipid droplets, lysosomes, and type II muscle
fiber atrophy [73]. The very elderly people had “flattened” or
“crushed” shaped muscle fibers, whereas the young people
had mature-appearing polygonal muscle fibers [74]. These
aberrant changes were much more pronounced in the type
II muscle fibers than in type I muscle fibers [74]. Although
the precise mechanisms remain to be elucidated, it can be
speculated that specific type II muscle fiber atrophy with
ageing may be associated with a muscle fiber type-specific
reduction in satellite cell content. Satellite cells are essential
for normal muscle growth [75]. Verdijk et al. [76] examined
whether satellite cells could specifically decrease in type II
muscle fibers in the elderly people. Biopsies were taken from
the vastus lateralis of elderly (average age: 76 years) and
young (average age: 20 years) healthy males [76]. They found
significant reduction in the proportion and mean cross-
sectional area of the type II muscle fibers and the number
of satellite cells per type II muscle fiber in elderly subjects
compared to young subjects [76]. This study is the first
to show type II muscle fiber atrophy in elderly people to
be associated with a muscle fiber type-specific decline in
satellite cell content. It remains unknown whether vitamin
D supplementation specifically attenuates atrophy of type
II muscle fibers with recruitment of satellite cell. Whether
vitamin D has positive effects on myoblast proliferation and
differentiation is currently under debate. Recent studies [27]
suggest that vitaminD treatment enhances fast type (type IIa)
MyHC expression in fully differentiated C2C12 myotubes.
Type II muscle fibers contain type IIa MyHC [77]. Therefore,
vitamin D could potentially contribute to the changes in
phenotype of existing muscle fibers and/or the maintenance
of type II muscle fibers.

4. Effects of Ageing on Expression of VDR

Bischoff-Ferrari et al. [22] investigated the effect of ageing
on VDR expression in human skeletal muscle. Biopsies were
taken from the gluteus medius of 20 female patients under-
going total hip arthroplasty (average age: 71.6 years) and
from the transversospinalis muscle of 12 female patients with
spinal operations (average age: 55.2 years). Immunohisto-
chemical analysis revealed that the number of VDR-positive
myonuclei decreased with ageing [22]. Importantly, VDR
expression was not affected by 25(OH)D

3
or 1𝛼,25(OH)

2
D
3

levels [22]. Buitrago et al. [78] showed that silencing of
VDR expression in C2C12 myoblasts suppressed p38 MAPK
phosphorylation and decreased ERK1/2 activation induced
by 1𝛼,25(OH)

2
D
3
. Tanaka et al. [31] demonstrated that

knockdown of VDR expression resulted in downregulation
of MyHC mRNA in differentiating C2C12 myoblasts when
treated with 1𝛼,25(OH)

2
D
3
. Therefore, it is possible that

decreased expression of VDR observed in elderly people
might reduce the functional response of the muscle fibers to
1𝛼,25(OH)

2
D
3
.

5. Effects of Vitamin D Supplementation on
Muscle Injury

The regenerative potential of skeletal muscle decreases with
age [79–81]. Satellite cells are absolutely required for muscle
regeneration [82]. Satellite cells are defined anatomically
by their position beneath the basal lamina and adhered to
muscle fibers [83]. They, traditionally considered as a pop-
ulation of skeletal muscle-specific committed progenitors,
play a crucial role in the postnatal maintenance, repair, and
regeneration [75]. Under normal physiological conditions,
they remain in a quiescent and undifferentiated state [75,
84]. However, when skeletal muscle is damaged by unaccus-
tomed exercise or mechanical trauma, they are activated to
proliferate, differentiate, and fuse with the already existing
muscle fibers or fuse to form new muscle fibers [75, 84]. Few
studies have examined the effects of vitamin D treatment on
muscle injury. Stratos et al. [85] investigated whether system-
ically applied vitamin D could restore muscle function and
morphology after trauma. Rats were injected subcutaneously
with 7-dehydrocholesterol (332,000 IU/kg) immediately after
crush injury and muscle samples were collected at days 1, 4,
14, and 42 after injury [85]. Vitamin D treatment increased
cell proliferation and inhibited occurrence of apoptosis at
day 4 compared to control rats [85]. In addition, a faster
recovery of contraction forces was observed at day 42 in
vitamin D-treatment group compared to control group [85].
Notably, the number of satellite cells was not influenced by
vitamin D [85], suggesting the possibility that vitamin D
supplementation has relatively little effect on satellite cell
function in vivo. It is necessary to scrutinize thoroughly
efficacy, duration, optimal dose, and side effects in relation
to vitamin D treatment. Srikuea et al. [29] demonstrated
that VDR was highly expressed in the nuclei of regenerating
muscle fibers, indicating a potential role for vitamin D in
muscle regeneration following injury. Relationship of vitamin
D signaling and myogenesis will be discussed below in
Section 10.

