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High-performance metabolic analysis is emerging in the diagnosis and prognosis of
breast cancer (BrCa). Still, advanced tools are in demand to deliver the application
potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorp-
tion/ionization mass spectrometry (NPELDI-MS) to record serum metabolic finger-
prints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption
of direct serum detection without treatment. Subsequently, machine learning of SMFs
generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from
non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis
scoring system was constructed using SMFs with effective prediction performance
toward BrCa (P < 0.005). Finally, we identified a biomarker panel of seven metabolites
that were differentially enriched in BrCa serum and their related pathways. Together,
our findings provide an efficient serum metabolic tool to characterize BrCa and
highlight certain metabolic signatures as potential diagnostic and prognostic factors of
diseases including but not limited to BrCa.
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Breast cancer (BrCa) is the most common cancer with more than 1,300,000 new cases
and 450,000 deaths each year worldwide (1). High-performance analytical tools are
critical in the early and efficient diagnosis and treatment of BrCa (2). Currently, the
clinical practice still relies on conventional methods of histopathological classification
and imaging tools, such as mammography, magnetic resonance imaging, and ultra-
sound. However, these approaches need large instruments or rigorous operations,
which are time consuming and not always reliable, especially in early diagnosis (3, 4).
However, liquid biopsy using blood samples is advantageous in its ease to apply in a
noninvasive and high-throughput manner and can serve as a promising tool to facilitate
early detection, prediction of metastatic potential, and selection of therapy. In this
regard, a growing body of molecular biomarkers, such as serum circulating extracellular
vesicles, nucleic acid methylation, circulating tumor cells, and autoantibodies, are being
intensively pursued (5–7).
Malignant cells acquire distinct metabolic reprogramming in response to a variety of

extrinsic and intrinsic cell stressors to initiate transformation and growth programs
(8–11). Analysis of metabolites (molecular weight (MW) < 1,000 Da) can help to
reveal the real-time status of living systems. Increasing studies on BrCa have
highlighted the value of metabolomics in early diagnosis and in therapeutic and prog-
nostic predictions (12, 13). Over the past decade, analytical techniques, such as NMR
spectroscopy and mass spectrometry (MS), have been developed for the comprehensive
screening of cancer metabolomes (14, 15). MS is emerging through precisely measuring
the mass-to-charge ratio (m/z) of metabolites with molecular identification capability.
However, the application of MS in liquid- and gas-phase detection relies on chroma-
tography for sample purification and metabolite enrichment, hindering the analytical
speed and capacity. In contrast, laser desorption/ionization (LDI)-MS uses nanoparticle
matrices as an alternative of chromatography for solid-phase detection (16–18). It
offers a new high-performance technique that helps with advanced metabolic analysis
of BrCa.
Herein, we used nanoparticle-enhanced LDI-MS (NPELDI-MS) to record global

serum metabolic fingerprints (SMFs) of BrCa patients (n = 169), benign breast disease
(BBD) patients (n = 21), and healthy donors (HDs; n = 135). We first demonstrated
high detection reproducibility (∼95% of features with intensity coefficients of variance
(CVs) < 30% in serum samples), fast analytical speed (∼30 s per sample), and minimal
sample consumption (∼100 nL per sample) in a label-free manner (Scheme 1A).
We achieved desirable diagnostic performance with an area under the curve (AUC) of
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Scheme 1. SMFs to decode BrCa. (A) Serum samples were collected from enrolled subjects and microarrayed on chips for NPELDI-MS analysis in metabolic
fingerprinting. (B) Machine learning of SMFs was conducted by feature selection and model building to diagnose the BrCa group from the non-BrCa group,
and a biomarker panel was identified for pathway analysis. (C) The Cox regression model was applied to build a prognosis prediction model based on SMFs.
The Kaplan–Meier (KM) curve, log-rank testing, and time-dependent ROC curve analysis were conducted for survival analysis of low- and high-score groups.
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0.948 (95% confidence interval (CI) of 0.922 to 0.973) of BrCa
by machine learning on SMFs (Scheme 1B). Further, a metabolic
prognosis scoring system (MP-score) built by SMFs effectively
predicted the prognosis and survival of patients (P < 0.005;
Scheme 1C). Of note, a diagnostic model was generated based
on a biomarker panel of seven metabolites, affording robust dis-
crimination efficiency with an AUC of 0.865 (95% CI of 0.820
to 0.911). Therefore, our work will facilitate the development
of advanced metabolic analysis of BrCa and the screening of
metabolic alterations toward therapeutic intervention.

