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Abstract

The pathogenesis of fatty liver is not understood in detail, but lipid overflow as well as de novo lipogenesis (DNL) seem to
be the key points of hepatocyte accumulation of lipids. One key transcription factor in DNL is sterol regulatory element-
binding protein (SREBP)-1c. We generated mice with liver-specific over-expression of mature human SREBP-1c under
control of the albumin promoter and a liver-specific enhancer (alb-SREBP-1c) to analyze systemic perturbations caused by
this distinct alteration. SREBP-1c targets specific genes and causes key enzymes in DNL and lipid metabolism to be up-
regulated. The alb-SREBP-1c mice developed hepatic lipid accumulation featuring a fatty liver by the age of 24 weeks
under normocaloric nutrition. On a molecular level, clinical parameters and lipid-profiles varied according to the fatty liver
phenotype. The desaturation index was increased compared to wild type mice. In liver, fatty acids (FA) were increased by
50% (p,0.01) and lipid composition was shifted to mono unsaturated FA, whereas lipid profile in adipose tissue or serum
was not altered. Serum analyses revealed a ,2-fold (p,0.01) increase in triglycerides and free fatty acids, and a ,3-fold
(p,0.01) increase in insulin levels, indicating insulin resistance; however, no significant cytokine profile alterations have
been determined. Interestingly and unexpectedly, mice also developed adipositas with considerably increased visceral
adipose tissue, although calorie intake was not different compared to control mice. In conclusion, the alb-SREBP-1c mouse
model allowed the elucidation of the systemic impact of SREBP-1c as a central regulator of lipid metabolism in vivo and
also demonstrated that the liver is a more active player in metabolic diseases such as visceral obesity and insulin
resistance.
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Introduction

Liver lipid content is influenced by serious, common metabolic

diseases such as visceral obesity, lipid disorders or type 2 diabetes.

This lipid overload has destructive effects on cell functionality and

viability, as initially pronounced by Unger in the ‘‘lipoptoxicity

hypothesis’’ [1]. The mechanisms of ectopic hepatic lipid

accumulation in the development of fatty liver are still under

debate, but the interaction of increased lipolysis, lipid transport or

hepatic de novo lipogenesis (DNL) is definitely involved [2,3]. One

possible approach to narrow down the impact of each distinct

component of the three-part model of hepatic lipid accumulation

is to intervene at one specific branch and to analyze the

physiological and phenotypical outcome in detail.

Hepatic lipids originate mainly from the release of stored lipids

from adipocytes, which also occurrs in the case of insulin

resistance. This process is thought to account for the majority of

lipid accumulated in hepatocytes. On the other hand, the direct

induction of hepatic DNL synthesis, i.e. the production of fatty

acids from carbohydrates or amino acids, might be the initial step

in the cycle of lipid accumulation in hepatocytes [4].

DNL describes the excess flow of glucose from carbohydrate

stores into the hepatic acetyl-CoA pool via glycolysis for the

production of triglycerides. Any surplus of carbohydrates that is

not directly oxidized for energy is metabolized to triglycerides for

storage. Generally, DNL is modified by total energy intake, dietary

fat/carbohydrate ratio, or glucose and/or insulin concentration

[5–15]. In healthy individuals, the portion of DNL in hepatic lipid

content seems to be approximately 5% of total lipids, but in

patients with non-alcoholic steatohepatitis (NASH), this portion

can increase to 26% [2].

DNL can be triggered by multiple mechanisms, including

increased expression of lipogenic enzymes by several specific

transcription factors; this is particularly true for members of the

SREBP family. One of them, i.e. SREBP-1c, controls hepatic

DNL primarily by regulation of expression of genes involved in

DNL, lipid homeostasis and glucose metabolism [16–21].

Accordingly, hepatic expression of SREBP-1c and its target genes
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has been shown to be increased in human fatty liver compared to

healthy individuals [22–26].

SREBP-1c belongs to the basic-helix-loop-helix transcription

factors. The SREBP family consists of the isoforms SREBP-1 and

SREBP-2 that are encoded by two different genes [27,28]. In

contrast to SREBF-2, SREBF-1 is transcribed into two splice

variants: SREBP-1a and SREBP-1c [29]. SREBP-2 predominant-

ly regulates cholesterol synthesis; the isoform SREBP-1a controls

cholesterol and lipid synthesis, whereas SREBP-1c solely regulates

the synthesis of fatty acids [17,22,30–32].

SREBP-1c is transcribed and translated into precursor mole-

cules. These are transcriptionally inactive and are embedded in

the membrane of the endoplasmatic reticulum. The release of the

transcriptionally active domain by sequential two-step proteolytic

machinery is controlled by complex metabolic regulation [31,33].

The mature forms of SREBPs translocate into the nucleus and

facilitate gene expression of target genes. SREBP-1c has been

shown to be key mediator in induction of DNL, independent of

food composition, and is a convergence point of hormones, growth

factors and inflammatory cytokines in the regulation of genes

involved in lipid metabolism [22,34–36]. Therefore, this tran-

scription factor is a favored candidate to analyse the role of hepatic

DNL in the the develpoment of fatty liver disease.