6. Vitamin D and Type 2 Diabetes Mellitus
Although the incidence of type 2 diabetes mellitus increases
with age [86], the precise underlyingmechanisms are still not
fully understood. Skeletal muscle is the primary target for
insulin action and glucose disposal. Therefore, elderly people
with excessive loss of muscle mass are at risk for development
of type 2 diabetes mellitus [87]. Meta-analysis reveals that
vitamin D supplementation has beneficial effects among
patients with glucose intolerance or insulin resistance at
baseline [88]. However, an explanation for the beneficial role
of vitamin D supplementation in the lowering of glycemia in
diabetes mellitus remains to be determined. Skeletal muscle
can increase glucose uptake through insulin-dependent and
muscle contraction-dependentmechanisms [89]. Insulin and
muscle contractions stimulate glucose transport in skeletal
muscle via translocation of intracellular glucose transporter
type 4 (GLUT4) to the cell surface. Manna and Jain [90]
examined the mechanism by which vitamin D supplemen-
tation regulates glucose metabolism in 3T3L1 adipocytes.
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When 3T3L1 adipocytes were treated with high glucose
in the presence of 1𝛼,25(OH)

2
D
3
, it increased expression

of GLUT4 and its translocation to cell surface, glucose
uptake, and glucose utilization [90]. 1𝛼,25(OH)

2
D
3
also

enhanced cystathionine-𝛾-lyase (CSE) activation and H
2
S

formation [90], which is an important signaling molecule
produced mainly by CSE in the cardiovascular system [91].
Furthermore, the effect of 1𝛼,25(OH)

2
D
3
on GLUT4 translo-

cation and glucose utilization was prevented by chemical
inhibition or silencing of CSE [90]. In muscle cells, it
is currently not known whether CSE may be associated
with 1𝛼,25(OH)

2
D
3
-induced glucose metabolism. Therefore,

further studies are required to elucidate the physiological
role of CSE in regulation of glucose metabolism in skeletal
muscle. Tamilselvan et al. [92] examined the effect of cal-
citriol (1,25, dihydroxycholecalciferol) on the expression of
VDR, insulin receptor (IR), and GLUT4 in L6 cells when
exposed to high glucose and high insulin which mimics
type 2 diabetic model [92]. Calcitriol partially restored VDR,
IR, and GLUT4 expression in type 2 diabetic model [92],
raising the possibility that vitamin D could contribute to
improving insulin signaling in type 2 diabetes mellitus. In a
recent study, the effect of 1𝛼,25(OH)

2
D
3
on glucose uptake

in rat skeletal muscle is investigated [93]. 1𝛼,25(OH)
2
D
3

stimulated glucose uptake with increased expression of
GLUT4 protein and enhanced translocation of GLUT4 to the
plasmamembrane not through PI3K-signaling pathway [93],
which is essential for insulin-stimulated GLUT4 transloca-
tion and glucose transport [94]. In addition, 1𝛼,25(OH)

2
D
3
-

stimulated glucose uptake was suppressed concomitantly
with downregulation of GLUT4 protein by treatment with
cycloheximide [93], suggesting that it may be mediated by
genomic signaling of vitamin D. Taken together, vitamin
D may improve glucose metabolism in skeletal muscle by
modulating GLUT4 expression and translocation through
insulin-dependent and/or insulin-independent mechanisms.

