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Persistent hyper-inflammation is a distinguishing pathophysiological characteristic of
chronic wounds, and macrophage malfunction is considered as a major contributor
thereof. In this review, we describe the origin and heterogeneity of macrophages during
wound healing, and compare macrophage function in healing and non-healing wounds.
We consider extrinsic and intrinsic factors driving wound macrophage dysregulation, and
review systemic and topical therapeutic approaches for the restoration of macrophage
response. Multidimensional analysis is highlighted through the integration of various high-
throughput technologies, used to assess the diversity and activation states as well as
cellular communication of macrophages in healing and non-healing wound. This research
fills the gaps in current literature and provides the promising therapeutic interventions for
chronic wounds.

Keywords: chronic inflammation, chronic wound, macrophage, heterogeneity, aging, diabetes,
multidimensional analysis
INTRODUCTION

Skin wound repair is a critical process for the restoration of skin integrity. It is composed of three
sequential and over-lapping wound healing phases: inflammation, proliferation and remodeling (1).
An inflammatory phase involves clot formation, platelets released factors to attract neutrophils and
macrophages infiltration into the wound and the phagocytic removal of bacteria and debris (2–4).
Since then, the wound is cleaned and get ready for tissue regrowth. Precisely programmed initiation
and resolution of inflammatory stage is necessary to pursue tissue repair (5, 6). In the proliferative
phase, wound cells include keratinocytes, endothelial cells, and fibroblasts, cover and fill the defect
through proliferation and migration, and participate in re-epithelization, revascularization and
extracellular matrix (ECM) deposition, respectively. In the remodeling phase, the myofibroblasts
undergo apoptosis and newly formed granulation tissues are reorganized, and then lead to tissue
homeostasis (7–11). However, interruptions or defects in these delicate phases may lead to a non-
healing wound state (6, 12).

The prevalence of chronic wounds increases each year and is associated with a variety of
conditions, such as old age, obesity, vascular disease, and diabetes (13). There were approximately
∼4.5, 9.7, and 10 million patients suffering from pressure, venous, and diabetic ulcer wound
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worldwide in recent years. The delay in wound repair has serious
effects on patients’ quality of life and poses a significant burden
on patient’s caretakers (14). Currently, well-established standard
wound care for chronic wounds include pressure off-loading,
removal of necrotic tissue, pathogenic suppression, and topical
wound dressings (15, 16). And advanced strategies include
growth factor-based therapy [platelet-derived growth factor
(PDGF)], biological dressings (acellular extracellular matrices
and cell-containing skin substitutes) are also available for
wounds with poor response to standard care. Although the
various treatments for chronic wound, there is still a
significant number of patients suffer from lower limb
amputation due to the further deterioration of the wounds
(17). Even more unfortunately, the occurrence of chronic
wounds is rises at a higher rate than the emergence of novel
and effective treatment strategies.

Chronic wounds are defined as wounds stalled in a constant
and excessive inflammatory state (10). Considerable evidence
revealed that chronic wounds are closely associated with
impaired phenotype transition of pro-inflammatory
macrophages to anti-inflammatory phenotypes in wounds (10,
18–20). Macrophages play essential roles in the orchestration of
transitions among three healing phases. Their phenotype readily
changes according to spatiotemporal cues during repair (21).
Many functional attributes ascribed to macrophages are found in
skin wound models, such as scavenging, phagocytosis and
antigen presentation in inflammatory phase (22), stem cell
recruitment and revascularization in proliferative phase (23),
and extracellular signaling transduction in remodeling phase,
owing to their plasticity and heterogeneity (24). Recently,
particular attention has been paid to their resolution of
inflammation and shift toward regeneration (25). And
macrophages were also recognized as “background actor” that
participate in the immunomodulation in numerous diseases (26).
This immune cell population was considered as a promising
therapeutic target and can potentially be manipulated in a tissue-
specific manner. For example, pro-inflammatory macrophage
depletion have a universal protective effect on acute kidney
injury (27). Monoclonal antibodies to inhibit macrophagic pro-
inflammatory pathways achieve therapeutic efficacy in
osteoarthritis (28). Therefore, a review of the plasticity,
flexibility, and heterogeneity of macrophages under
physiological and pathological conditions can not only provide
clues to enable modification of improper kinetics in the
macrophage response in chronic wounds, but also contribute
to the understanding and identification of novel therapeutic
targets for other injured tissues.

In this review, we first present the origin, function, and
heterogeneity of wound macrophages. Subsequently, we discuss
factors that contribute to the impaired activation and functions
of macrophages in non-healing wounds. We highlight current
biotherapy methods for restoring the function of macrophages.
Finally, important molecular targets and novel macrophage-
based treatment for chronic wounds are proposed from the
perspective of single-cell sequencing.
Frontiers in Immunology | www.frontiersin.org 2
MACROPHAGE BIOLOGY
IN WOUND HEALING

Macrophages in wounds originate from two primary sources—
tissue resident and bone marrow, the latter occupy a larger
proportion and play dominant roles in wound repair (29–31).
Their essential roles in wound healing have long been
well-established in classical macrophage depletion model.
A transgenic mouse model of inducible macrophage
depletion revealed a prolonged inflammation, disturbed neo-
vascularization, impaired fibroblast differentiation and delayed
healing after non-selectively abrogate macrophages in wounds,
which supported the notion that macrophages were key
regulators to ensure proper healing (32, 33). And the selective
depletion of macrophage at different stages of wound repair
implied that macrophages took on distinct roles throughout the
healing process (34).