To elucidate the role of increased de novo lipid synthesis in the

pathogenesis of hepatic lipid accumulation, we generated a novel

mouse model that overexpresses the transcriptionally active

domain of human SREBP-1c under control of the liver-pecific

albumin promoter. In this report, we focus on the description of

the alb-SREBP-1c mouse model and show that the expression of

genes playing a central role in lipid metabolism as well as total

fatty acid composition are altered in the livers of these mice.

Correspondingly, hepatic lipid accumulation occurred featuring a

fatty liver phenotype. Moreover, increased visceral adipose tissue

and an altered adipose tissue distribution were found, although

caloric intake was unaltered amongst control mice.

Results

Increased hepatic lipid accumulation, gene expression
and de novo lipogenesis caused by liver-specific over-
expression of the transcriptionally active N-terminal
domain of human SREBP-1c

The role of SREBP-1c in hepatic de novo lipogenesis (DNL) has

been shown in in vitro analyses and cellular models [16–21]. To

study the role of DNL in lipid accumulation in liver, we generated

mice that overexpress the transcriptionally active domain of

human SREBP-1c specificly in liver. To restrict expression of the

transgene solely to the liver and to enable a permanent high level

of expression throughout development, we decided to host the

transgene under the control of the albumin promoter as well as a

liver-specific enhancer, and we designated them as ‘alb-SREBP-

1c’ (Figure 1A).

The presence of the transgene was monitored by genotyping of

the intersection of albumin-promoter and coding sequence of

human SREBP-1c (Figure 1A). At mRNA level, the expression of

the transgene in liver could only be monitored in the alb-SREBP-

1c animals, whereas the expression of endogenous SREBP-1c, the

isoform SREBP-1a, and SREBP-2 were unaltered between

transgenes and control mice (Figure 1B). At protein level, the

transgene could be specifically detected by HA-tag antibody to

discriminate it from the endogenous SREBP-1. This signal was

only detected in the livers of alb-SREBP-1c mice but not in

C57Bl6 control animals (Figure 1C, 1D). Protein expression

studies showed that the construct was strictly restricted to the liver

in alb-SREBP-1c animals (Figure 1E, 1F).

The gene expression levels of a panel of key metabolic enzymes

targeted by SREBP-1c were investigated in liver in order to

monitor the effect of over-expression of the human transcription

factor on gene regulation in mouse liver (Table 1).

Compared to C57Bl6 in alb-SREBP-1c mice, gene expression

levels of lipid metabolic enzymes as fatty acid synthase (FAS), v9

stearoyl-CoA desaturase (SCD), v5 fatty acid desaturase-1

(FADS1) or v6 fatty acid desaturase-2 (FADS2) were increased

,3 to ,10-fold (p,0.01) (Table 1). The expression levels of

elongation of long chain fatty acids (ELOVL) family members

ELOVL5 and ELOVL6 were increased ,9-fold to ,18-fold

(p,0.01) respectively. Mitochondrial glycerol-3-phosphate acyl-

transferase (GPAT) expression level was elevated ,10 fold

(p,0.01). The rate-limiting gene in cholesterol metabolism (3-

hydroxy-3-methylglutaryl-Coenzyme A reductase (HMG-CoAR))

was increased ,12-fold (p,0.01). Genes with functional roles in

lipid transport (such as microsomal triglyceride transfer protein

(MTTP), low density lipoprotein receptor (LDLR), or ATP-

binding cassettesub-family A-1 (ABCA1)) showed a ,4-fold

(p,0.01) increase in gene expression levels. Interestingly, the

glucose transporter-2 (GLUT2) was down regulated in alb-

SREBP-1c mice to ,30% (p,0.01) of the values of C57Bl6 mice.

Moreover, central rate-limiting metabolic genes such as phospho-

enolpyruvate carboxykinase (PEPCK) were increased by ,8-fold

(p,0.01), while liver-specific pyruvate kinase or malic enzyme was

increased nearly 2-fold (p,0.01). Glucose-6-phosphatase (G6Pase)

was not altered. Taken together, over-expression of the N-terminal

active domain of SREBP-1c in mouse liver alters the regulation of

SREBP-1c target genes involved in DNL.

Hepatic over-expression of the transcriptionally active
domain of human SRREBP-1c affects liver morohology,
histology and the hepatic lipid profile

For further analyses, C57Bl6 and alb-SREBP-1c mice were

housed under standardized conditions and were fed a normal diet.

Pathological examination of the mice at 24 weeks of age revealed

slightly pale, enlarged livers for the alb-SREBP-1c mice

(Figure 2A). Histological analyses of C57Bl6 liver tissues indicated

morphologically intact parenchymatical structures with dense

cytoplasm, clear nuclei, eosinophilic nuclei and basophile

euchromatin. Oil-red-O stains showed several small lipid droplets

but no signs of lipid accumulation. (Figure 2B). In alb-SREBP-1c

mice, the general impression of the liver tissue was more

dimorphous because the cellular structures revealed less dense

cytoplasma with more vacuoles. Visible accumulation of lipid

droplets, located mainly around the nucleus, was higher and

centered around the portal vein, but not every cell was affected. In

cells with the highest ectopic lipid accumulation, no signs of

cytotoxicity in the form of degradation of the nuclear structures

were obtained (Figure 2B). Further pathohistological alterations,

such as dysmorphic cellular structures or infiltrations, were not

detected. The expression of the human N-terminal of the

transcriptionally active domain of SREBP-1c under control of

the albumin promoter resulted in mild hepatic lipid accumulation

under a standard diet.