7. Vitamin D Receptor Expression in Skeletal
Muscle and Myogenic Cells

VDR is known to be expressed in a wide variety of tissues
including bone, bronchus, intestine, kidney,mammary gland,
pancreas, parathyroid, pituitary gland, prostate gland, spleen,
testis, and thymus [25]. However, there has been still some
controversy as to whether VDR is expressed in skeletal
muscle [24, 29, 32]. For example, some studies have failed to
detect VDR in skeletal muscle [24, 25, 95–97]; other studies
have shown that VDR protein and/or mRNA are detectable
in skeletal muscle [21–23, 29, 46, 98] and myogenic cells
[26, 27, 29, 31, 32, 42, 45, 46, 53, 55, 98–104]. In brief,
Wang et al. [105] call into question the specificity of various
commercially available VDR antibodies. They systematically
characterized these antibodies in terms of their specificity
and immunosensitivity using negative control samples from
VDR knockout mice [105]. They demonstrated that the
mouse monoclonal VDR antibody against the C-terminus
of human VDR, D-6 (Santa Cruz Biotechnology), possesses
high specificity, high sensitivity, and versatility [105]. They

showed that VDR protein was not detected in skeletal muscle
by immunohistochemical analysis using this antibody and
that VDR mRNA was detectable only at extremely low levels
by quantitative RT-PCR assay [24]. By contrast, Kislinger
et al. [106] used large scale gel-free tandem mass spec-
trometry to monitor global proteome alterations throughout
the myogenic differentiation program in C2C12 cells. They
observed upregulation of VDR protein during early stage of
myoblast differentiation [106]. Srikuea et al. [29] provided
strong evidence for the presence of VDR in myogenic cells,
by combining immunoblot assay, immunocytochemical anal-
ysis, PCR-based cloning, and DNA sequencing to validate
the expression of VDR in C2C12 cells. They showed that the
full-length VDR mRNA transcript could be isolated from
myoblasts and myotubes and VDR protein was primarily
localized in the nucleus of myoblasts and in the cytoplasm
of myotubes [29]. In addition, they examined the localization
of VDR protein using a model of myogenesis in vivo. BaCl

2

treatment was used to induce regeneration and immuno-
histochemical analysis was performed on sections from
control and regeneratingmuscle. In controlmuscle, VDRwas
detected in muscle fibers but levels were very low, whereas
in regenerating muscle, VDR expression was detected in the
central nuclei of newly regenerating muscle fibers [29]. More
recently, Girgis et al. [32] demonstrated that VDR protein
was detectable in C2C12 myoblasts by immunoblot assay
using VDR antibody (D-6). The discrepancy among studies
may be explained, at least in part, by the difference in the
expression of VDR during the stages of muscle development.
For example, Endo et al. [46] reported that VDR mRNA
was detected in skeletal muscle from 3-week-old wild-type
mice but not 8-week-old wild-type mice. Wang and DeLuca
[24] showed that VDR protein was undetectable in skeletal
muscle from 6- to 7-week-old C57BL/6 mice. A similar result
was also reported by Srikuea et al. [29] using 12-week-old
C57BL/6mice.Therefore, VDR expressionmay be dependent
on the context of muscle development. It requires further
clarification whether VDR is expressed in muscle fibers.

8. The Conversion of
25 (OH)D3 to 1𝛼,25(OH)2D3 Might
Occur in Myogenic Cells

Vitamin D, in the form of vitamin D
3
, is synthesized from

7-dehydrocholesterol in the skin through the action of ultra-
violet irradiation [33]. Alternatively, vitamin D, in the form
of either vitamin D

2
or vitamin D

3
, can also be taken in the

diet [33]. An active form, 1𝛼,25(OH)
2
D
3
, is synthesized from

vitamin D
3
through two hydroxylation steps [33]. Vitamin

D
3
is converted to 25-hydroxyvitamin D

3
[25(OH)D

3
] in

the liver by 25-hydroxylases (encoded by the gene CYP27A1)
[33]. The generated 25(OH)D

3
is further hydroxylated to

1𝛼,25(OH)
2
D
3

by 25-hydroxyvitamin D
3

1𝛼-hydroxylase
(encoded by the gene CYP27B1) in the kidney [33]. However,
CYP27B1 has been detected in various extrarenal tissues
[107, 108], raising the possibility that 1𝛼,25(OH)

2
D
3
might be

locally synthesized and activate VDR in myogenic cells [29,
32]. Inactive formof vitaminD

