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ABSTRACT

Mutations at the ligand binding sites (LBSs) can in-
fluence protein structure stability, binding affinity
with small molecules, and drug resistance in can-
cer patients. Our recent analysis revealed that lig-
and binding residues had a significantly higher mu-
tation rate than other parts of the protein. Here,
we built mutLBSgeneDB (mutated Ligand Binding
Site gene DataBase) available at http://zhaobioinfo.
org/mutLBSgeneDB. We collected and curated over
2300 genes (mutLBSgenes) having ∼12 000 so-
matic mutations at ∼10 000 LBSs across 16 can-
cer types and selected 744 drug targetable genes
(targetable mutLBSgenes) by incorporating kinases,
transcription factors, pharmacological genes, and
cancer driver genes. We analyzed LBS mutation in-
formation, differential gene expression network, drug
response correlation with gene expression, and pro-
tein stability changes for all mutLBSgenes using inte-
grated genetic, genomic, transcriptomic, proteomic,
network and functional information. We calculated
and compared the binding affinities of 20 carefully
selected genes with their drugs in wild type and mu-
tant forms. mutLBSgeneDB provides a user-friendly
web interface for searching and browsing through
seven categories of annotations: Gene summary, Mu-
tated information, Protein structure related informa-
tion, Differential gene expression and gene-gene net-
work, Phenotype information, Pharmacological in-
formation, and Conservation information. mutLBS-
geneDB provides a useful resource for functional ge-
nomics, protein structure, drug and disease research
communities.

INTRODUCTION

Molecular recognition plays a fundamental role in all bi-
ological processes (1). Mutation-induced conformational

change and induced fit with the ligand are the key factors
of protein–ligand interactions in cancer cells (2,3). Point
mutations at spatially distinct sites lead to conformational
changes and exert hinge effects (4). Some point mutations
at ligand binding sites may dramatically change the binding
affinities of the ligands (5,6). Studies also reported that mu-
tations at ligand binding sites could link to the resistance to
small molecule drugs in patient care (7,8). Recently, we also
found a significantly higher mutation rate at ligand binding
residues than in other parts of the protein sequence across
16 cancer types (9). Therefore, comprehensive annotations
of all ligand binding site mutations in pan-cancer will allow
for investigators to better understand cancer mechanisms
and identify targetable mutations at ligand binding sites.

Many researchers have identified mutation-induced
molecular modifications in ligand-protein interactions. For
example, mutations in epidermal growth factor receptor
(EGFR) in glioblastoma increased ligand binding affinity
for EGF (10). A point mutation in neuraminidase 1 gene
(NEU proto-oncogene) conferred high ligand binding
affinity (6). Moreover, a few studies reported the roles of
ligand binding domain mutations. The association between
the ligand binding sites and disease related mutations in the
type I collagen was observed (11) and the ligand-binding-
domain mutations of androgen receptor (AR) gene led to
the disruption of interaction between N- and C-terminal
domains (12). Recently, several studies showed that ligand
binding site mutations could lead to drug resistance. For
example, ligand-binding domain mutations in estrogen
receptor 1 gene (ESR1) were found in hormone-resistant
breast cancer (7). Two major ligand binding site mutations
in ESR1 can confer partial resistance to the currently
available endocrine treatments (13). Consequently, the
cancer and drug research community has recognized the
importance of ligand binding site mutations and called
for systematic and comprehensive analyses of genes with
ligand binding site mutations (14), which are still largely
not done yet despite the exponential growth of cancer and
other biomedical data recently.

This paper introduces mutLBSgeneDB (mutated Ligand
Binding Site gene DataBase), the web interface, and its ap-
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plications. As the first database encompassing all human
ligand binding site mutations with bioinformatics analyses,
it provides unique and useful information for functional ge-
nomics, protein structure, disease and drug research com-
munities.