Results

High-Performance Serum Metabolite Characterization by
NPELDI-MS. To improve the analytical speed, sample consump-
tion, and reproducibility of LDI-MS, we conducted high-
performance serum metabolic fingerprinting by NPELDI-MS
(Fig. 1A). The ferric nanoparticles were prepared using a modi-
fied low-cost solve-thermal method (Materials and Methods),
showing the designed surface roughness structure as an ideal
matrix for NPELDI-MS. Due to the size-selective trapping and
affinity-based cationization of metabolites by the surface nano-
structures of nanoparticles (SI Appendix, Fig. S1), NPELDI-MS
allowed direct detection of metabolites from the interference of
proteins and salts in serum (SI Appendix, Fig. S2) with mini-
mum sample treatment at high speed (∼30 s per sample). To
validate the size-selective trapping of nanoparticles, histamine
(His) and bovine serum albumin (BSA), as representatives for
metabolites (MW < 1,000 Da) and macromolecules (MW >
1,000 Da), respectively, were mixed with nanoparticles to form
nanoparticle–analyte hybrids. Consequently, the elemental
mapping analysis of the nanoparticle–analyte hybrids showed a
significantly higher molecular size–selective trapping rate
(defined as the ratio of carbon signal intensity on the nanopar-
ticles to the background) for His than for BSA (P < 0.001;
Fig. 1 B and C and SI Appendix, Table S1). Importantly, the
NPELDI-MS process afforded fast analytical speed with 2 s
per sample (with 2,000 laser shots at a pulse frequency of
1,000 Hz; Materials and Methods), which could be coupled
with on-chip microarray (384 samples per chip) to achieve
automatic large-scale sample screening (Fig. 1A).
Of note, we calculated the cosine similarity score of apparent

molecular peaks (with average intensity of >500) between
native serum and its dilutions using 1 to 100 nL of serum to
identify the minimum sample volume for detection. We
obtained qualified similarity scores above 0.771 using 10 to
100 nL of serum (Fig. 1D) due to the efficient absorption and
transfer of laser energy for enhanced detection sensitivity by
two to six orders (compared with organic matrices; SI
Appendix, Fig. S3 and Table S2). Specifically, 108 apparent
molecular peaks of metabolites were observed, likely owing to
the high sensitivity of NPELDI-MS, which helped to form a
reservoir for SMFs. Further, to avoid sampling heterogeneity,
the pristine and diluted serum samples were all homogenized
by a vortex mixer before dilution and loading to the plate.
Additionally, we also conducted an experiment to illustrate this
issue by sampling and diluting n = 5 serum samples five times
and testing these samples by NPELDI-MS. Consequently, the
average similarity scores were higher than 0.97 with SEs lower
than 0.02 (SI Appendix, Fig. S4) in each sample, showing the
homogeneity of our analytical method. Additionally, the effect
of the nanoparticle size on the LDI efficiency was studied by
changing the time of hydrothermal reaction according to a pre-
vious study (19). Consequently, the results showed that in the

range of 250 to 400 nm, the number of signals with a signal-to-
noise ratio > 3 kept stable and had no significant changes
(P > 0.05) in serum samples, illustrating that nanoparticle size
would not influence the signal enhancement in the range of 250
to 400 nm, and the optimal reaction time was set as 10 h consid-
ering the size uniformity of nanoparticles (SI Appendix, Fig. S5).