3
, 25(OH)D

3
, could inhibit cell
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proliferation in a similar manner to 1𝛼,25(OH)
2
D
3
[29, 32],

indicating that the conversion of 25(OH)D
3
to 1𝛼,25(OH)

2
D
3

by CYP27B1 occurs in myogenic cells. Girgis et al. [32] con-
firmed this possibility using luciferase reporter assay system
that luciferase activity results from 1𝛼,25(OH)

2
D
3
binding

to GAL-4-VDR and subsequent activation of the UASTK
luciferase gene via its GAL4 promoter. They transfected
C2C12 cells with GAL4-VDR (switch) and UASTK luciferase
reporter with treatment of 25(OH)D

3
and showed that

luciferase activity increased in a dose-dependent manner,
suggesting the conversion of 25(OH)D

3
to 1𝛼,25(OH)

2
D
3

by CYP27B1 and the subsequent activation of luciferase
expression via 1,25(OH)

2
D-bound GAL4-VDR [32]. Srikuea

et al. [29] confirmed that C2C12 cells express the full-length
CYP27B1 mRNA transcript and CYP27B1 protein could be
detected in the cytoplasm of myoblasts, exhibiting partially
overlapping with the mitochondria to which CYP27B1 has
been reported to be typically localized [109]. Furthermore,
they showed that siRNA-mediated knockdown of CYP27B1
could alleviate inhibitory effects of 25(OH)D

3
on cell pro-

liferation [29]. These observations provide direct evidence
that CYP27B1 is biologically active in myogenic cells and
mediates to convert 25(OH)D

3
to 1𝛼,25(OH)

2
D
3
. However,

it should be noted that the agonistic action of 25(OH)D
3
has

been demonstrated in cells derived from CYP27B1 knockout
mice [110]. Although further studies are needed to elucidate
the basic mechanisms, locally synthesized 1𝛼,25(OH)

2
D
3

in myogenic cells might act through autocrine/paracrine
mechanisms via VDR.

9. The Role of VDR in Muscle Development

Since the process of myogenesis has been extensively studied
both in vivo and in vitro, substantial progress has been made
in understanding the molecular and cellular mechanisms.
The myogenic regulatory factors, a group of basic helix-
loop-helix transcription factors, consisting of MyoD, Myf5,
myogenin, and MRF4, play critical roles in myogenesis [111].
MyoD and Myf5 have redundant functions in myoblast
specification [112, 113], whereasmyogenin [114, 115] and either
MyoD or MRF4 [116] are required for differentiation. These
myogenic factors can formheterodimers in combinationwith
less specific factors such as members of E12/E47 [117], which
are generated by alternative splicing of the E2A gene [118],
leading to activation of muscle-specific gene transcription
[117].

VDR knockout mice model has provided insight into
the possible physiological roles of vitamin D signaling via
its receptor in muscle development [46]. VDR null mice
recapitulate a human disease of vitamin D resistance, vitamin
D-dependent rickets type II [119]. VDR null mice grow nor-
mally until weaning and thereafter develop variousmetabolic
abnormalities including hypocalcemia, hypophosphatemia,
secondary hyperparathyroidism, and bone deformity [46,
119]. Muscle fiber diameter of VDR null mice was approx-
imately 20% smaller and fiber size was more variable than
that of the wild-type mice at 3 weeks of age (before weaning).
By 8 weeks of age, these morphological changes were more

prominent in the VDR null mice compared to the wild-
type mice, suggesting either a progressive nature of the
abnormalities caused by the absence of VDR or additive
effects of systemic metabolic changes already present at
this age [46]. Although there are neither degenerative nor
necrotic changes in VDR null mice, the aberrant myofibers
were observed diffusely without any preference to type I or
type II fibers [46]. Based on these results, they suggest that
the absence of VDR induces these abnormalities probably
in late stages of fiber maturation and/or in metabolism of
mature muscle fibers. Tanaka et al. [31] showed that siRNA-
mediated knockdown of VDR inhibited myotube formation
concomitantly with downregulation of MyoD and myogenin
using C2C12 and G8 cells. These results demonstrate that a
substantial level of signaling via VDR is required for normal
muscle development and myogenesis in vitro.