DATABASE OVERVIEW

mutLBSgeneDB contains over 2300 genes with ligand bind-
ing site mutations that are annotated with seven categories
(Figure 1). (i) Gene summary category provides basic gene
information with diverse hyperlinks and the literature ev-
idence in ligand binding site mutations for each gene. (ii)
Ligand binding site mutation information category presents
detailed information of somatic mutations that occur at the
ligand binding sites only. The current version of mutLBS-
geneDB includes 11 873 non-synonymous mutations at 10
108 ligand binding sites that were extracted from The Can-
cer Genome Atlas (TCGA) (15) and a semi-manually cu-
rated database for biologically relevant ligand-protein in-
teractions (BioLiP) (16). (iii) Protein structure related infor-
mation category shows relative stability of proteins encoded
by all mutLBSgenes and ligand binding affinity changes
with their drugs after the occurrence of mutation at the lig-
and binding site of carefully selected 20 genes. (iv) Differen-
tial gene expression and gene-gene network category shows
expressional differences between mutated and non-mutated
samples based on co-expressed protein interaction network
(CePIN). (v) Phenotype information category includes dis-
ease related information on the genetic and mutation level.
(vi) Pharmacology information category provides heat map
using the top 20 correlated drugs between mutLBSgene ex-
pressions and 138 anti-cancer drug responses across 790
cell-lines from Cancer Cell Line Encyclopedia (CCLE) (17).
mutLBSgeneDB shows the druggable features of mutLB-
Sgenes covering a total of 1324 drugs from DrugBank.
(vii) Conservation information category offers conserved
sequences for each ligand binding site residue across eight
species.

Table 1 summarizes the statistics of 2372 genes having
mutations at ligand binding sites (mutLBSgenes) and 744
drug targetable mutLBSgenes (targetable mutLBSgenes)
for each annotation category. mutLBSgeneDB can be used
to explore and predict cancerous features and possible drug
repurposing. All aforementioned entries and annotation
data are available for browsing and searching on the mutLB-
Sgenes web site (http://zhaobioinfo.org/mutLBSgeneDB).

DATA INTEGRATION

mutLBSgenes and targetable mutLBSgenes

A total of 145 531 ligand–protein binding interactions for
2874 proteins of UniProt (18) were downloaded from Bi-
oLiP (data version January 2016) (16). Somatic point mu-
tation data was retrieved from TCGA (March 2016). Mu-
tations that occur on the direct protein–ligand binding site
residue or on its immediate two flanking residues at both
upstream and downstream sides were considered to be lig-
and binding site mutations. There were 4660, 4472 and
2741 nsSNVs located at the direct protein–ligand binding
site residues, the immediate flanking residues (±1 aa), and

the immediate second flanking residues (±2 aa), respec-
tively. After this data processing, 2372 genes with 11 873
non-synonymous mutations at 10 108 ligand binding sites
were obtained. Furthermore, 744 drug targetable mutLBS-
genes were identified by incorporating kinase genes from the
Human Kinome (19), transcription factors from TRANS-
FAC (20), all drug target genes from the concise guide
to pharmacology (IUPHAR, International Union of Basic
and Clinical pharmacology) (21), and cancer driver genes
from cancer type specific, significantly mutated genes that
we collected and curated previously (22). As a result, the
targetable mutLBSgenes are composed of 220 human ki-
nases, 216 human transcription factors, 579 IUPHAR tar-
get genes, and 101 cancer-type specific significantly mutated
genes (Supplementary Table S1). Ten common genes among
the five gene sets were CREBBP, EP300, ESR1, EZH2,
FGFR1, HDAC3, PGR, RXRA, SMARCA4 and SMO.