We also developed a protocol to determine the detection repro-
ducibility of NPELDI-MS in both the intrachip (ten replicates
per sample) and interchip (five chips for 5 d, one chip per day)
contexts. We included one standard sample that was a mixture of
five standard metabolites, including alanine (Ala), lysine (Lys),
arginine (Arg), glucose (Glc), and sucrose (Suc), and ten serum
samples (five HDs and five BrCa patients). The intensity CVs of
the five molecular peaks ([Ala + Na]+ at an m/z of 112.04, [Lys
+ Na]+ at an m/z of 169.09, [Arg + Na]+ at an m/z of 197.19,
[Glc + Na]+ at an m/z of 203.05, and [Suc + Na]+ at an m/z of
365.11) in the standard sample were 1.36 to 2.45% and 3.50 to
11.08% for intrachip and interchip detection, respectively (Fig. 1
E and F and SI Appendix, Tables S3 and S4). The desirable repro-
ducibility of NPELDI-MS was attributed to the homogeneous
morphology of nanoparticle–analyte cocrystallization, distinct
from the random sample crystallization with organic matrices (SI
Appendix, Fig. S3). Consistently, for features (apparent molecular
peaks with average intensity of >500) in serum samples, 97.37 to
100.00% and 93.39 to 98.35% of these peaks displayed intensity
CVs of <30% regarding intrachip and interchip detection, respec-
tively (SI Appendix, Table S5). These results demonstrated that
NPELDI-MS could achieve high performance in profiling SMFs
with desirable speed, less sample consumption, and high
reproducibility.

Characterization of BrCa-Specific SMFs. To determine BrCa-
specific SMFs, we collected serum samples prospectively from
stage I to IV treatment-naive BrCa patients (n = 169, with 43
individuals in stage I, 52 individuals in stage II, 36 individuals
in stage III, and 38 individuals in stage IV), BBD patients (n =
21), and HDs (n = 135) (Fig. 2A). We performed the histo-
pathological evaluation of all samples by two independent path-
ologists. Clinical characteristics, including age at pathological
diagnosis, subtype, and tumor, node, metastasis (TNM) stage
are summarized (SI Appendix, Table S6).

We constructed a serum metabolic database based on the
high-throughput NPELDI-MS analysis. In total, there were
∼124,000 data points in the origin MS result acquired per
sample, where strong m/z signals were obtained with total ion
counts (calculated as the summation of the MS intensity of
each serum sample) of ∼1.19 to 1.44 × 108 at the low mass
range of 100 to 400 Da (Fig. 2B and SI Appendix, Fig. S6) due
to the high resolution of 0.005 Da and high LDI sensitivity of
small metabolites with the detection limit of femtomole (SI
Appendix, Table S2) (20). Typically, over 95% of samples
shared high similarity scores over 0.8 with typical mass spectra
in each group, indicating the reliability of SMFs and the
potency for further diagnostic and prognostic applications. Spe-
cifically, we also analyzed the ferric nanoparticles directly with-
out adding any other analyte by NPELDI-MS, and several
peaks observed could be indexed as the fragments of matrix
([FexOy]