Furthermore, Myf5, myogenin, and E2A but not MyoD
and MRF4 were aberrantly and persistently upregulated at
the protein and/or mRNA levels in VDR null mice at 3 weeks
of age [46]. Consistent with the deregulated expression of
MRFs that controlmuscle phenotype, VDR null mice showed
aberrantly increased expression of embryonic and neonatal
MyHC isoforms but not type II (adult fast twitch) MyHC
isoform [46].These findings observed in VDR null mice may
reflect compensatory response to a reduction in muscle fiber
size. For example, it can be hypothesized that, in VDR null
mice, satellite cells may be anomalously activated, proliferate,
and differentiate to form new myonuclei that fuse with exist-
ing fibers to restore normal fiber size. Finally, they examined
whether 1𝛼,25(OH)

2
D
3
could directly downregulate MRFs

and neonatal MyHC gene expression in C2C12 myoblasts.
1𝛼,25(OH)

2
D
3
(10 nM) decreased the steady-state expression

levels of these genes [46]. Overall, these results support a
role of VDR in the regulation of muscle development, but
the precise mechanisms remain to be elucidated and the
interpretation is further complicated since negative vitamin
D response elements [120–122] in the promoter region of
genes encodingMyf5 andmyogenin have not been identified.

10. Effects of 1𝛼,25(OH)2D3 on Myoblast
Proliferation and Differentiation

As referred to above, decline of intrinsic regenerative poten-
tial of skeletal muscle is a hallmark of ageing [79–81] and
may be due to age-related changes in satellite cell func-
tion. If vitamin D treatment does lead to improvements in
muscle function in elderly people, more attention should be
directed to the effect of vitamin D

3
on myoblast proliferation

and differentiation. Research on effect of 1𝛼,25(OH)
2
D
3

on myogenesis has been performed using an in vitro cell
culture system. The effects of 1𝛼,25(OH)

2
D
3
on myoblast

proliferation and differentiation are summarized in Table 1.
Early studies [41, 43] have reported that 1𝛼,25(OH)

2
D
3
stim-

ulates proliferation of myogenic cells. Giuliani and Boland
[41] reported that 1𝛼,25(OH)

2
D
3
(0.13 nM) increased cell

density of chick myoblasts. Drittanti et al. [43] showed that
1𝛼,25(OH)

2
D
3
(0.1 nM) had biphasic effects on DNA synthe-

sis. 1𝛼,25(OH)
2
D
3
exhibited a mitogenic effect in proliferat-

ing chick myoblasts followed by an inhibitory effect during
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Table 1: Effects of 1𝛼,25(OH)2D3 on proliferation and differentiation in myogenic cells.

Muscle cell type Concentration
[1𝛼,25(OH)2D3]

Proliferation Differentiation Method of VDR detection Reference

Myoblast
(chick) 0.13 nM ↑ ↑ NI Giuliani and Boland

1984 [41]

G8 3–300 nM ↓ NI Equilibrium binding assay,
chromatography Simpson et al., 1985 [42]

Myoblast
(chick) 0.1 nM ↑ ↑ NI Drittanti et al., 1989 [43]

Myoblast
(chick) 1 nM ↑ ↑ NI Capiati et al., 1999 [44]

C2C12 1 nM ND NI Immunoblot Stio et al., 2002 [45]

C2C12 10 nM NI ND RT-PCR Endo et al., 2003 [46]

C2C12 100 nM ↓ ↑

RT-PCR, immunoblot, and
immunocytochemistry Garcia et al., 2011 [26]

C2C12 1–100 nM ↓ ↓ RT-PCR Okuno et al., 2012 [27]

C2C12 1 nM ↑ ↑ NI Buitrago et al., 2012 [28]

C2C12 20 nM
2 𝜇M [25(OH)D3]

↓ ↓

RT-PCR, PCR cloning, DNA
sequencing, immunocytochemistry,

and immunoblot
Srikuea et al., 2012 [29]

C2C12 0.1 pM–10 𝜇M NI ↓ NI Ryan et al., 2013 [30]

C2C12, G8 1–100 nM NI ↓ RT-PCR Tanaka et al., 2013 [31]

C2C12
1–100 nM
1–100 nM
[25(OH)D3]

↓ ↓ RT-PCR, immunoblot Girgis et al., 2014 [32]

Promote (↑); inhibit (↓); no difference between vehicle and treatment (ND); not investigated (NI).