A comparison of the liver percentile content of saturated fatty

acids between C57Bl6 and alb-SREBP-1c mice (Table 2) indicated

no difference for palmitic acid (C16:0), but a 25% reduction for

stearic acid (C18:0) in alb-SREBP-1c mice (Table 2) was observed.

The content of monounsaturated fatty acids (MUFA) was

increased ,3-fold (p,0.01) for palmitoleic acid (C16:1) and

increased 30% (p,0.01) for oleic acid (C18:1). The content of

Liver Specific Expression of Human SREBP1c in Mice
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Figure 1. Tissue-specific over-expression of alb-SREBP-1c in vivo. (A) Scheme of the DNA constructs used to generate transgenic mice. The
transcriptionally active N-terminal domain of the human SREBP-1c gene (aa 1–436 including a 59-HA-tag (YPYDVPDYA) was inserted into a vector
construct containing the mouse albumin promoter, a liver-specific enhancer element and a polyadenylation site. The SREBP-1c expression cassette
was released by BssHI restriction for microinjection into male pronuclei of zygotes derived from C57Bl6 mice. (A) Verification of transgene insertion
into genomic DNA was performed by PCR. M: size marker, genomic DNA of lane 1: C57Bl6, 2: alb-SREBP-1c, and lane 3: no template control. (B)

Liver Specific Expression of Human SREBP1c in Mice
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polyunsaturated fatty acid (PUFA) as linoleic acid (C18:2) or

arachidonic acid (C20:4) were reduced by ,20% and ,30%

respectively (p,0.01), whereas a-linolenic acid (C18:3) was

increased by ,30% (p,0.01) (Table 2).

Analyzing the data to determine the percentile change of TFA

composition in the livers of alb-SREBP-1c mice compared to

C57Bl6 mice mainly indicated a shift to MUFAs in the livers of the

alb-SREBP-1c animals. These observations can be attributed to:

fatty acids desaturation indices, which were significantly increased

(,3-fold (p,0.01) for C16:0 to C16:1 and ,2fold (p,0.01)

elevated for C18:0 to C18:1), a ,30% (p,0.01) decreased

elongation index and a ,20% (p,0.01) elevated de novo lipid index

in alb-SREBP-1c mice resulting from over-expression of human

transcriptionally active N-terminal SREBP-1c domain in mouse

liver (Table 3).

Physiological examinations of increased DNL
To determine the systemic impact and especially the physio-

logical consequences of increased DNL without further physio-

logical stress, C57Bl6 and alb-SREBP-1c mice were housed under

standardized conditions with unrestricted access to water and

regular chow. No significant alterations in reaction to external

stimuli and social behavior could be obtained for the alb-SREBP-

1c mice. Viability, vitality, fertility and breeding behavior of the

transgenic mice were comparable to the C57Bl6 mice. However,

the survival rate of alb-SREBP-1c mice postpartum was reduced,

with 17% of offspring dying within the first 3 days following

delivery, compared to 6% of offspring of the C57BL6 controls.

The remaining animals had a normal life expectancy without any

special further treatment. Housing two mothers and their litter in

one cage improved the number of surviving pubs independent of

genotype. After weaning at 6 weeks of age, mice received a

standard diet for a further 18 weeks until being sacrificed at the

age of 24 weeks. At 6 weeks of age, the weight of alb-SREBP-1c

mice was ,10% (p,0.05) lower than C57Bl6 mice. At 15 weeks of

age, the weight of C57Bl6 animals reached a plateau, but in alb-

SREBP-1c mice, weight gain persisted until 24 weeks to

approximately twice the value observed for C57Bl6 mice

(p,0.01) (Figure 3A). Hyperphagia could be excluded because

alb-SREBP-1c mice consumed 10% (p,0.05) less food than

C57Bl6 animals (Figure 3B). Food intake by body weight was even

slightly reduced in alb-SREBP-1c compared to C57Bl6

(Figure 3C), and weight gain per MJ food intake was more than

2-fold compared to C57Bl6 (Figure 3D).

At 24 weeks, total body weight of alb-SREBP-1c mice was

approximately 20% (p,0.01) higher (Figure 4A). The lean body

mass was increased, but not to the same extent (p,0.05)

(Figure 4B). The total fat mass was increased more than 2-fold

in alb-SREBP-1c animals compared with the C57Bl6 animals.

The differentiation into subcutaneous and visceral fat mass

indicated a total increase of visceral fat depots in alb-SREBP-1c;

this increase occurred in correlation with body weight (Figure 4C,

4D). Visceral fat was increased more than 3-fold either directly

(p,0.01) or in relation to body weight (p,0.01) in alb-SREBP-1c

mice (Figure 4E, 4F). The mean liver weight had risen about 25%

(p,0.01) at this time (Figure 4G), but the increase in liver weight

relative to body weight was marginal (Figure 4H). Taken together,

increased lean body mass and fatty liver were not the major

sources of weight excess observed in the alb-SREBP-1c animals.