Manual curation of PubMed articles

For the 744 targetable mutLBSgenes, a literature query
of PubMed was performed in June 2016 using the
search expression that applied to each mutLBSgene (using
BRAF as an example here: ‘((BRAF[Title/Abstract]) AND
mutation[Title/Abstract]) AND ligand[Title/Abstract])’.
The abstracts of over 1000 articles were manually reviewed.
We found literature evidence (138 articles) for 98 genes
(∼4.0%) that support the role of these ligand binding site
mutations in cancer or drug response. For the 301 genes an-
notated as kinase or cancer driver genes in mutLBSgenes,
we added 3D structure images by searching the Protein
Data Bank (PDB) (23). For the most recurrent mutation in
each targetable mutLBSgene, we added related clinical in-
formation from genetically informed cancer medicine (My
Cancer Genome) (24). Using this curation method, we cre-
ated a classification system for the genes in the database
to show reliability. Class A consists of genes with literature
evidence and is part of the targetable mutLBSgenes. Class
B consists of only targetable mutLBSgenes without addi-
tional evidence. The remaining genes belong to Class C.

Expression data preparation

Gene expression data was downloaded from TCGA
(January 2015). Normalized gene expression data from
RNASeqV2 was extracted using the R package TCGA-
Assembler (25). In addition, microarray gene expression
data from over 790 cancer cell lines was extracted from
CCLE (October 2012).

Co-expressed protein interaction network (CePIN)

The protein interaction network (PIN) reported in our pre-
vious study included 113 473 unique protein-protein inter-
actions connecting 13 579 protein-coding genes (26,27). It
was used in conjunction with the Pearson Correlation Co-
efficient (PCC) calculated for each gene-gene pair to build a
CePIN. Co-expressed network figures were drawn using the
igraph package in R (28). For each gene, the top 20 neighbor
genes with the highest PCC values were kept in the network
to reflect the genetic signals.

http://zhaobioinfo.org/mutLBSgeneDB
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Figure 1. Overview of mutLBSgeneDB. mutLBSgeneDB is composed of seven annotation categories that cover the genotypic, transcriptomic, proteomic,
phenotypic, pharmacological data and network analyses of 2372 mutLBSgenes with manual curation of 744 targetable mutLBSgenes.

Gene-drug and gene-ligand interaction networks

Drug–target interactions (DTIs) were extracted from Drug-
Bank (29) and the duplicated DTI pairs were excluded.
All drugs were grouped using Anatomical Therapeutic
Chemical (ATC) classification system codes (30). Two-
dimensional chemical structure images of all drugs were
generated using the chemical toolbox, OpenBabel (v2.3.1)
(31). Ligand–target interactions (LTIs) were extracted from
BioLiP and the duplicated LTI pairs were excluded.

Calculating drug binding affinity for top 20 ranked genes and
their drugs

We selected 20 genes ranked by the following informa-
tion: recurrences in the samples, targeted by the drugs of
‘approved and investigational’ status from DrugBank, and
number of mutated ligand binding sites. We further se-
lected the most studied drugs (2 or 3) for each of these
genes by searching DrugBank and PubMed and down-
loaded PDB structure file of drugs and proteins. Using these
data sets, we searched the drug binding affinities for these
20 genes. We downloaded the crystal structures of genes
and three-dimensional structures of drugs from PDB and
a free database of commercially available compounds for
virtual screening (ZINC) in mol2 format (32). Individual
mol2 files were converted into pdbqt files using the python
script prepare ligand4.py available in the Autodock Tools

package (33). Using Autodock package, we computed the
free energy and studied the docking. Lastly we searched the
optimal fit of each drug into targets. The details about this
method were described in previous studies (34,35).

Correlation between drug response and gene expression using
CCLE data

Drug response data in 714 cell lines on 142 drugs was
extracted from Genomics of Drug Sensitivity in Cancer
(http://www.cancerrxgene.org/) (36) (October 2012). Pear-
son Correlation Coefficient (PCC) between drug response
and gene expression was calculated for each drug-gene pair.

Conservation information

All sequences used in comparative alignment and specific
positions of amino acid were downloaded from the Con-
served Domain Database (CDD) of NCBI. Comparison of
homologous sequences was obtained by using the multi-
ple sequence alignment tool with high accuracy and high
throughput (MUSCLE) (37).