+; SI Appendix, Fig. S7A). However, those peaks were
suppressed and not detected in the mass spectra of serum sam-
ples and thus would not interfere with further analysis.
Although ferric nanoparticles possess intrinsic nanoenzymatic
activity, no iron-adducted peaks could be observed for metabo-
lites (such as the ferrocene-like ion formed by N-heterocyclic
species; SI Appendix, Fig. S7 B–D) (21). Additionally, to
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Fig. 1. High-performance serum metabolite characterization by NPELDI-MS. (A) Illustration of NPELDI-MS. The Upper digital image shows the MS chips after
microarray printing, and the Bottom image was recorded during NPELDI-MS. (Scale bar, 5 mm.) (B and C) Elemental mappings of the nanoparticle–analyte
(His in B and BSA in C) hybrids are shown with O in yellow, Fe in purple, and C in green, respectively. The insert images were high-angle annular dark-field
images of nanoparticle–analyte hybrids. (Scale bars, 200 nm.) (D) The similarity scores between 1,000 nL of pristine serum and its dilutions by 10- to 1,000-
fold using 100 to 1 nL of pristine serum. The error bars were calculated as SD of five repeated experiments. (E and F) Intensities of five molecular peaks
(gray line for [Ala + Na]+ at an m/z of 112.04, red line for [Lys + Na]+ at an m/z of 169.09, blue line for [Arg + Na]+ at an m/z of 197.19, green line for [Glc +
Na]+ at an m/z of 203.05, and purple line for [Suc + Na]+ at an m/z of 365.11) for intrachip (ten replicates per sample) in E and interchip (five chips for 5 d,
one chip per day) detection in F, respectively. (G and H) CV distribution of intensities for the apparent molecular peaks in ten serum samples (five HDs
denoted as HD1 to HD5 and five BrCa patients denoted as BrCa1 to BrCa5) for intrachip (ten replicates per sample) in G and interchip detection (five chips
for 5 d, one chip per day) in H, respectively.
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evaluate the system variation during the long-term sample test,
we have applied standard samples that consisted of five stan-
dard metabolites (including Ala, Lys, Arg, Glc, and Suc) as
quality control (QC) samples. The QC samples were tested
during the whole sample test procedure at regular intervals.
Consequently, the QC samples can be gathered into a separate
cluster (R2X(cum) = 0.860, R2Y(cum) = 0.746, and Q2(cum)
= 0.664; SI Appendix, Fig. S8) by orthogonal partial least
squares discriminant analysis (OPLS-DA; SI Appendix, Fig. S6).
Further, the intensity CVs of the five molecular peaks ([Ala +
Na]+ at an m/z of 112.04, [Lys + Na]+ at an m/z of 169.09,
[Arg + Na]+ at an m/z of 197.19, [Glc + Na]+ at an m/z of
203.05, and [Suc + Na]+ at an m/z of 365.11) in the standard
sample were 3.74 to 4.59%, which demonstrated desirable sys-
tem variation during the long-term and large-scale sample test
(SI Appendix, Table S7). Notably, the SMF referred to 301 m/z
signals was extracted from origin MS results by data preprocess-
ing (Fig. 2C), including binning, smoothing, baseline correc-
tion, peak detection, and alignment (Materials and Methods),
which was the basis for feature selection and biomarker screen-
ing toward diagnostic and prognostic use.
Particularly, OPLS-DA was performed to visualize the distri-

bution of samples based on SMFs, showing that BrCa and HD
samples can be roughly separated into two clusters in the OPLS-
DA score plot (R2X(cum) = 0.805, R2Y(cum) = 0.432, and
Q2(cum) = 0.372; Fig. 2D). However, the separation of these
two groups was not clear enough, which indicated the necessity
of introducing an advanced machine learning algorithm to help
interpret data and improve the diagnostic efficiency. These find-
ings demonstrated that SMFs generated by NPELDI-MS could
be used as a readout to distinguish BrCa patients from non-
BrCa (control group, including HD and BBD) individuals.

Construction of an SMF-Based Diagnostic Model for BrCa. To
complement the histopathology-based diagnosis, we determined
whether SMF-based metabolomic information (consisting of 301
signals) could be used as a liquid diagnostic tool to distinguish
cancers from noncancers. We constructed shared and unique
BrCa SMFs by performing NPELDI-MS and data preprocessing

and randomly split these serum samples into a discovery cohort
of n = 260 (n = 135 BrCa and n = 125 non-BrCa) and an inde-
pendent validation cohort of n = 65 (n = 34 BrCa and n = 31
non-BrCa) with well-matched age (P > 0.05).