Roles of Macrophages in
Inflammation Phase
Resident and recruited macrophages play essential roles in the
tissue injury response (35). After an injury, resident dermal
macrophage are the earliest responders acting to induce the
inflammatory response through the release of hydrogen
peroxide, which leads to sequentially recruit blood neutrophils
and monocytes. Subsequently, recruited monocytes further
differentiate into macrophages under NADPH oxidase 1 and 2
(NOX1 and NOX2) (30, 31, 36, 37). During early wound healing,
macrophage exhibits an inflammatory phenotype, known as the
classically activated M1 macrophage. They act as the first line of
defense against pathogen through mainly two ways, namely,
recognizing pathogen-associated modifying proteins (PAMPs)
on the surfaces of bacteria or fungi to form phagolysosome, and
releasing antibacterial mediators, such as reactive oxygen species
(ROS) and reactive nitrogen species (38, 39). Moreover, they are
involved in removal of cellular debris and clearing apoptotic
neutrophils (40). And they produce numerous pro-inflammatory
cytokines and chemokines, such as the tumor necrosis factor-a
(TNF-a), interleukin-1b (IL-1b), monocyte chemoattractant
protein-1 (MCP-1), and chemokine (C-C motif) ligand 2
(Ccl2), to attract defense components and stimulate
proliferation of wound cells, such as fibroblasts and
keratinocytes. Furthermore, M1 macrophages seem to involve
in the initiation of angiogenesis through secretion of angiogenic
stimulators including vascular endothelial growth factor
(VEGF), basic fibroblast growth factor (FGF2), IL-8, and
CCL5 (41).

Roles of Macrophages in
Proliferation Phase
In the following phase, the classically activated M1 phenotype
gradually skews toward an alternatively activated M2 phenotype,
which is a determining event for the transition from the
inflammation phage to the proliferation phase (42–45). The
M2 phenotype is known as the healing-associated macrophage
June 2021 | Volume 12 | Article 681710
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with downregulated inflammatory factors and upregulated anti-
inflammatory cytokines, including TGF-b, IL-10, and growth
factors, such as platelet-derived growth factors (PDGF), resistin-
like molecule-a (Relma), epidermal growth factor, and vascular
endothelial growth factor-a (Vegfa), that drive tissue repair (18,
20, 46, 47).

Because of the high plasticity of macrophage, M2 macrophage
involved in healing are currently further categorized into three
different subtypes (M2a, M2b,and M2c) (35, 46, 48, 49)
(Figure 1). M2a macrophages become more prevalent as
wound healing progresses, and produce high levels of arginase-
1 (Arg-1), PDGF, insulin-like growth factor-1 (IGF-1) and other
cytokines (50). Moreover, as a pro-fibrotic phenotype, they
directly secrete the fibrosis-related proteins contributing to
collagen deposition in wounds (51–53). They also serve to
promote angiogenesis, as well as proliferation, migration, and
differentiation of fibroblasts (54). M2b macrophages are
considered as the mixed regulatory phenotype which balance
anti-inflammatory and pro-inflammatory functions, due to their
production of pro-inflammatory cytokines (e.g., TNF-a, IL-6,
and IL-1) as well as large amounts of anti-inflammatory cytokine
IL-10 along with low levels of IL-12 (55, 56). Moreover, M2b
macrophages derived exosomes are abundant mRNAs encoding
proinflammatory cytokines, chemokines, and regulation factors
compared with M2a macrophages (57). Thus, M2b macrophages
may represent an intermediate between M1 and M2a
polarization states (58). M2c macrophages are considered as
tissue repair macrophages which exhibit strong anti-
inflammatory activities by releasing large amounts of IL-10
and augmenting the behavior of regulatory T-cells (6, 59, 60).
Furthermore, they play a role in angiogenesis through increased
Frontiers in Immunology | www.frontiersin.org 3
endothelial cell migration and tube formation (41, 61).
Additionally, phagocytosis of wound debris, and the deposition
of ECM components has also been demonstrated in M2c
macrophages (54).

M2 macrophages also recruit stem cells to wounds, which are
an important driving force in tissue repair, exerting tissue
reparative effects through paracrine signaling (62, 63). Silva
et al. showed that macrophage-derived GPNMB promotes the
polarization of the M1 phenotype into the M2 phenotype (64).
The later facilitates the mobilization of mesenchymal stem cells
(MSCs) to the wound, thereby improving wound healing (65).
However, the subpopulation of M2 macrophages that plays a role
in the recruitment of MSCs has not been identified to date.
Moreover, M2c macrophages have been shown to secrete MMP-
9 to attract vessel associated, blood-derived stem cells to fulfill
the above-mentioned function of angiogenesis in injured
sites (66).
Roles of Macrophages in Remodeling
Phase and Regeneration
Prolonged activation of M2 macrophages can lead to excessive
wound healing and ultimately fibrosis (67). Therefore, the
number of macrophages starts to decline during the
remodeling phage. The remaining macrophage play a role in
tissue remodeling (68). Matrix metalloproteinase are major
proteolytic enzymes involved in the turnover of the
extracellular matrix (ECM) during cutaneous wound repair.
MMP-10 is derived from macrophage shaped ECM deposition
indirectly by upregulation of MMP-8 and MMP-13 (52).
Furthermore, the mannose receptor-mediated endocytic
FIGURE 1 | Most common characteristics of M2 macrophages subgroups.
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pathway for degradation collagen was revealed as another
dominant path for collagen turnover by M2 macrophages (69).

Previous research links macrophages to hair follicle growth,
as perifollicular resident macrophages prompt the entry of hair
follicle (HF) stem cells into the anagen phase of growth through
Wnt-related apoptosis signaling (70, 71). Full-thickness skin
wounds usually leaves hairless scars, and macrophages are
important for regeneration. The study of Martinot et al.
showed that hair-bearing areas heal faster than areas lacking
HFs (72). Recent studies showed that M2 macrophages release
growth factors, such as the hepatocyte growth factor (HGF) and
insulin-like growth factor 1 (IGF-1) to activate stem cells and
facilitate HF regeneration in a skin mechanical stretch model
(73). Results by Wang et al. revealed that M2 macrophages
activate HF stem cells in the later stage of wound healing, leading
to a telogen–anagen transition around the wound and de
novo HF regeneration in wound-induced hair follicle
neogenesis (WIHN) (74). Osaka et al. found that the apoptosis
signal-regulating kinase 1 (ASK1) is needed for the regulation of
infiltration and activation of macrophages, and required for
macrophage-dependent hair regrowth in wounding-induced
hair regrowth (75). However, the phenotypes of macrophage
subgroups associated with HF regeneration must be further
confirmed, and the emergence timing and the quantity of this
specific subgroup may directly determine whether the HF can
regenerate. Furthermore, there is lacking evidence on whether
the regeneration of other appendages in the injured sites, such as
sweat glands and sebaceous glands, are closely associate with
local macrophages.