Database architecture

The mutLBSgeneDB system is based on a three-tier ar-
chitecture: client, server, and database. It includes a user-
friendly web interface, Perl’s DBI module, and MySQL

http://www.cancerrxgene.org/
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Table 1. Annotation entry statistics for mutLBSgenes and targetable mutLBSgenes

Data type # Entries # mutLBSgenesa # targetable mutLBSgenesb

Total 2372 (%) Total 744 (%)

Targetable genes # genes
Human Kinomec 267 267 (11.3%) 267 (35.9%)
TRANSFACd 216 216 (9.1%) 216 (29.0%)
IUPHARe 579 579 (24.4%) 579 (77.8%)
Cancer driver genesf 179 179 (7.5%) 179 (24.1%)
Ligand binding site # LBS
BioLiPg 10 108 2372 (100.0%) 744 (100.0%)
Mutation # nsSNV
TCGAh 11 873 2372 (100.0%) 744 (100.0%)
Expression # genes
TCGAi 20 502 2372 (100.0%) 744 (100.0%)
Expression with drug treatment # genes
CCLEj 19 931 2372 (100.0%) 744 (100.0%)
Molecule # molecules
DrugBankk 8206 drugs 865 (36.5%) 378 (50.8%)
UniProtl 2374 proteins 2372 (100.0%) 743 (99.9%)
BioLiPm 6108 ligands 1780 (75.0%) 572 (76.9%)
Phenotype # phenotype
DisGeNetn 6761 disease ID 1449 (61.1%) 662 (85.5%)
ClinVaro 107 phenotype ID 80 (3.4%) 49 (6.6%)
Conservation # LBS
MUSCLE resultsp 27 269 2371 (100.0%) 744 (100.0%)

aNumber of genes having ligand binding site mutations (mutLBSgenes).
bTargetable mutLBSgenes.
cKinases from The Human Kinome database.
dTranscription factors from TRANSFAC database.
eDrug target genes from IUPHAR database.
fSignificantly mutated genes in 18 TCGA cancer types.
gLigand binding sites from Ligand-protein binding database (BioLiP).
hSomatic non-synonymous single nucleotide variants (nsSNVs) from TCGA in 16 cancer types.
iExpression values from TCGA.
jAnti-cancer drug treated cell-line’s gene expression data.
kmutLBSgenes related drug IDs from DrugBank database.
lProtein accession data from UniProt database.
mLigand binding to mutLBSgenes.
nGene-level disease annotation from DisGeNet database.
oMutation-level pathogenic information from ClinVar.
pConservation information across 8 species from MUSCLE.

database. This database was developed on MySQL 3.23
with the MyISAM storage engine.

WEB INTERFACE AND APPLICATIONS

Ligand binding site mutation information category

This category presents detailed information of non-
synonymous mutations (i.e. nsSNVs) located at the ligand
binding sites (Figure 2A) such as the lollipop-style plot
showing the mutations that only occurred at the ligand
binding sites, cancer type specific mutLBS table giving the
sorted mutation frequency information across cancer types,
and clinical information table showing the specific clini-
cal information for the most frequently recurrent muta-
tions. We obtained clinical information for 74 genes among
744 targetable mutLBSgenes using My Cancer Genome.
For example, the most frequently observed nsSNV of v-raf
murine sarcoma viral oncogenes homolog B1 (BRAF) is the
V600E driver mutation (BRAFv600E), activates the MAPK
pathway in 50% of melanoma patients (38). This mutation is
located near the ligand binding site (A598) (39). The cancer
type specific mutLBS table shows the consistent results with
the previous studies that the two most frequently mutated

cancer types of BRAFv600E are thyroid carcinoma (THCA)
and skin cutaneous melanoma (SKCM) (40–42). Another
example of ESR1 shows the possible usage of cancer type
specific mutLBS table for user to examine whether and how
the mutLBS present in different cancer types (43) (Supple-
mentary Figure S1).