Body composition is influenced by liver-specific
overespression of human SREBP-1c

Macroscopic examination of alb-SREBP-1c mice at 24 weeks of

age revealed pale, enlarged livers as expected from the fatty liver

phenotype. Unexpectedly, the epididymal, gluteo-femoral and

inguinal fat mass of alb-SREBP-1c was also greatly increased

(Figure 5A). Histological examination of the adipose depots

revealed simple hyperplasia but no hints for adipocyte hypertro-

phy or infiltrating macrophages (Figure 5B).

In adipose tissue, the detailed analyses of fatty acid composition

did not indicate a significantly different lipid profile between

C57Bl6 and alb-SREBP-1c animals (Table 4).

Validation of transgene expression of alb-SREBP-1c animal model on mRNA level by RT-PCR. RNA extracted from snap-frozen liver biopsies from male
alb-SREBP-1c and C57Bl6 mice was analyzed by RT-PCR with transgene human SREBP-1c (HA-SREBP-1c) , mouse SREBP-1a (m-SREBP-1a), mouse
SREBP-1c (m-SREBP-1c) and mouse SREBP-2 (m-SREBP-2) specific primers and probe. The relative RNA amount shown in arbitrary units was calculated
and plotted 6 S.D. Graphs represent data from four male mice per genotype, each analyzed in triplicate (p,0.01). (C) Verification of transgene
expression on protein level in liver. Protein extracts of snap-frozen liver biopsies from lane 1: alb-SREBP-1c, 2: C57Bl6 mice were separated by SDS-
PAGE and blotted on nitrocellulose membrane. The membrane was probed with HA-specific antibody to determine the HA-tag of the transgene
construct. A representative experiment is shown. For normalizing, blots were probed with a-tubulin antibody. (D) Graphs show densitometry
evaluation of n = 5 independent experiments. (E) Tissue-specific expression of alb-SREBP-1c. Protein extracts of lane 1: liver, 2: pancreas, 3: skeletal
muscle, 4: adipose tissue, 5: heart, 6: kidney and 7: small intestine were separated by SDS-PAGE, blotted and probed with HA-specific antibody. A
representative experiment is shown. The arrow indicates HA-tagged SREBP-1c. For normalizing, blots were probed with a-tubulin antibody. (F)
Graphs show densitometry evaluation of n = 5 independent experiments.
doi:10.1371/journal.pone.0031812.g001

Table 1. Gene expression of metabolic genes in liver.

C57Bl6 alb-SREBP-1c

FAS 8.6264.61 106.34651.24**

SCD1 373.876159.52 2017.106159.37**

FADS1 45.5468.18 119.12627.88**

FADS2 20.9867.09 82.78618.89**

EVOL5 20.4462.92 186.33627.38**

EVOL6 0.0660.02 1.0960.41**

GPAT 0.8060.40 8.8063.76**

HMG-CoAR 1.2860.53 16.1962.49**

LDLR 0.4060.08 1.8460.27**

ABCA1- 0.4360.04 2.0660.48**

MTTP 13.3264.39 44.1269.52**

GLUT2 15.4663.30 4.3662.10**

PEPCK 4.0662.46 32.78616.63**

G6Pase 0.9260.12 0.9760.09

pyruvate kinase 58.8366.95 90.59613.85**

malic enzyme 0.0160.002 0.0260.001**

Data are given as mean 6 SD (n = 20, each genotype) in arbitrary units
normalized to 18 S RNA contend. T-test C57Bl6 vs. alb-SREBP-1c: **p,0.01.
The hepatic expression level of genes was determined by RT-PCR (n = 20 each).
The relative RNA amount shown in arbitrary units was calculated and plotted 6

S.D. Students t-test was performed to determine significance (C57Bl6 vs. alb-
SREBP-1c mice: **p,0.01).
doi:10.1371/journal.pone.0031812.t001
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Adiposity reduced the secreted cytokine pattern from
adipocytes

There is an ongoing discussion that obesity and ectopic hepatic

lipid accumulation is accompanied with increased inflammation

[37–39]. To determine if the phenotype of obesity and hepatic

lipid accumulation due to over-expression of human transcripi-

tonally active N-terminal domain of human SREBP-1c is

associated with increased secretion of inflammatory and proin-

flammatory parameters from adipose tissue, a set of 40 chemokines

and cytokines was analyzed in the secretom of isolated adipocytes

of control and transgenic animals (Figure 6). These arrays contain

chemokines of the C-C motif ligands (CCL-) and receptors (CCR-),

the C-X-C motif ligands (CXCL-) and receptors (CCR-), mast cell

proteases (MCP-) or colony stimulating factor (CSF-) families, as

well as intracellular adhesion molecules (ICAM), tissue inhibitor of

metalloproteinase-1 (TIMP-1), complement components (C5a) or

triggered receptor expressed in myeloid cells (TREM-1), in addition

to various cytokines such as interleukines (IL-), interferone (INF-c)

and tumor necrosis facor (TNF-a). In C57Bl6 mice, an abundance

of the chemokines CGF-3, CCL-1, sICAM, IL-1ra, IL-6, IL-12-

Figure 2. Macroscopic and histological comparison of livers from C57Bl6 and alb-SREBP-1c mice. Panel (A) shows fatty liver
macroscopically of a C57Bl6 (left) or alb-SREBP-1c (right) mouse. (B) Liver tissue of the Lobus caudatus, Lobus sinister- and Lobus dexter lateralis were
used for (I) standard hematoxylin and eosin staining. (II) PAS staining was performed to determine glycogen content. (III) The tissues were also used
for cryofixation, and Oil-red-O staining was used for lipid visualization. (IV) Fibers and the extra cellular matrix were visualized to determine tissue
integrity. The overview magnification is 1:10, and details are shown in 1:100 magnification.
doi:10.1371/journal.pone.0031812.g002