Machine learning using SMFs from the cohorts included fea-
ture selection and model building (Fig. 3A). Typically, univar-
iant methods (analysis of variance F value [ANOVA F] and
mutual information [MI]) and a model-based method (elastic
net [EN]) were applied for feature selection, and SMFs without
any selection were set as the control for comparison. Subse-
quently, four algorithms (neural network [NN], AdaBoost
[AB], random forest [RF], and decision tree [DT]) were per-
formed for model building. All the models achieved an AUC of
>0.673 for discriminating BrCa compartments from non-BrCa
compartments in the discovery cohort. Specifically, EN in fea-
ture selection showed optimized performance with an AUC of
0.727 to 0.948 among all four algorithms with an optimized
cutoff frequency of 95% and 36 features selected (Materials and
Methods and SI Appendix, Fig. S9) compared with ANOVA F
(AUC of 0.673 to 0.897, P < 0.005 by paired t test), MI
(AUC of 0.696 to 0.884, P < 0.05), and control (AUC of 0.
674 to 0.911, P < 0.01; Fig. 3B and SI Appendix, Table S8).
Furthermore, in the model building, NN afforded the best per-
formance with an AUC of 0.948 (95% CI of 0.922 to 0.973)
compared with AB (AUC of 0.728, 95% CI of 0.665 to 0.790,
P < 0.0001 by Delong test), RF (AUC of 0.875, 95% CI of
0.833 to 0.917, P < 0.0001), and DT (AUC of 0.727, 95%
CI 0.664 to 0.791, P < 0.0001), given 36 features as selected
by EN (Fig. 3C). Importantly, we obtained consistent results
(with an AUC of 0.949, 95% CI of 0.901 to 0.996, accuracy
of 83.1%, sensitivity of 82.4%, and specificity of 83.9%;
Fig. 3E) for the independent validation cohort in the blind test
with EN for feature selection and NN for model building com-
pared with that in the discovery cohort (AUC of 0.948, 95%
CI of 0.922 to 0.973, accuracy of 88.8%, sensitivity of 88.9%,
and specificity of 88.8%; Fig. 3D), validating the diagnostic
value of SMFs for BrCa.

These results suggested that SMF-based metabolomic informa-
tion derived from BrCa exhibited excellent performance

Fig. 2. Characterization of BrCa-specific SMFs. (A) The age and stage distribution of 169 BrCa patients and age distribution of 21 BBD patients as well
as 135 HDs. (B) Three typical mass spectra at the m/z range of 100 to 400 are shown for serum samples of BrCa, BBD, and HD on the Left, while the fre-
quency distribution of similarity scores on the Right was calculated for each group by SMFs within the same group. (C) A heat map of independent metabolic
fingerprints for 325 serum samples was plotted using 301 m/z signals through data preprocessing. The color scale was processed by logarithmic correction.
(D) The OPLS-DA classification for the BrCa (red points), BBD (yellow points), and HD (green points) group.
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distinguishing BrCa patients from non-BrCa individuals. Specifi-
cally, the best diagnostic AUC could be obtained by applying EN
for feature selection and NN for model building.

Construction of an SMF-Based Prognostic Model for BrCa Sur-
vival Prediction. Importantly, we analyzed the SMF dataset
from patients with complete follow-up information. These
patients were randomly split into a discovery cohort (contain-
ing 96 observations with 26 events) and a validation cohort
(containing 47 observations with 13 events), with a median
follow-up time of 16 mo (ranging from less than 1 mo to 116
mo). The Cox regression model was implemented to construct
an MP-score with a four-metabolite panel (Fig. 4A and SI
Appendix, Table S9). Kaplan–Meier curves were generated with
a dichotomized label, which divided the patients into high-
score and low-score groups according to the median MP-score.
As a result, the median survival time in the low-score group
was significantly more prolonged than that in the high-score
group (P = 0.0018 in the discovery cohort and P = 0.0164 in
the validation cohort by log-rank test; Fig. 4 B and C), illustrat-
ing the desirable prognosis efficiency.

To further determine the predictive ability of MP-score, we
performed time-dependent receiver operating characteristic
curve (ROC) analysis to characterize the prediction performance
of the four-metabolite MP-score, with the comparison of con-
ventional TNM (as defined by the American Joint Committee
on Cancer guidelines) staging system (22, 23). The ROC analy-
sis demonstrated that the MP-score displayed a comparable pre-
diction performance with an AUC of 0.849 (95% CI of 0.749
to 0.949) in the discovery cohort and 0.797 (95% CI of 0.657
to 0.936) in the validation cohort compared with the TNM
staging system (with an AUC of 0.789 and 95% CI of 0.664 to
0.914 in the discovery cohort and an AUC of 0.730 and 95%
CI of 0.503 to 0.956, in the validation cohort; Fig. 4 D and E).