To provide a weighted gene list, we sorted mutLBS-
genes based on the number of mutated ligand binding site.
Among the total 2372 mutLBSgenes, 1891 genes and 203
had more than two and ten ligand binding sites of mutation,
respectively. Among these, the top 20 genes were ERGR,
ABL, TP53, BCHE, CTNNB1, VHL, CSNK2A1, FOLH1,
KRAS, THBS2, CD1D, F2, EP300, HGF, RUNX1T1,
ABL1, AGO2, XDH, CD1B and CES1 (Supplementary Ta-
ble S2). Gene set enrichment tests were performed for the
203 genes to infer the active pathways of mutLBSgenes
(WebGestalt, adjusted P-value (i.e. q-value) <0.05, hyper-
geometric test followed by multiple test correction using
Benjamini–Hochberg’s method) (44). There were 40, 53 and
54 genes that were enriched in ‘negative regulation of cell
death’ pathway, ‘response to endogenous stimulus’ pathway
and ‘protein phosphorylation’ pathway with q-value 2.80 ×
10−15, 3.58 × 10−16 and 6.35 × 10−15, respectively (Sup-
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Figure 2. Ligand binding site mutation information category and protein structure related information category. (A) Ligand binding site mutation infor-
mation category. The lollipop plot shows non-synonymous single nucleotide variants (nsSNVs) at the ligand binding sites only in amino acid sequence of
protein B-Raf. Cancer type specific mutLBS table shows the frequency of each LBS mutation in each cancer type. (B) Protein structure related information
category. The dot plot shows the relative protein stability change after occurrence of each mutation. Red dots represent ligand binding site mutations and
grey dots for other nsSNVs. This category also shows the predicted protein structure of wild type and mutant protein with their drugs. For the top 20
selected genes, we also calculated the binding affinity.

plementary Table S3). From these pathways, we could infer
that the top genes with the most ligand binding site muta-
tions were significantly involved in tumorigenesis and phos-
phorylation.

Protein structure related information category

This category shows protein stability changes after occur-
rence of mutation at the ligand binding site for all proteins
encoded by mutLBSgenes (Figure 2B). One study compar-
ing protein mean square deviation (MSD) between wild
type and mutant proteins of B-Raf V600E showed that even
a single mutation of the protein could lead to much differ-
ent molecular characteristics (45). To this end, we calculated
the relative stability of protein structure after one ligand
binding site mutation using MuPro1.1, a computational
tool that predicts the protein stability changes for single-
site mutation using support vector machines and neural net-
works (46). Our annotation results showed that five muta-

tions (G466V, G466E, G466R, F468L and F595S) at three
ligand binding sites of B-Raf may cause the change of pro-
tein structure toward a more stable form with a positive sta-
bility change value (Figure 2B).

Furthermore, to annotate mutation-induced modifi-
cations on protein-drug binding, we selected top 20
genes ranked by recurrences, targeted by the drugs of
‘approved and investigational’ status, and number of
mutated ligand binding sites. These genes are BRAF,
CDK2, CPS1, CYP11B2, CYP2B6, CYP2C19, CYP2C8,
CYP3A4, EGFR, ERBB2, FGFR2, IDE, ITK, KEAP1,
KIT, MET, RET, SULT1E1, VDR and XDH. Binding
affinity (kcal/mol) between wild type and mutant proteins
with their respective drugs (Supplementary Table S4) was
calculated for each of these genes. For example, mutated
protein encoded by BRAFV600E has a lower free energy of
binding to Vemurafenib, a FDA-approved BRAF kinase in-
hibitor in the treatment of melanoma, compared to other
drugs such as Dabrafenib and Regorafenib (Figure 2B).
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Differential gene expression and gene–gene network category