Table 2. Fatty acid composition of liver.

genotype
C16:0
[%]

C16:1
[%]

C18:0
[%]

C18:1
[%]

C18:2
[%]

C18:3
[%]

C20:4
[%]

C57Bl6 29.9860.62 1.2060.07 15.8360.57 13.9860.95 20.3860.65 0.3560.05 18.1361.06

alb-SREBP-1c 30.3360.57 4.0860.45** 12.1061.45** 22.6062.07** 16.2862.26** 0.4860.04** 12.6861.43**

Fractional content of selected fatty acids. Data are mean 6 SD (n = 20). T-test C57Bl6 vs. alb-SREBP-1c: **p,0.01.
The specific composition of total fatty acid was determined by GC analyses in liver tissues of C57Bl6 and alb-SREBP-1c transgenic animals (n = 20 for each). Students t-
test was performed to determine significance (C57Bl6 vs. alb-SREBP-1c mice: **p,0.01).
doi:10.1371/journal.pone.0031812.t002
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p70, CXCL-10, CXCL-1, CSF-1, MCP-1, MCP-5, CXCL9, CCR-

1a, CXCL2, TIMP-1 and CCL-5 was detected, but no proin-

flammatory cytokines could be determined. The pattern of

cytokines detected in C57Bl6 and alb-SREBP-1c was comparable,

and none of the cytokines expressed was specifically altered in

abundance according to the genotype investigated. The analyses of

the secretion profile of isolated adipocytes of alb-SREBP-1c mice

indicated the same pattern, but in general, the quantity was lower

except for MCP-1 and TIMP-1 (p,0.01).

Clinical chemistry parameters in mouse serums
The surrogate parameters for liver function alanine amino-

transferase (ALT) and aspartate amino-transferase (AST) were

nearly doubled (p,0.01) in alb–SREBP–1c animals compared to

C57Bl6 mice (Table 5). Cholesterol levels were unaltered, but

triglycerides levels were increased,2-fold (p,0.01) in alb–SREBP–

1c mice. In accordance with increased fat mass, leptin levels were

elevated ,3-fold (p,0.01) as well. Serum-free fatty acids (FFA) as

well as total fatty acid (TFA) in liver were increased ,2-fold

(p,0.01), whereas TFA in adipose tissue was not signifcantly altered

(Table 4). Analyses of fatty acid composition in serum showed that

C16:1 and C18:3 were slightly increased, but the alterations

observed did not reach significance (p.0.05) (Table 6).

Hepatic lipid accumulation does not alter serum cytokine
pattern

The cytokine as well as chemokine pattern detected in serum of

C57Bl6 and alb-SREBP-1c mice was comparable with no

genotype-specific parameter (Figure 7). In C57Bl6, the analyses

showed mainly an abundance of chemokines, i.e. C5a, CSF-3,

sICAM, INF-c, Il-12-p70, CXCL-1, CSF-1, MCP-1, TIMP-1 and

TREM-1, but no proinflammatory cytokines could be determined

(Figure 7). The pattern was comparable for alb-SREBP-1c mice and

only C5a, and IL-12-p70 were elevated, whereas CXCL-1, MCP-1

and TREM-1 were less abundant in alb-SREBP-1c mice (p,0.01).

Liver-specific overespression of human SREBP-1c
influences parameters of systemic insulin sensitivity

Excess intracellular hepatic lipid accumulation can affect insulin

sensitivity in human studies and mouse models [2,3,21]. In alb-

SREBP-1c mice, blood glucose was nearly doubled (p,0.01) and

insulin levels were particularly increased (,4-fold (p,0.01))

compared to C57Bl6 mice (Table 7). The surrogate parameter

for insulin resistance HOMA-IR was elevated ,3-fold (p,0.01)

and the surrogate parameter for insulin sensitivity QUICKI was

reduced by 30% (p,0.01) in alb-SREBP 1c mice.

Discussion

Expression of the human N-terminal transcriptionally active

domain of SREBP-1c under the control of the liver-specific

albumin promoter in mice induces a mild fatty liver and an obesity

phenotype. This is accompanied by altered body composition,

altered lipid profile in liver and reduced insulin sensitivity, but not

with increased inflammation.

The SREBP-1 isoforms are produced as inactive precursor

proteins which are anchored in the endoplasmatic reticulum. The

release of the transcriptionally active domain is tightly regulated by

a step-wise proteolytic cascade [31,33]. The direct use of the N-

terminal domain of SREBP-1c makes the alb-SREBP-1c mouse

model independent from this regulated proteolytic process release.