In summary, macrophages in wounds act as the “Monkey
King” in Chinese myths. They change according to their
Frontiers in Immunology | www.frontiersin.org 4
surrounding environment and needs, and perform their due
functions. Therefore, selective targeting of macrophage
subpopulations for pro-healing therapy may provide an
attractive strategy in regenerative processes. However, the
understanding of spatiotemporal cues of each subpopulation of
macrophages during the repair process is still limited. We must
further explore the plasticity of macrophages and discover more
functional subgroups to enable better regulation of the repair
process to promote wound repair and regeneration.
SYSTEMIC AND LOCAL FACTORS OF
MACROPHAGE DYSFUNCTION IN
NON-HEALING WOUNDS

As wounds heal, the tight regulation of the macrophage
phenotype switching from a M1-proinflammatory to a M2-
anti-inflammatory (pro-healing) phenotype contribute to the
smooth progress of the repair process (76–78). However, under
pathological condition, such as ageing, obesity, infection, and
diabetes, M1 macrophages in wounds were restrained with an
incomplete switch to M2 phenotype, resulting in the stall of the
repair process at inflammatory phase (10, 79, 80) (Figure 2). The
mechanisms behind the persistent inflammatory macrophage
phenotype in chronic wounds have been gradually identified.

Systemic Factors of Macrophage
Dysfunction
Multiple studies reported that macrophages are prone to
dysregulation under pathophysiological conditions such as
FIGURE 2 | Macrophages originate from bone marrow in acute and chronic wounds. High numbers of bone marrow-produced monocytes under elderly, obese and
diabetes may lead to increased number of macrophage in chronic wound. Transition from M1- to M2- phenotypes is impaired in chronic wounds.
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ageing, obesity, and diabetes, and their aberrant activities are
present not only at the wound site, but also in bone marrow
(BM) and blood circulation (2, 81–83). Alteration in the number
and function of macrophage have been revealed in chronic
wounds, which are closely related to hematopoietic disruption
and particularly to myeloid skewing (67, 84–86). This is known
as increased monopoiesis (Figure 2).

In aging mice, the hematopoietic stem and progenitor cells
(HSPCs) showed restricted diversity and a preferential myeloid-
biased differentiation, which was reflected by enhanced
accumulation of the myeloid progenitor in aged mice (87). The
comparative analysis of expression profiles of HSPCs suggested
that the myeloid differentiation related genes in aged mice, such
as Runx1, Hoxb6, andOsmr are upregulated while lymphopoiesis
genes are downregulated compared with those of young mice
(88). Dramatic changes in the HSPCs milieu or niche in aging
mice were attributed to the aging process and myeloid
differentiation bias. Niche factors, such as proinflammatory
cytokine RANTES, secreted from aging stromal cells and
differentiated blood cells have been considered as a major
factor in this HSPCs subtype shift (89, 90). Ergen et al.’s study
showed that RANTES knockout mice rescued aging-associated
myeloid-biased lineage differentiation (89).

Obesity and aging share many common traits in term of
immunity and metabolism (91, 92). Several studies showed that
obesity modifies the composition of adipose tissue in BM and
restrains the generation of osteoblastic cells from mesenchymal
progenitors, thereby affecting BM homeostasis. Moreover,
adipocytes in BM are key limiting factors of the hematopoietic
function in obesity through direct and indirect means (84, 93).
Obesity induced oxidative stress is a key driver for the aberrant
HSPCs activity skewed toward the granulocyte-macrophage
progenitors via dysregulation of the expression of Gfi1 in
HSPCs (84, 86). Additional studies indicate that an epigenetic-
based mechanism is involved in the programming of
macrophages biased toward a proinflammatory phenotype
under obesity. HSPCs display increased levels of Jmjd3, a
member of the JumanjiC (JmjC) family of histone
demethylases, which responds to the decreased H3K27me3 at
the promoter region of proinflammatory IL-12 (94). This
epigenetic feature is passed down to the macrophages at the
wound sites, making them predisposed toward a proinflammatory
phenotype (94).

Preprogrammed HSPCs committed towards the myeloid
lineage and increased proportions of BM myeloid progenitors
have also been found in diabetic mice during homeostasis and
following injury, which results in an enhanced myeloid output
(95–97). An elevated number of circulating monocytes was also
revealed in diabetic patients (2). Furthermore, the higher
potential to form granulocyte/macrophage colony forming
units in BM isolated cells, and the increased number and
proliferation of granulocyte-macrophage progenitors and
common myeloid progenitors have also been found in
diabetes (98). These results suggest a mechanistic link
between neutrophils and monocytes. Research conducted by
Frontiers in Immunology | www.frontiersin.org 5
Nagareddy et al. showed that the depletion of neutrophils
normal i zed the monocyte l eve l in d iabet i c mice .
Mechanistically, neutrophils produced more S100A8/A9 which
interacted with glucose- inducible receptor for advanced
glycation end products (RAGE) on myeloid progenitor cells
resulting in the enhanced release of monocytes under
hyperglycemia. Moreover, S100A8/A9-initiated monocytosis
was dampened when blood glucose drops back to normal (98).
Furthermore, hyperglycemia induced higher expression of
tyrosine hydroxylase and produced more catecholamines in the
spleen leukocyte of diabetic patients and mice, via an interaction
with the b2 adrenergic receptor on the granulocyte macrophage
progenitors, leading to enhanced monocytosis (99). However,
the opposite trend was observed in the study by Yan et al. This
suggests that T2DM causes reduced differentiation of HSPCs
towards monocytes/macrophages through Dnmt1-dependent
repressive modifications of myeloid lineage associated genes
such as Notch1, PU.1 and Klf4 (100).