This category provides differential gene expression and
gene-gene network of mutated versus wild type samples to
show expressional differences in each cancer type. First, a
violin plot shows the differential gene expression between
mutated and wild type samples for each mutLBSgene (Sup-
plementary Figure S2A). Second, a co-expressed protein in-
teraction network (CePIN) was created by calculating the
Pearson Correlation Coefficient (PCC) using gene expres-
sion values from TCGA. Using this method, we found sig-
nificantly different gene-gene networks of BRAF between
mutated and non-mutated samples in colon adenocarci-
noma (COAD). Gene set enrichment analysis using CePIN
gene elements of mutated samples showed that two co-
expressed genes (BRAF and PAK2) enriched in ‘positive ki-
nase activity’ pathway with q-value 0.0116. In the wild type
samples, 10 co-expressed genes were enriched in ‘regulation
of defense response’ and ‘activation of immune response’
pathways with q-value 9.86 × 10−06 and 2.04 × 10−05, re-
spectively (Supplementary Figure S2A, Supplementary Ta-
ble S5). This result suggested that the occurrence of point
mutation at the ligand binding sites of BRAF in COAD may
not activate the immune response; instead, protein kinases
were activated for the tumorigenesis.

Phenotype information category

This category includes two phenotype information tables.
The first table shows the related disease information for
each gene retrieved from a database of gene-disease as-
sociations (DisGeNet) (47). As shown in Supplementary
Figure 2B, the most studied disease name for BRAF is
‘Melanoma’ and less frequently studied diseases include
‘Colon cancer’, ‘Thyroid cancer’, and ‘Cardiofaciocuta-
neous syndrome’. This is consistent with the previous find-
ing that BRAF mutations are present in approximately 50%
of melanoma, 60% of thyroid, and 10% of colorectal carci-
nomas and are less prevalent in other tumor types (48). On
the other hand, the mutation-level pathogenic information
table shows pathogenic mutation information from a pub-
lic archive of relationships between sequence variation and
human phenotype (ClinVar) (49).

Pharmacological information category

This category provides pharmacological information such
as the correlation between drug response and gene expres-
sion and the network visualization of genes with their inter-
acting small molecules (Supplementary Figure S3A). Each
gene expression profile in cell lines treated with anti-cancer
drugs summarizes the correlation between drug response
and altered gene expression by integrating microarray gene
expression data from the CCLE database. For example,
the expression of BRAF was positively correlated with the
treatment effect of drug NVP-TAE684. From the network
and information table for the relating drugs and ligands of
each mutLBSgene, user can retrieve more detailed informa-
tion including drug structures. Overall, mutLBSgeneDB in-
cludes 1198 FDA-approved drugs targeting 961 mutLBS-
genes (Supplementary Table S6).

Conservation information category

This category presents the homologous protein sequences
of its flanking region for each ligand binding site obtained
from MUSCLE to indicate if the ligand binding site is
conserved among different species (Supplementary Figure
S3B). For example, protein B-Raf has three mutated lig-
and binding sites: A481, A598, and C532, all of which are
conserved in Homo sapiens (common name: human), Mus
musculus (mouse), Gallus (chicken), Caenorhabditis elegans
(roundworm), and Drosophila melanogaster (fly). In com-
parison, all ligand binding site mutations in human EGFR
have shown conservation in mice, but not in chicken.

DISCUSSION AND FUTURE DIRECTION

This study introduces a unique resource, mutLBSgeneDB,
for the systematic annotation of genes having ligand bind-
ing site mutations. To serve functional genomics, protein
structure, and drug research communities and advance
precision medicine research, we will continuously update
mutLBSgeneDB in the following directions. (i) Update rou-
tinely by checking the new data of mutations and ligand
binding sites from TCGA and BioLiP. (ii) Collect high-
quality drug pharmacological data from high-throughput
screening and drug resistance studies. (iii) Continue to col-
lect articles on ligand binding site mutations. (iv) Add
more protein-ligand 3D structures highlighting ligand bind-
ing site mutations with their drugs. (v) Collect and curate
germline mutations at ligand binding sites and make the
data interactive to somatic mutations. (vi) Perform addi-
tional integrative analysis by using other omics data such
as methylation, microRNA, and proteomics data. mutLB-
SgeneDB will be useful for many investigators in functional
genomics, protein structure, and drug and therapeutic re-
search.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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