Alb-SREBP-1c mice develop the observed phenotype under

normocaloric conditions. This is the major difference in the model

presented compared to the model of liver-specific over-expression

of the human N-terminal transcriptionally active SREBP-1c

domain under control of the PEPCK promoter [23]. In contrast

to PEPCK promoter, the albumin promoter with the appropriate

liver-specific enhancer we chose is strictly restricted to the liver

from early development and continually remains highly active

during the lifespan [40–43]. During embryogenesis, the PEPCK

promoter is repressed due to high insulin levels in the fetal livers,

and in adult animals, the PEPCK promoter is regulated by various

stimuli in a feedback manner. Moreover, PEPCK expression is not

exclusively restricted to the liver [44]. Furthermore, a special low

carbohydrate/high protein diet is required to induce the fatty liver

phenotype in PEPCK-SREBP-1c mice [23]. This might account

for the differences observed, because alb-SREBP-1c and control

mice can be directly compared on a diet of regular chow.

There were differences in the gene expression levels of SREBP-

1c target genes, as no alteration in genes involved in cholesterol

metabolism and a mild 2 to3-fold induction of genes involved in

fatty acid metabolism were reported in PEPCK-SREBP-1c mice

[23].

In general, the gene expression profiles in livers of alb-SREBP-

1c mice are comparable to the gene regulatory action of SREBP-

1c in various cell models [22,23]. LDLR or HMG-CoAR was up-

regulated in livers of the alb-SREBP-1c animals and in cell models

but unaltered in the livers of PEPCK-SREBP-1c mice [23]. Key

enzymes of lipid metabolism, such as FAS, v9-, v5- and v6-

desaturases SCD, FADS1 or FADS2, or the elongases ELOVL5

and ELOVL6, indicated increased mRNA levels in alb-SREBP-1c

mice. A positive correlation between v9-desaturase SCD mRNA

level and the degree of lipid accumulation can be drawn in alb-

SREBP-1c mice, which is in contrast to human studies, where a

negative correlation between SCD expression and the degree of

hepatic lipid accumulation has been shown [45]. This might be

directly due to SREBP-1c over-expression in alb-SREBP-1c mice,

and not the hepatic lipid accumulation induced.

The key enzyme GPAT, crucial in cellular TG synthesis, is also

known to be regulated by SREBP-1c. Depletion of GPAT has

been shown to improve hepatic steatosis and associated insulin

resistance [46].

Table 3. Hepatic D9-desaturase, elongase and de novo lipidsynthese (DNL) Index.

genotype type
D9-Desaturase
[C16:1/C16:0]

D9-Desaturase
[C18:1/C18:0]

Elongase
[C18:0/C16:0]

DNL
[C16:0/C18:2]

C57Bl6 0.0460.01 0.8860.09 0.5360.03 1.4760.06

alb-SREBP-1c 0.1360.02** 1.9060.36** 0.3960.05** 1.8960.26**

Data are mean 6 SD (n = 20). T-test C57Bl6 vs. alb-SREBP-1c: **p,0.01.
Fatty acid data were used to calculate desaturase index (C16:0/C16:1) and (C18:0/C18:1), elongation index (C18:0/C16:0) and de novo lipid synthesis index (C16:0/C18:2).
Students t-test was performed to determine significance (C57Bl6 vs. alb-SREBP-1c mice: **p,0.01).
doi:10.1371/journal.pone.0031812.t003
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Genes involved in transport processes concerning serum lipid

homeostasis are increased in alb-SREBP-1c mice. Especially

MTTP is necessary for the formation of very low density

lipoprotein (VLDL) particles and to shuttle TG out of the liver

[47]. As in MTTP deficient mice, the TG levels are low as export

does not function they show hepatic steatosis but lack insulin

resistance or inflammation [48–50]. The increased expression of

MTTP mRNA in alb-SREBP-1c mice might be an indicator of

increased TG efflux in the livers of alb-SREBP-1c mice.

In summary, hepatic gene expression indicated a substantial

increase in expression of lipogenic enzymes; this was expected

from the model of SREBP-1c over-expression which resulted in

putatively increased DNL, thereby facilitating TG production and

accumulation in hepatocytes.

In alb-SREBP-1c mice, plasma cholesterol is unaltered, but the

serum TG levels are increased. The desaturation of fatty acids is

significantly increased, whereas the elongation index shows a

decrease and de novo lipid index is slightly increased. This indicates

an increase of desaturated fatty acids that are able to be stored in

the liver.

The onset of hepatic steatosis is still not clear, and a common

thought is that accumulation of lipids is initiated by an increased

release of fatty acids from the adipose tissue into the plasma.

Although the composition of fatty acids in liver in the mouse

model is different from the C57Bl6 control, the fatty acid pattern

of serum or adipose tissue indicates only marginal differences. In

view of our hypothesis, this could indicate that systemic transport

systems are not the primary source of hepatic lipids, but rather the

DNL in liver results in increased production.