The above findings demonstrate that the wound M1-
dominant macrophage phenotype is set at the BM level. The
microenvironment in the BM changes significantly under
pathological conditions, such as aging, obesity, and diabetes,
which predetermines the gene expression of HSPCs and
dysregulates their differentiation potential and function. These
aberrant signatures are preserved and passed down to
monocytes, which further disrupt the polarization of
macrophages and imbalance the M1/M2 phenotype
throughout the course of wound healing. Therefore, these
findings reveal a novel therapeutic approach for chronic
wounds. Therapies target systemic changes in the BM niche
and regulate monopoiesis of hemopoietic stem cells (HSCs) to
influence peripheral phenotypes and restore the balance of M1/
M2 macrophages, which may improve the state of non-
healing wounds.
Local Factors of Macrophage Dysfunction
Presently, there are two theories regarding changes in the
number of macrophages in chronic wounds. One is that a large
number of macrophages infiltrate in chronic wounds as the
results of increased monopoiesis, accompanied by an increase
mobilization to the bloodstream. The other is that the number of
macrophages is significantly reduced during the inflammatory
phase in diabetic mice, which is attributed in part to a weakened
chemotaxis into the wound (65, 101). The inconsistency in
wound macrophage numbers between studies could result
from technical differences in the evaluation of wound
macrophage and requires further research. Nevertheless, in
either case, chronic wounds are often described as being
“stalled” in the inflammatory phase with an impeded M1/M2
phenotype transition at the later stages of wound healing. Several
reports showed that this was not only related to the functional
modifications in HSCs that are passed down to macrophage
progeny, but that it was also associated with local effects
mediated by the wound microenvironment (2, 43, 102).
June 2021 | Volume 12 | Article 681710
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The wound microenvironment has a predominant role on
the behavior and functionality of healing cells. Macrophages
are highly plastic and can change their phenotype and
functions in accordance with local microenvironmental signals
(103). According to the non-healing wound research, a large
number of studies focused on diabetes-related chronic wounds.
Both mouse and human diabetic wound conditioned media
prefer to induce a proinflammatory macrophage phenotype of
BM- derived macrophage in vitro, which suggests an imbalanced
microenvironment (43, 44). The main cause of macrophage
dysfunction with an increased M1/M2 macrophage ratio
is composed of two main factors: (1) dysfunction of
macrophages under pathological conditions; (2) numerous
microenvironmental biomolecules.
Dysfunction of Macrophages Under
Pathological Conditions
Cell senescence is a normal physiological process in the repair
process. It promotes healing via releasing PDGF-AA (104).
Conversely, it prevents fibrosis by driving the senescence of
myofibroblasts (105). The rapid and effective clearance of these
cells is essential for optimal repair outcomes (106, 107). In
contrast, an excessive amount of senescent cells in the wound
or a disturbance of senescent cell clearance may lead to impaired
wound healing.

Similar to those found in wounds of elderly, a large amount
of senescent cells accumulate in skin wounds of diabetic mice,
and macrophages account for a large proportion of these cells
(108). Wilkinson et al. found that macrophages derived from
wounds of diabetic animals showed reduced polarization
potential and prolonged inflammation, and generally
presented a senescent phenotype with secretion of a
senescence-associated secretory profile (SASP) (108). SASP is
an important approach for a small number of senescent cells in
tissues to exert significant local biological effects, and it is
implicated in the occurrence of numerous chronic diseases
(109–111). For example, proinflammatory SASP is thought to
be involved in the development of insulin resistance and type II
diabetes mellitus in both mice and humans (112, 113).
Wilkinson et al., found that macrophages derived from
diabetic murine exhibited senescence phenotype and reduced
M2-polarization. And the SASP secreted by macrophages
derived from wounds of diabetic mice was enriched in
CXCR2 ligands, which induced fibrotic markers of fibroblasts
and had the potential to promote the senescence in fibroblasts
(108). Furthermore, wounds in diabetic mice treated with the
CXCR2 antagonist showed reduction in macrophage
senescence and local inflammation and facilitated wound
closure, suggesting a novel avenue of targeting the CXCR2
receptor for potential therapeutic developments (108).

Therefore, the senescence of macrophages not only impairs
their polarization from a proinflammatory phenotype to one
that supports reparative processes, but also affects the wound
microenvironment and biological functions of other repair cells
through paracrine effects. There is also consensus in the
Frontiers in Immunology | www.frontiersin.org 6
literature that M1 macrophages in diabetic wounds suffer
from dysfunctional efferocytosis due to reduced PPAR-g
expression, resulting in increased accumulation of apoptotic
cells at the wound site (25, 102, 114). This burden, in turn,
augments pro-inflammatory activity and sustains the
inflammatory phase (25).

Numerous Microenvironmental Biomolecules for
Impaired M1 to M2 Polarization
The wound microenvironment is highly complicated, and
various factors have been shown to play negative roles in M1/
M2 phenotype transition, including metabolic-related
outcomes, such as hyperglycemia, advanced glycation
end products (AGE), oxidative stress products, and soluble
molecules, such as inflammatory factors, neuropeptides, and
wound microbes.

The hyperglycemic microenvironment affects the polarization
of macrophages in both direct and indirect ways. Huang et al.
showed that human monocyte cells (THP-1) were cultivated for
14 days under high or normal glucose conditions. The M1 type
marker, CCR7, was significantly upregulated in THP-1 under the
high glucose condition as compared to the normal glucose
condition, which suggested a biased M1 macrophage (115).
Indirectly, hyperglycemia induced generation of reactive
oxygen species (ROS) and elevated methylglyoxal (MGO)
levels. M2 macrophages are characterized as reductive
macrophages, suggesting the redox regulation in macrophages
physiology (116). M2 phenotype activation stimulates increased
arginase-1 activity and is accompanied by reduced ROS and NO
generation. Sustained high levels of oxidative stress obstruct the
M1/M2 polarization (117). The mutation of Nox2 or silenced
p47 has been shown to inhibit NADPH oxidase to reduce the
production of extracellular ROS, favoring the macrophage poise
towards the M2 phenotype (117). An elevated MGO usually
results in glycation and the increase of AGEs (118). Macrophages
express M1 phenotype markers and secrete proinflammatory
cytokines after treatment with AGE through activation of the
MAPK pathway. Furthermore, AGE was found to induce M1
polarization via regulation of PDK4 (119).