the subsequent stage of myoblast differentiation. Capiati et al.
[44] showed that 1𝛼,25(OH)

2
D
3
(1 nM) increases the rate of

[3H] thymidine incorporation into DNA in chick myoblasts.
In addition, they investigated the role of PKC in mediating
the effect of 1𝛼,25(OH)

2
D
3
using a PKC inhibitor. PKC

activity increased after treatment of 1𝛼,25(OH)
2
D
3
[44]. The

specific PKC inhibitor, calphostin, suppressed 1𝛼,25(OH)
2
D
3

stimulation of DNA synthesis in proliferatingmyoblasts [44].
Finally, they examined 1𝛼,25(OH)

2
D
3
-dependent changes

in the expression of PKC isoforms 𝛼, 𝛽, 𝛿, 𝜀, and 𝜁 [44].
They identified PKC𝛼 as main isoform correlated with the
early stimulation of myoblast proliferation by 1𝛼,25(OH)

2
D
3

[44]. By contrast, several studies suggest that, overall,
1𝛼,25(OH)

2
D
3
or 25(OH)D

3
appears to have antiproliferative

effect on myogenic cells [26, 27, 29, 32, 42]. 1𝛼,25(OH)
2
D
3

(1–100 nM) inhibited proliferation of C2C12 myoblasts in a
dose-dependent manner [27, 32] without inducing necrotic
and apoptotic cell death [32]. Okuno et al. [27] showed
that 1𝛼,25(OH)

2
D
3
arrested the cells in the G0/G1 phase

concomitantly with induction of cyclin-dependent kinase
(CDK) inhibitors, p21WAF1/CIP1 that facilitates cell cycle with-
drawal [123] and p27Kip1 that inhibits a wide range of CDKs
essential for cell cycle progression [124]. Girgis et al. [32]

also reported the increased expression of genes involved in
G0/G1 arrest includingRb (retinoblastomaprotein) andATM
(ataxia telangiectasia mutated) and decreased expression of
genes involved in G1/S transition, including c-myc (cellular
myc) and cyclin-D1. In addition, they found reduced c-myc
protein and hypophosphorylated Rb protein [32]. The active
form, hypophosphorylated Rb, blocks entry into S-phase by
inhibiting the E2F transcriptional program [125, 126]. In
summary, the effects of 1𝛼,25(OH)

2
D
3
on myoblast prolif-

eration remain inconclusive. The discrepancy may be due
to the differences in the experimental settings. For example,
different cell type (primary cells or immortalized cell lines):
1𝛼,25(OH)

2
D
3
concentration, serum concentration, duration

of cell culture, and duration of treatment are employed.
Further studies are needed to clarify the role of 1𝛼,25(OH)

2
D
3

on myoblast proliferation.
Some studies [43, 44] reported that 1𝛼,25(OH)

2
D
3
(0.1 or

1 nM) had inhibitory effects on DNA synthesis in differenti-
ating chick myoblasts, with an increased MyHC expression,
increasedmyofibrillar andmicrosomal protein synthesis, and
an elevation of creatine kinase activity. Garcia et al. [26]
reported that prolonged treatment of C2C12 myoblasts with
1𝛼,25(OH)

2
D
3
(100 nM) enhanced myoblast differentiation
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by inhibiting cell proliferation andmodulating the expression
of promyogenic and antimyogenic growth factors using a cul-
ture system without reducing serum concentration to initiate
cell differentiation. They showed that 1𝛼,25(OH)

2
D
3
down-

regulated insulin-like growth factor-I (IGF-I) and myostatin
expression and upregulates IGF-II and follistatin expression
[26]. Follistatin antagonizes myostatin-mediated inhibition
of myogenesis [127]. Intriguingly, inhibition of myostatin
is characterized by increased expression of IGF-1 and IGF-
II [128–133], which are known to be potent stimulus of
myogenesis [134, 135]. Therefore, it can be hypothesized
that 1𝛼,25(OH)

2
D
3
may contribute to myogenesis by induc-

ing IGF-II expression through modulation of myostatin-
follistatin system. It should be noted, however, that in these
culture conditions, only small thin myotubes with few nuclei
were observed on day 10 [26]. This may not recapitulate nor-
mal C2C12 myoblast differentiation as previously reported
[136].