Although the alb-SREBP-1c mice develop a fatty liver, this

phenotype is rather mild; the more striking observation is the vast

increase of visceral adipose tissue. This is the marked difference in

the phenotype of the mice. The PEPCK-SREBP-1c mice show a

mild fatty liver with slightly increased liver weight and increased

liver TG content as our model does, but adipose tissue is rather

reduced so they do not develop the obesity phenotype [23]. This

increased visceral obesity in alb-SREBP-1c is due to adipose tissue

hyperplasia and not associated with an altered fatty acid

composition in adipose tissue or histological indicators of increased

inflammation.

Obesity and ectopic hepatic lipid accumulation are thought to

be accompanied by increased inflammation and circulating

inflammatory parameters [37,38]. There is still debate on whether

inflammation is a cause or a consequence of obesity and hepatic

lipid accumulation [39]. It is interesting to note that despite

hepatic lipid accumulation and massive visceral obesity in alb-

SREBP-1c mice, no gross alteration in the cytokine profile in

serum can be observed, and the cytokine profile secreted by

adipocytes indicates even a reduced abundance for most cytokines

compared to C57Bl6 mice. The missing indication of inflamma-

tion could be a hint that at the current stage of lipid accumulation

in the liver, there has not yet been a conversion to a pathological

condition generally or in terms of inflammatory reactions. Also,

locally restricted inflammation cannot be excluded, as well as

alterations in inflammatory parameters below the sensitivity of the

method chosen.

Only two chemokines, i.e. MCP-1 and Timp-1, are overrep-

resented in alb-SREBP-1c compared to C57Bl6 mice. MCP-1 has

been shown to be secreted by adipose tissue in positive correlation

with adiposity and features of the metabolic syndrome in humans

and mice [51]. Timp-1 is secreted by adipocytes and involved in

cellular matrix remodeling, thus playing a role in the plasticity of

adipocytes [52]. Interestingly, adipogenesis blunts Timp-1 pro-

duction [53]. So the data received from our model indicate that if

inflammation is involved in the pathogenesis of either fatty liver or

visceral adipositas, it is a secondary effect and not an initial event.

To determine, whether the fatty liver with visceral obesity in

alb-SREBP-1c mice is associated with insulin resistance, we

employed surrogate indices of insulin resistance HOMA-IR as well

as surrogate indices of sensitivity QUICKI. Surrogate indices of

insulin sensitivity and resistance have been successfully adapted to

mice using the surrogate parameters developed for humans [54–

60]. These analyses show a mild insulin resistance. Clinical studies

have shown that the intracellular amount of lipid in liver is

associated with insulin resistance [45,61,62]. The insulin resistance

in our mice model is still weak and does not seem to affect the

functionality of ß-cells yet. These observations stress the hypothesis

that the system can compensate a certain genetic predisposition

and increased lipid production.

In summary, our investigations imply that lipid accumulation in

liver can occur due to the triggering of lipid metabolism by direct

over-expression of a central player in lipid metabolism in liver, i.e.

SREBP-1c. Furthermore, our observations stress the hypothesis

that fatty liver is an initial parameter in the development of

adipositas independent of environmental factors. The altered

regulation of genes essential in hepatic lipid synthesis, a shift in the

liver fatty acid pattern to more storage-capable saturated FA, and

the moderate hepatic lipid accumulation in combination with a

vast increase of adipose tissue observed in this model all favor the

hypothesis that the liver has to be a more active player in

metabolic diseases and the initialization of adipositas. In the mouse

models presented, it is not that obesity is the initial key that induces

the fatty liver, but rather vice versa that the initial failure in hepatic

lipid metabolism accounts for the complete shift towards a

metabolic disorder and adipositas without physiological challenge.

The question as to why alb-SREBP-1c mice develop such a vast

amount of adipose tissue remains to be answered, but it seems to

be reasonable that two mechanisms play a major role: i.e. either

increased dietary lipids or increased DNL. In our mice model,

over nutrition is not the main issue. Naturally, adipose metabolism

was of prime importance for animals to survive states of starvation

due to its efficient energy use of available food; therefore,

induction of DNL due to SREBP-1c might be of importance.

DNL plays an important role in this setting of positive fat balance.

The best known physiological model of massively increased DNL

is in pre-hibernating animals. Here, DNL is increased, and lipids

produced were stored in adipose tissue. However, usually this is

accompanied by increased food intake. How the hormonal

regulation and metabolic control of this specific physiological

condition is regulated is not known in excessive detail, but altered

gene regulation on various levels is at least involved in the process

[63]. If and how the sole over-expression of SREBP-1c in liver is

necessary or sufficient to enable the system to obtain more storable

energy of the food consumed, remains to be elucidated. One can

speculate that according to the normal food consumption of alb-

SREBP-1c mice, an increase of caloric intake can only be achieved

Figure 3. Phenotypical comparison of C57Bl6 and transgenic alb-SREBP-1c animals. Weight gain (A) and food intake (B) of male mice
(n = 20 per genotype) were measured once a week starting at weaning and monitored for an observation period of 18 weeks. Food intake per body
weight (C) and weight gain per food intake (D) were determined in each group of mice. Data are given as means including standard deviation (6S.D.).
C57Bl6 vs. alb-SREBP-1c mice: **p,0.01.
doi:10.1371/journal.pone.0031812.g003
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by specific high fat diets. In this case, one could speculate that the

phenotype of alb-SREBP-1c mice will worsen as soon as adipose

tissue can no longer compensate and store excess lipids. But

according to other morbid obese mouse models, the metabolism

might reach a point of exhaustion up to cachexia. In this context, it

would also be interesting if the model turns out to be useful to

distinguish the impact of different dietary compounds such as high

fat diets or high carbohydrate diets; but the effects of special

physiological challenges and specific diets on these mechanisms

remain to be established.