As mentioned above, high glucose, AGE, or oxidative stress
are known to inhibit the M1/M2 polarization and promote the
expression of proinflammatory cytokines in over-activated M1
macrophages. Diabetic subjects have higher serum levels of TNF-
a, MCP-1 that is associated with failure to heal in diabetic foot
wounds (120). Further, these proinflammatory can form a
positive feedback loop to sustain a persistent proinflammatory
wound macrophage phenotype. For example, Mirza et al. found
that interleukin-1b (IL-1b) and TNF-a as proinflammatory
factors are increased in diabetic wound macrophages in both
mice and humans (43). BM–derived macrophage exhibited a
proinflammatory wound macrophage phenotype when cultured
with conditioned medium of chronic wounds, supporting the
notion that proinflammatory mediators are involved in the
persistent inflammatory phenotype of macrophages in wounds
(43). Therefore, a high proinflammatory environment is
observed in chronic wounds, and inflammatory factors have
June 2021 | Volume 12 | Article 681710
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the potential to impede M1/M2 polarization of macrophages
which, in turn, contribute to sustaining the proinflammatory environment.

The increased accumulation of proinflammatory activity in
wounds is derived from adipocytes due to their hypertrophy
under diabetic condition (18, 121). Recently, numerous
discoveries supported the concept that diabetes and metabolic
syndrome are systemic inflammatory diseases (121). This strong
association with adipocyte hypertrophy leads to lipotoxicity and
excessive production of chemokine and cytokines (122).
Moreover, the overexpansion of adipocyte triggers a stress state
and eventually results in apoptosis to release inflammatory
mediators and attract macrophages to the adipose tissue (123).
This causes further infiltration of inflammatory cells, intensifying
the secretion of inflammatory mediators, creating a systemic
low-grade inflammatory state that may participate in high
inflammation states of chronic wounds (124). Consequently,
anti-inflammatory treatments may not only improve
senescence and insulin resistance but also play an active role in
accelerating wound repair.

Neuroregulatory factors are likewise altered in the wounds of
diabetics. The expression of neuropeptides was reduced in the
skin of diabetic rabbits, and it was accompanied by a chronic
proinflammatory state, as indicated by a high M1/M2
macrophage ratio and an elevated proinflammatory cytokine
expression, as well as impaired wound healing (125–127).
However, the definite molecular mechanism remains unclear.

Chronic wounds are frequently accompanied by the invasion
and infection of bacteria due to their unique microenvironment.
Multiple species of bacteria have been isolated from chronic
wounds, and several also affect the M1 to M2 polarization of
macrophages (128). For example, Pseudomonas aeruginosa
(P. aeruginosa) is a frequently detected gram-negative
pathogen in diabetic non-biofilm wounds (129, 130). It
prolongs the presence of M1 macrophages in chronic wounds
in two ways. P. aeruginosa produces LPS and binds to the TLR4
receptor complex in macrophages to promote the secretion of
inflammatory cytokines (131). Moreover, the type III Secretion
System (T3SS) virulence structure is a common trait among
all P. aeruginosa clinical isolates, which functions as a conduit to
directly translocate effector toxins into the target cells and
result in inflammation (132). Therefore, P. aeruginosa affected
wound healing may involve increasing the number of M1
macrophages in wounds accompanied by elevated pro-
inflammatory cytokine production.

In summary, the unique and complex wound microenvironment
of chronic wounds inhibits the polarization of macrophages from the
inflammatory to the repair phenotype. Therefore, the inflammation
phase of healing cannot transition to the proliferative phase in chronic
wounds, and the proliferation of connective, endothelial, and
epithelial tissue cannot be further completed (52). Consequently,
targeted changes in the unbalanced microenvironment of chronic
wounds may be of great significance to promote healing.
Simultaneously, the imbalanced microenvironment changes have
multiple-aspects and levels, determining that the multi-target
treatment may be more effective than the single-target treatment in
local wound treatment.
Frontiers in Immunology | www.frontiersin.org 7
BIOLOGICAL TREATMENT FOR
RESTORATION OF MACROPHAGE
FUNCTION

Sustained increases in the number of wound macrophages
and the dysregulation of their phenotypes, caused both by
intrinsic alterations in HSPCs and by a local sophisticated
microenvironment, lead to impaired wound healing. Recently,
several therapeutic approaches aimed at restoration of
macrophage function have garnered significant attention.
Methods include systemic treatment via oral administration of
drugs and local treatment through neutralizing antibodies,
MSCs, and biomaterials are discussed.

Systemic Treatment Strategies
As mentioned in the previous section, the majority of
macrophages in wounds are derived mainly from HSPCs.
These already predisposed progenitor cells are partially
responsible for the dysregulated macrophage polarization and
prolonged inflammation in chronic wounds, which suggests that
a HSPCs based therapy may improve the function of
macrophages from the source.

Docosahexaenoic acid (DHA) is an omega-3 fatty acid, which
is prerequisite for cell growth, development, and metabolic
functions in mammals. It is also the precursor of several
molecules that regulate the resolution of inflammation. The
impairment of DHA synthesis affects macrophage plasticity
and polarization both in vitro and in vivo through an Elovl2
(Elovl2−/−) deficient mice model, suggesting a potential role of
DHA in regulating the function of macrophage progenitor cells
(133). Further, Jia et al. have demonstrated that the accumulation
of total macrophages (CD68+) in the wounds of diabetic rats
treated with oral DHA remained unchanged, but there is a higher
ratio of M2/M1 phenotype compared with diabetic rats, thereby
promoting resolution of inflammation in diabetic wounds and
accelerating wound healing. Moreover, in vitro differentiation
experiments confirmed that secretory features of M1 and M2
macrophages differentiated from bone marrow-derived
macrophages in the oral DHA group were similar to those in
normal rats, but different from those of M1 andM2macrophages
in the diabetic group with more iNOS, TNF-a, IL-1b, and
interleukin-6 in M1 macrophages and less Arg-1, interleukin-
10, and TGF-b1 in M2 macrophages. The same study implies
that oral DHA in diabetic patients is able to correct the impaired
plasticity of HSPCs, thereby improving resolution of
inflammation, stimulating the transition into the proliferation
stage, and thus promoting wound repair (134).