Taken together, we proposed an efficient model based on
SMFs for prognostic prediction, illustrating the broad applica-
tion of our detection method in guiding treatment planning
clinically.

Identification of a Metabolic Biomarker Panel and Pathway
Analysis. To further determine specific BrCa serum metabolic
biomarkers, we filtered the metabolites from the data matrix of

Fig. 3. The machine learning model for BrCa diagnosis. (A) Workflow for building the diagnostic model. (B) The AUCs in the differentiation of BrCa com-
partments from non-BrCa compartments in the discovery cohort, using three typical algorithms (red line for control, blue line for EN, green line for MI,
and purple line for ANOVA F) in feature selection and four typical algorithms in model building (NN, AB, RF, and DT). (C) Model evaluation of four typical
machine learning algorithms (NN, AB, RF, and DT) based on 36 features selected by EN, including AUC, sensitivity, specificity, precision, and accuracy. (D
and E) The ROC curves for NN modeled by features to diagnose BrCa compartments from non-BrCa compartments of the discovery cohort (D) and valida-
tion cohort (E).
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Fig. 4. Prognostic prediction of BrCa based on SMFs. (A) Workflow for building the prognostic model for calculating MP-score. (B and C) Overall survival
curves of patients with BrCa with low risk (red line) or high risk (black line) of death according to the MP-score (constructed via Cox regression model) in the
discovery (B) and validation cohorts (C). (D and E) Time-dependent ROC and corresponding AUCs for 9-mo survival predicted by MP-score (green line) and
TNM stage (orange line) in the discovery (D) and validation cohorts (E).
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SMFs based on the stepwise statistical screening criteria (mean
intensity > 3,000, hit frequency > 95%, and P < 0.05) by
comparing BrCa compartments with non-BrCa compartments
(Fig. 5A). Using the screening strategy, we identified seven
metabolites, of which amounts were significantly different in
serum samples of BrCa patients compared with those in non-
BrCa samples. Subsequently, we validated these seven metabolites
as L-glyceric acid (GA), nicotinamide (NAM), His, uracil (Ura),
thymine (Thy), 3,4-dihydroxybenzylamine (DB), and dehydro-
phenylalanine (DP) (24, 25), respectively, through accurate MS
using Fourier transform ion cyclotron resonance (FT-ICR)-MS
or MS/MS using time-of-flight (TOF)-MS (SI Appendix, Fig.
S10 and Table S10). Among them, His, Ura, Thy, DB, and DP
were down-regulated (P < 0.05), while GA and NAM were
up-regulated (P < 0.001) in BrCa compartments compared with
in BBD and HD compartments (Fig. 5B).
In multibiomarker analysis, the NN model built by seven

metabolites exhibited an enhanced diagnostic AUC of 0.865
(95% CI of 0.820 to 0.911), which was superior to the analysis
of a single metabolic biomarker with limited AUCs of 0.680 to
0.766 (P < 0.05; Fig. 5C and SI Appendix, Table S10). Impor-
tantly, we observed an increased diagnostic score (defined as
the probability of being diagnosed as BrCa patients using the
NN model built by these seven metabolites) of stage IV BrCa
compartments (average score of 0.782) compared with stage I,
II, and III compartments (average scores of 0.650, 0.698, and
0.755, respectively; Fig. 5D). Additionally, stage IV BrCa cases
showed the highest average score of 0.782, which was signifi-
cantly higher than that of stage I cases (average score of 0.650,
P < 0.05). In the early-stage diagnosis related to subtypes of

BrCa, the sensitivity for BrCa at stage I was highest for the
triple-negative/basal-like BrCa (85.71%) and lowest for HER2-
enriched BrCa (20%). Due to the complexity of multiclassifica-
tion machine learning (26), more samples were required to
build models toward direct BrCa staging.