In general, C2C12 myoblasts normally proliferate and are
mononucleated when kept subconfluently in high-mitogen
medium (e.g., 10–20% fetal bovine serum). To initiate cell
cycle exit and myogenic differentiation, by switching from
high-mitogen medium to low-mitogen medium (e.g., 2%
horse serum), they fuse and differentiate into postmi-
totic, elongated, and multinucleated myotubes. Using this
C2C12 myoblast differentiation system, Buitrago et al. [28]
showed that 1𝛼,25(OH)

2
D
3
(1 nM) enhanced the expression

of MyHC and myogenin at 72 h after treatment. By contrast,
Okuno et al. [27] investigated the effects of 1𝛼,25(OH)

2
D
3

(1–100 nM) on differentiating and differentiated stage of
C2C12 myoblasts. In differentiating phase, 1𝛼,25(OH)

2
D
3

treatment downregulated the expression of neonatal myosin
heavy chain and myogenin and inhibited myotube forma-
tion in a dose-dependent manner (1–100 nM) [27]. They
showed that the expression of fast MyHC isoform increased
when fully differentiated myotubes were treated with 1 and
10 nM 1𝛼,25(OH)

2
D
3
[27]. Girgis et al. [32] investigated the

prolonged treatment of 1𝛼,25(OH)
2
D
3
(100 nM) on C2C12

myoblast differentiation. When myoblast was treated with
1𝛼,25(OH)

2
D
3
throughout myogenesis including prolifera-

tive, differentiating, and differentiated stages, myotube for-
mation was delayed by day 10 concomitantly with downreg-
ulation of Myf5 and myogenin [32]. However, intriguingly,
myotubes treated with 1𝛼,25(OH)

2
D
3
exhibit larger cell

size than nontreated myotubes [32]. These results suggest
that 1𝛼,25(OH)

2
D
3
may biphasically act in the process of

early and late myoblast differentiation. Furthermore, they
showed that the hypertrophic effect of 1𝛼,25(OH)

2
D
3
on

myotubes is accompanied with downregulation of myostatin
[32]. Several studies have provided evidence that myostatin
acts as a negative regulator of the Akt/mammalian target
of rapamycin (mTOR) signaling pathway [137–140], which
plays a key role in the regulation of protein synthesis [141].
For example, Trendelenburg et al. [139] show that myostatin
reduces Akt/mTOR signaling complex 1 (TORC1)/p70 S6
kinase (p70S6K) signaling, inhibiting myoblast differentia-
tion and reducing myotube size. In addition, 1𝛼,25(OH)

2
D
3

induced Akt phosphorylation in differentiating C2C12 cells
[28]. Intriguingly, 1𝛼,25(OH)

2
D
3
sensitizes the Akt/mTOR

signaling pathway to the stimulating effect of leucine and
insulin, resulting in a further activation of protein synthesis
in C2C12 myotubes [104]. Taken together, 1𝛼,25(OH)

2
D
3

may have an anabolic effect on myotubes by modulating
Akt/mTOR signaling probably through genomic and nonge-
nomic mechanisms.

11. Conclusions

The randomized-controlled studies and meta-analysis sup-
port a role of vitamin D in improving the age-related
decline in muscle function. However, the effect remains
inconclusive. Girgis et al. [32] emphasize that large studies
employing standardized, reproducible assessments of muscle
strength and double-blinded treatment regimens are required
to identify the effect of vitamin D supplementation on
muscle function and guide the recommended level of vitamin
D intake. Although it remains intensely debated whether
VDR is expressed in skeletal muscle, research on VDR null
mice provides insight into the physiological roles of vitamin
D in muscle development and suggests that a substantial
level of signaling via VDR is required for normal muscle
growth. VDR expression seems to be affected by ageing,
suggesting that this might reduce the functional response
of the muscle fibers to vitamin D. Vitamin D appears to
function in primary myoblasts and established myoblast cell
lines. Despite limited evidence available at the time, vitamin
D might have an anabolic effect on myotubes by modulating
multiple intracellular signaling pathways probably through
genomic and nongenomic mechanisms. However, not all
studies support this result. Further studies on the potential
impact of vitamin D onmuscle morphology and function are
required to develop the effective intervention for sarcopenia.
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