Chronic low-grade systemic inflammation is a common
pathophysiological property of aging, obesity and diabetes (82,
135, 136). It is associated with a higher content of pro-
inflammatory macrophages (137–139). Prolonged and
persistent systemic inflammation can be destructive to various
tissues and impair wound healing (140). Consequently, anti-
inflammatory strategies focus on the inflammation resolution to
stop or dampen the inflammatory response, which may
ameliorate the systemic and local inflammation state.
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Apart from treatment of the primary disease, such as diabetes,
improving complications caused by it, such as chronic wounds,
requires further study.
Local Treatment for Improvement of
Unbalanced Microenvironment
Pro-Inflammatory Microenvironment-Directed
Approach
Over-activated M1 macrophages contribute to the hyper-
inflammation state of chronic wounds by secreting high levels
of pro-inflammatory factors. Neutralizing antibodies aim against
these factors that silence M1 macrophages are a promising
strategy for enhancing wound healing. Goren et al. found that
on the seventh day of post-wounding in diabetic wounds, at the
end of the inflammatory period, the administration of anti-
TNF-a or anti-F4/80 antibodies promotes re-epithelialization
and closure of the wound, whereas the wound in the non-
treatment group remains unhealed with scabs. Decreased levels
of TNF-a, IL-1b, and CCL2 (MCP-1) proteins were also found in
wounds with anti-TNF-a or anti-F4/80. Overall, anti-TNF-a and
anti-F4/80 therapies reduced the impact of M1 macrophages, and
accelerated the healing of diabetic wounds (141). Furthermore,
sustained expression of IL-1b in both of diabetic wounds mice
and humans impaired the activity of PPAR-g, which was closely
associated with the switch in macrophage phenotypes. Therefore,
blocking the proinflammatory cytokine IL-1b at the local sites or
topical administration of PPAR-g agonists promoted a pro-healing
macrophage phenotype and accelerated wound healing (43, 102,
142). Further, Arginase, as a specific phenotypic marker of M2
macrophages, is also widely expressed in other wound cells
including keratinocytes, fibroblasts, and endothelial cells. It has
been found to play critical roles in inflammatory response and
cellular functions through controlling the local arginine
concentration and regulating nitric oxide production (143, 144).
Decreased arginase level has been found in tissue of chronic non-
healing (145). And local inhibition of arginase activity by genetic
and pharmacological means significantly impedes wound repair
with enhanced inflammatory infiltrate and delayed re-
epithelialization (146). Contrastly, Kavalukas et al. demonstrated
that depression of arginase through a specific inhibitor 2(S)-amino-
6-boronohexanoic acid NH4 (ABH) significantly accelerated
wound closure accompanied by increased granulation tissue
formation and enhanced re-epithelialization (147). The
inconsistency of these results may be related to the model used in
the research, the means and degree of inhibiting arginase activity.
Therefore, treatment strategies based on arginase needs
further research.

Peace or inhibition of overactivated signaling pathways is
another alternative approach. The AGE-RAGE signaling
pathway is significantly enhanced in diabetic wounds,
inhibiting macrophage polarization and M2 phenotypic
macrophage function (148). Anti-RAGE antibody-applied
wounds increased the number of neutrophils phagocytized by
macrophages and promoted the phenotypic switch of
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macrophages from proinflammatory to pro-heal ing
activities (148).

Oxygen radical scavengers have been reported to provide
positive effects in the treatment of chronic wounds (149). For
example, topically applied mepenzolate bromide to the wound
bed considerably corrected the excessive and prolonged ROS
production, and further decreased the level of pro-inflammatory
cytokines and increased the level of pro-healing cytokines, results
in a promotion of macrophage M2 phenotype polarization,
thus accelerating the wound closure rate (150). Antioxidants
a-tocopherol and N-acetylcystein showed a strong oxidative
stress clearance through inhibition of the activity of two
antioxidant enzymes, GPx and catalase. Chronicity was
reversed in non-healing wounds by treatment with these
antioxidants (151). Moreover, natural or synthetic antioxidant
compounds, such as sulforaphane (SFN), wogonin (WG),
oltipraz (OTZ), and dimethyl fumarate (DMF) are used to
evaluate their effect on macrophage polarization. They could
elicit phenotypic changes from the M1 gene signature to M2 gene
signature via indication of the nuclear factor erythroid 2-related
factor 2 (Nrf2), a key member of antioxidant regulators (152).

The treatment strategies presented in this review are therefore
presented principally to weaken and combat the adverse factors
in chronic wounds, balance the inflammatory wound
microenvironment, promote the polarization of macrophages,
and finally facilitate the wound repair process into the
proliferative stage.

Macrophage-Directed Gene Therapy Approach
CD163 has been proposed as a specific marker for macrophages
with an anti-inflammatory phenotype. It has been shown that
using a modified nanoparticle, polyethylenimine (PEI) grafted
with a mannose receptor ligand (Man-PEI) to induce CD163 in
human primary macrophages lead to changes in the secretion
profile and induced anti-inflammatory responses (153). Further,
Ferreira et al. likewise used this cell-directed nanotechnology to
induce expression of the CD163 gene in THP-1 and human
primary macrophages. They found that polarized M2
macrophages have the ability to promote a faster wound
healing by interacting with keratinocytes and fibroblasts (154).
This precise targeting method can avoids limitations and side
effects due to the heterogeneity of chemical-based therapy on
different cells and may become an important strategy to reverse
chronic wounds.