We further performed pathway enrichment analysis to deter-
mine the biological relevance and metabolic signaling of the
seven metabolites. In the pathway topology analysis based on
the Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way library, there were three metabolic pathways related to
BrCa with a pathway impact > 0.1 and hit number (the num-
ber of matched metabolites in the pathway) ≥ 1, including 1)
pyrimidine metabolism, 2) nicotinate and NAM metabolism,
and 3) histidine metabolism (Fig. 5E and SI Appendix, Table
S11). Pyrimidine metabolism reflected adaptive metabolic
reprogramming to the up-regulated transcriptional activity due
to cancer cell proliferation (27, 28). Nicotinate and NAM
metabolism represented a high rate of NAM adenine dinucleo-
tide turnover in cancer cells corresponding to the high rate of
proliferation and DNA synthesis (29–32). Histidine metabo-
lism can be associated with the modulation of inflammatory
and hypersensitivity responses owing to the vital immunomod-
ulatory role of His (33, 34).

Discussion

Recently, the advancement of analytical techniques to charac-
terize the complexity of tumor metabolism has shed light on
understanding multiple types of cancers (7). Most liquid/gas-
phase MS techniques need rigorous sample treatment of ∼0.5

Fig. 5. Biomarker panel construction and pathway analysis. (A) Selection of biomarker candidates according to mean intensity (�I), hit frequency (f), and
P value (p). (B) The violin plot illustrated the differential expression of seven metabolites between the BrCa group (red) and non-BrCa group (green), and
P values (***, P < 0.001; *, P < 0.05) are indicated on the Top of each violin plot. (C) The ROC curves showed a higher AUC of 0.865 using the metabolic bio-
marker panel than a single metabolic biomarker (AUC of 0.680 to 0.766). (D) Score distribution of individuals from the non-BrCa group (labeled as control)
and BrCa patients in stage I/II/III/IV. The lines show the average scores of each group. (E) The potential pathways that were differentially regulated in the
BrCa group and non-BrCa group; each circle’s color and size were correlated to the P value and pathway impact (PI). A total of three pathways were consid-
ered with a pathway impact of >0.1 and hit number ≥1, including 1) pyrimidine metabolism, 2) nicotinate and NAM metabolism, and 3) histidine
metabolism.
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to 1 h and a sample volume of ∼10 to 500 μL per sample by
chromatography to remove unwanted biomolecules (e.g., salts
and proteins) at high concentrations of ∼milligrams/milliliter
to overcome the sample complexity and enrich the target
metabolites (35–37). By comparison, our approach offers a
high analytical speed (∼30 s per sample) with simple sample
treatment and low sample volume (∼10 to 100 nL), both of
which were improved by orders of magnitudes owing to the
on-chip nanoparticle-assisted selective and sensitive LDI for
small metabolites in complex biofluids and microarray-based
automatic detection.
Notably, the reproducibility of metabolic fingerprinting is

critical in large-scale applications. In NMR-based metabolic
fingerprinting, ∼95% of features displayed intensity CVs <
30% due to the stable magnetic field with the frequency locked
by isotope-labeled additives (35, 38). In metabolic fingerprint-
ing based on conventional MS, ∼70% of features displayed
intensity CVs < 30% owing to the multiprocedures during
sample treatment by chromatography methods and distinct ion-
ization efficiency of various metabolites (37). In contrast, our
approach displayed ∼95% of features with intensity CVs <
30% due to simple sample pretreatment and enhanced ioniza-
tion efficiency toward small metabolites. Therefore, we have
achieved high-performance serum metabolic fingerprinting
with desirable analytical speed, sample volume, and detection
reproducibility, which can be fundamental for feature selection
and machine learning in the next stage. The size-selective trap-
ping effect of nanoparticles could be attributed to the nanoscale
surface roughness of nanoparticles, making the small metabo-
lites trapped by nanocrevices on the surface and facilitating
efficient ionization of small metabolites compared with macro-
molecule (39–41). The high detection sensitivity of ferric nano-
particles could be mainly concluded into two aspects: 1) For
photo-thermal properties, the ferric nanoparticles exhibited
strong ultraviolet (UV) laser absorption and low thermal con-
ductivity and could be heated to a high temperature by the
laser irradiation toward the efficient molecular desorption (20,
42), and 2) for the unique ionization mechanism of NPELDI,
a positive ion layer (including H+, Na+, and K+) was formed
on the negatively charged surface of ferric nanoparticles (39),
and the molecules containing polar functional groups (such as a
hydroxyl group) can be ionized on the surface of ferric nano-
particles through the dipole–dipole interaction between the
molecule and the nanoparticles (43), which would facilitate the
production of cation-adducted species.
In a case–control design, we enrolled 325 pathologically