Exogenous Cell Supplement Approach
Chronic wounds are characterized by the polarization barrier of
macrophages leading to a higher proportion of M1 phenotypic
macrophages and a lower proportion of M2 phenotypic
macrophages. A direct addition of exogenous M2 macrophages
to the wound may promote wound repair. For example, after
activation by hypoosmotic shock, peripheral blood-derived
macrophages exhibited anti-inflammatory features and
subsequently secreted a large number of repair-related
signature genes, such as TGF-b, FGF-8, TNF receptors, VEGF,
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and GM-CSF (155). These activated macrophages with anti-
inflammatory properties may be beneficial for wound repair.
Presently, this method lacks sufficient supporting data, and
further research is required.

Mesenchymal stem cells (MSCs) are high multi-potentiality
residing in different tissues including BM, adipose tissue, the
umbilical cord, and skin (156, 157). In addition to their self-
renewal and differentiation capacity into several lineages, their
secreted products’ impact on a variety of resident and recruited
cells are essential for tissue homeostasis and wound repair, and
have therefore been explored as cell therapies (10, 156). Their
application in acute and chronic wound models has been
successful, resulting in resolution of wound inflammation, and
enhancement of angiogenesis and acceleration of wound closure
(158–161).

Evidence indicates that MSCs exert powerful modulating
effects on the immune system, in particular with regard to the
immunoregulatory function on macrophages (162). One of the
mechanisms of MSC action on macrophages is via their
recruitment. For example, BM-MSCs conditioned medium
significantly accelerates migration of macrophages in vitro
(163). Subcutaneous injection and topical application of BM-
MSCs conditioned media in wounds increased proportions of
macrophages and endothelial progenitor cells compared with
control group, thus enhancing wound healing (163).
Macrophage recruitment by MSCs may be attributed to high
levels of secreted chemoattractants CCL3 (MIP-1a), MIP-2, and
CCL12 (MCP-5) (10). Another mechanism of MSC action on
macrophages is by augmentation macrophages to engulf
apoptotic neutrophils, which is attributed to upregulation of
the intercellular adhesion molecule-1 (ICAM-1) on macrophages
or enhanced release of soluble extracellular superoxide dismutase
(SOD3) from MSCs (164–166). Another mechanism of MSC
action on macrophage is via enhancement of M1-M2
polarization and increasing the frequency of M2 macrophages
in wounds. Several in vitro studies showed that macrophage
facilitated differentiation into M2 phenotypes when co-cultured
with MSCs or MSCs derived secretomes (167–170). MSC-
educated macrophages exhibited secretory characteristics of
M2 phenotype with increased expression of IL-6 and IL-10
and decreased expression of TNF-a and IL-12 (171).
Furthermore, MSCs were found to regulate the macrophage
phenotype in vivo (169). MSCs or MSCs conditioned medium
treatment of wounds produced high levels of IL-10 and VEGF
but low levels of TNF-a and IL-6 and induced an accumulation
of M2 macrophages in diabetic mice (171, 172). A panel of MSC
secreted mediators were studied for their immunomodulatory
mechanisms. For example, prostaglandin E-2 (PGE-2), a secreted
mediators from MSCs, had a direct effect on the macrophages
M1-M2 polarization (169, 173). This process is mainly regulated
by PGE2 binding to the EP4 receptor on M1 macrophages, and it
involves two pathways including CREB and PI3K signaling
(169). Furthermore, MSCs released of the tumor necrosis
factor-a (TNF-a)-stimulated protein 6 (TSG-6) increased
when they were co-cultured with activated macrophages.
Topical delivery of MSCs also resulted in TSG-6 release
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at wound sites , and suppressed TNF-a to play an
immunosuppressive role in vivo (174). Other possible
mechanisms must be further developed and validated.

Currently, MSCs resolve the unrestrained and prolonged
inflammation of chronic wounds in terms of numerous
aspects, and are ideally suited for the treatment of chronic
wounds (156). Further, MSCs have a unique property, namely,
the capacity to sense the microenvironment in which they are
located, which determines that its immunoregulatory function of
MSCs reveals high plasticity (156, 175). Compared with the
chemical-based or growth factor-based strategies, this marks an
excellent property and allows for refinement of MSC-based cell
therapies in the future (176, 177).

Immunomodulatory Biomaterials-Based Approach
Biomaterials can provide suitable environments that enhance
inherent biological activities and functions in repairing cells
through appropriate biochemical cues (e.g., composition and
surface chemistry) and biophysical cues (e.g., stiffness and
surface topography) (178–180). An increasing amount of
evidence shows that they can also influence the flexible nature
of macrophages in wounds.

Immunomodulatory biomaterials, particularly the natural
biomaterials, have shown regulation of the macrophage fate
(181, 182). The decellularized dermal scaffold (DDS) is a skin
tissue that removes cellular components and retains the ECM
structure, which was shown to play a therapeutic role in wound
repair (183). DDS in particular can regulate the transition of
macrophages from the M1 pro-inflammatory phenotype to the
M2 pro-repairing phenotype, thus promoting macrophage
polarization (184, 185). He et al. suggested that amino acids
produced by collagen degradation in DDS activated the acid-
sensing pathway in macrophages and induced fate transition
(184). Further, the inherent components of the ECM, such as
hyaluronic acid (HA), or the analogues of the ECM including
chitosan, influence the M1-to-M2 phenotype switching (185,
186). Physical and chemical properties of biomaterials have a
profound impact on the cellular behavior. For example, a high
molecular weight of HA caused macrophages to take on anti-
inflammatory features, whereas a low molecular weight of HA
resulted in the activation of M1 macrophages (187–189).
Biomaterials composed of collagen and highly sulfated HA
derivatives promoted switching from the M1 to M2 phenotype
of macrophages. Keratin biomaterials have also been used in
wound repair studies, and their ability to tune inflammation has
been confirmed (190–192). In vitro studies have shown that
primary macrophages inoculated into high molecular weight
extracted keratin and keratin peptide coatings facilitated
differentiation into M2c macrophages with anti-inflammatory
behavior (190). Chitosan is similar to glycosaminoglycan in
ECM, and filmed chitosan can promote higher macrophage
production of IL-10 and TGF-b1 anti-inflammatory cytokines
as an indication of the M2 phenotype (193). Therefore,
immunomodulatory biomaterials with the goal of promoting
macrophage polarization present an innovative repair strategy
for chronic wounds.
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Biological materials not only have the ability of
immunological regulation, but also serve as carriers of cells
and active molecules to enhance survival rates of transplanted
cells and avoid the burst release of active molecules and rapid
degradation. Therefore, combining the above-mentioned
immunomodulatory biomaterials with active molecules that
promote the polarization of macrophages to M2 phenotype
may achieve a better pro-healing function than using materials
or cells or active molecules alone. An increasing body of evidence
points to the benefits of such approaches in inert implants (189,
194). Bioactive molecules or cells have been pursued to enhance
wound repair, and they have been successfully administered
through the different delivery systems, such as sponge scaffolds
(195, 196), polymer (197, 198), hydrogel (199–201), and
nanofibers (202, 203), which prove to be effective in
preclinical studies.

Notably, increasing evidence reveals the immunomodulatory
effects of biomaterials, which may become important approaches
of treating chronic wounds, while the mechanism responsible for
this response has rarely been explored. In future research, a large
number of studies are required to examine the potential
mechanism of immunomodulatory materials, and offers
guidance for the design of more desirable biological materials
to improve tissue repair and regeneration.
PERSPECTIVES

Based on this evidence, focus on the restoration of normal
conversion of M1/M2 macrophage phenotypes is beneficial to
proper wound healing. Notably, the therapeutic perspective and
specific signal targets differ in the existing methods. We consider
Frontiers in Immunology | www.frontiersin.org 10
using existing multiple treatments in combination to achieve
synergistic effects between each other, striving for the better
therapeutic effects for the treatment of chronic wounds.
Arguably, this is insufficient. The development of macrophage-
specific pro-healing strategies is only the beginning. Several
issues remain to be explored, including the modulation of
macrophage activation and resolution of inflammation, the
heterogeneity of the macrophage and discovery of novel
subpopulations during the repair process, biological functions
of individual macrophage lineages and the interaction mode
between each subgroup or between each subgroup and other
repair cells, and the understanding of the individual cues that can
manipulate this heterogeneity. More importantly, specific
molecular targets capable of repairing or restoring dysfunctional
macrophages must also be intensively investigated. Novel
technical approaches may be expected to solve these problems
and find possible answers.

Advances in single cell RNA-sequencing (scRNA-Seq) offer
an unprecedented approach for its power in monitoring the
temporal evolution of heterogeneity and helping to identify novel
cell subpopulations and unveil cellular interactions (204, 205).
This methodology is increasingly employed in fields such as stem
cell biology and oncology, while its applications in wound repair
are still limited. Lately, Haensel et al. used scRNA-Seq analysis to
identify epidermal hierarchical-lineage and transitional states
during normal homeostasis and wound healing (206).
Furthermore, Mahmoudi et al. revealed that the distinct
subpopulations of fibroblasts with different cytokine expression
and signaling in the wounds of old mice compared with young
mice (207). Guerrero-Juarez et al. reported that fibroblasts, a
major type of repair cells in wounds, grouped into twelve subsets,
which demonstrated the high degree of heterogeneity among
fibroblasts (208). Moreover, one cluster of fibroblasts might
FIGURE 3 | Multiomics data analysis based macrophage specific therapy.
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originate from myeloid cells, according to the lineage tracing
experiments. These results suggest the possibility and
importance of scRNA-Seq technology as a unique tool for the
better understanding of chronic wounds and therefore the
development of macrophage-specific pro-healing strategies.

Certain limitations remain in the scRNA-Seq technology,
including dropout events caused by the low detection efficiency of
non-coding RNA or the failure of amplification of the original RNA
transcripts (209–211), which may lead to misinterpretation of data
in the downstream analysis. Novel single-cell transcriptome
profiling or unique computational method must be developed to
address this problem. Another issue is scRNA-Seq deciphering at a
transcriptome level, as it is difficult to examine the abundance and
post-translation of proteins, or provide spatial information of
individual cells. The integrative analysis of multiomics data, such
as scRNA-seq, spatial transcriptomics, proteome, histology and
epigenome, etc., is to build a three -dimensional localized
microenvironment conducive to resolve this question (212). An
additional problem is the integration principle, as the occurrence of
chronic wounds is affected by both local and systemic factors.
Hence, we must not only pay attention to the local
pathophysiology of chronic wounds, but also concern ourselves
with adjacent tissues, such as subcutaneous adipose tissue or muscle,
as adipocytes are important participants in hair follicle regeneration
(213, 214). Furthermore, researchers must also focus on the
pathophysiology of distal tissues, as aging and diabetes are
accompanied by the abnormal output and function of immune
and stem cells (215–218) (Figure 3).
CONCLUSION

Macrophages play essential roles in the persistence of the initial
inflammatory process in chronic wounds. Hence, the treatment
of chronic wounds lies in immunomodulation. Sustained
increase in the number of wound macrophages and
impairment of phenotypic switching are caused both by
Frontiers in Immunology | www.frontiersin.org 11
intrinsic alterations of HSPCs and an imbalanced wound
microenvironment, which suggests that the treatment of
chronic wounds requires consideration of multiple factors.
Furthermore, high-throughput methods are a favorable tool to
investigate the pathogenesis in detail and discover new targets,
although their results require further validation. Moreover, it is a
remarkable fact that there are differences in the thickness and
number of cells between mouse and human skin, suggesting that
skin wound healing in mice may differ from that in humans.
Macrophage surface markers have been shown to differ in mice
and humans (219). These variations make murine system
difficult to translate to human conditions. In future studies, it
is necessary to further validate prospective studies in humans to
fill the gaps between pre-clinical and clinical studies.
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