defined subjects in this work (Materials and Methods), compara-
ble to previous studies (5, 12, 44–47). To determine the mini-
mum sample number to conduct machine learning, we used a
power analysis of ten samples (five/five BrCa/non-BrCa com-
partments) as a pilot study and obtained a power of > 0.8 with
the sample number of 200 (100/100 BrCa/non-BrCa compart-
ments) at a false discovery rate of 0.10 (SI Appendix, Fig. S11),
validating that the machine learning results were at a sufficient
confidence level.
Classical diagnostic strategies, such as physical examination,

mammography, and biopsy, are still limited for large-scale
screening due to their inherent characteristics, calling for medi-
cal professionals with rich experience of years, large instruments
of high cost in purchase/maintenance, or inevitable invasiveness
with low population compliance (4, 48, 49). Previously, other
MS techniques, including liquid chromatography-MS (LC-
MS), gas chromatography-MS (GC-MS), and matrix-assisted
laser desorption ionization-MS, have been explored in previous

studies for BrCa diagnosis (12, 47, 50–52). Compared with
those studies (SI Appendix, Table S12), our work was con-
ducted based on a well-designed cohort and showed desirable
diagnostic performance with an AUC of 0.948 (95% CI of
0.922 to 0.973), which is promising for large-scale screening
use in clinical practice.

Moreover, an MP-score was constructed using a four-
metabolite panel by analyzing the SMF dataset from patients
with complete follow-up information. Although the TNM stag-
ing system has been regarded as the main prognostic predictor,
the four–metabolite-based MP-score model showed comparable
prediction efficiency, achieving high prognosis efficiency of P =
0.0018 with an AUC of 0.849 (95% CI of 0.749 to 0.949). Of
note, the NPELDI–MS-based SMF analysis only required a
blood test, which is promising for universal and large-scale
point-of-care applications.

To further determine specific BrCa serum metabolic bio-
markers, we successfully identified a biomarker panel of seven
BrCa-specific serum small metabolites and validated them
through accurate mass measurements or MS/MS. Among
them, His, Ura, Thy, DB, and DP were down-regulated (P <
0.05), while GA and NAM were up-regulated (P < 0.001) in
BrCa compartments. Then, we constructed a seven-metabolite
NN model that achieved high diagnosis efficiency with an
AUC of 0.865 (95% CI of 0.820 to 0.911). KEGG pathway
analysis revealed three metabolic pathways related to the seven
metabolites: pyrimidine metabolism, nicotinate, NAM metabo-
lism, and histidine metabolism. Further study needs to be con-
ducted to determine the underlying mechanism of how they
precisely contribute to BrCa development and progression.

In general, we have established a high-performance serum
metabolic fingerprinting platform based on NPELDI-MS and
have identified BrCa-specific metabolites as potential diagnos-
tic/prognostic markers. Our work would contribute to the met-
abolic analysis of BrCa and provide intervention targets toward
cancer treatment.

Materials and Methods

Clinical Subjects and Sample Harvesting. This study was conducted in
accordance with the principles of the Declaration of Helsinki, and the study pro-
tocol was approved by the ethical committee of Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine (Shanghai, China, permit
number [2017]KY053). Serum samples were collected from Shanghai General
Hospital, and signed informed consents were obtained from participants or their
authorized representatives prior to all study procedures.

Data Availability. All study data are included in the article and/or supporting
information.
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