In conclusion, based on the description of the alb-SREBP-1c

mouse model here, this mouse model allows the elucidation of the

systemic impact of this central regulator of lipid metabolism in vivo.

Furthermore, this model allows the opportunity to investigate the

pathophysiology of primary lipid accumulation in liver as well as

the long term effects of chronic fatty liver independent of

physiological stress.

Materials and Methods

Generation of transgenic alb-SREBP-1c-NT mice
A vector, based on pBlueskript II KS (Stratagene,), was

generated by inserting 2 kb of albumin enhancer sequence

corresponding to the NheI/BamHI enhancer fragment [64] and

the mouse albumin promoter (2308 to +8) containing all relevant

transacting elements [40] into the BamHI site. All necessary

inserts were generated by PCR from mouse genomic DNA.

Subsequently, a polyA cassette was inserted via EcoRV/KpnI

sites. Into this construct, the N-terminal transcriptionally active

domain (SREBP-1c-NT; aa 2–436) including a 59-HA-tag

(YPYDVPDYA, the epitope of influenca hemagglutinin (HA))

was inserted using the reconstituted EcoRV/BamHI sites. The

SREBP-1c expression cassette was released by BssHI restriction

for microinjection into male pronuclei of zygotes derived from

C57Bl6 mice.

Figure 4. Comparison of body composition of C57Bl6 and transgenic alb-SREBP-1c animals. Body weight (A), lean body mass (B),
subcutaneous adipose tissue (C), visceral adipose tissue (E) and liver weight were determined at scarification at 24 weeks of age of male mice (n = 20
per genotype) and are given directly (A, B, C, E, G) and in relation to body weight (BW) (D, F, H). C57Bl6 vs. alb-SREBP-1c mice: *p,0.05; **p,0.01.
doi:10.1371/journal.pone.0031812.g004

Figure 5. Macroscopic comparisons of C57Bl6 and transgenic alb-SREBP-1c animals. (A) First, sections of male mice at 24 weeks of age are
shown. (B) Histology of visceral adipose tissue indicated hyperplasia but no signs of infiltration. All photographs were taken with the same
magnification.
doi:10.1371/journal.pone.0031812.g005
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Animals, phenotypic and metabolic indices
Male C57Bl6 and alb-SREBP-1c mice (n = 20, each) were

bred and maintained in colonies of four animals in our animal

facility (12 h light/dark cycle; 22uC61uC, 50%65% humidity).

They were fed ad libitum with standard laboratory chow

(13.7 mJ/kg: 53% carbohydrate, 36% protein, 11% fat (Ssniff,

Soest, Germany)) and had free access to water. At the age of 24

weeks, mice were sacrificed by CO2 asphyxiation. Mice of each

genotype were also investigated in the collaborating Institute for

Diabetes Research to verify physiological and histological

parameters in an independent habitat. The Animal Care

Committees of the University Duesseldorf and Hamburg

approved animal care and procedure (Approval#50.05-240-

35/06 and #93/08).

Table 4. Fatty acid composition of fat.

genotype
C16:0

[%]
C16:1

[%]
C18:0

[%]
C18:1

[%]
C18:2

[%]
C18:3

[%]
C20:4

[%]

C57Bl6 21.2661.52 6.1360.99 1.8760.13 36.0463.68 32.2164.34 1.2960.23 0.4060.11

alb-SREBP-1c 23.6061.52 6.4260.84 2.0560.24 34.3761.32 31.1761.45 1.2860.21 0.3360.05

Fractional content of selected fatty acids. Data are mean 6 SD (n = 20).
The specific composition of total fatty acid was determined by GC analyses in adipose tissues of C57Bl6 and alb-SREBP-1c transgenic animals (n = 20, each). Students t-
test was performed to determine significance (observed alterations did not reach significance limit p,0.05).
doi:10.1371/journal.pone.0031812.t004

Figure 6. Cytokine profile secreted from isolated adipocytes of C57Bl6 and transgenic alb-SREBP-1c animals. The cytokine content in
supernatant of cultured primary adipocytes was analyzed using the Proteome ProfilerTM; R&D Systems, (Abingdon, UK). Spot intensities were
normalized to background and positive controls set to 100% intensity. Presented numbers on membranes mark targets as follows: (1) CSF-3; (2) CSF-
2; (3) CCL-1; (4) sICAM -; (5) IL-1ra; (6) IL-6; (7) CXCL-10; (8) CXCL-1; (9) CSF-1; (10) MCP-1; (11) MCP-5; (12) CXCL-9; (13) CCR-1a; (14) CXCL-2; (15) CCL-5;
(16) TIMP-1. Abundance of: CXCL-13, C5a, CCL-11, IFN-c, IL1-a, IL1-ß, IL-2, IL-3, IL-4, IL-5, IL-7, IL-10, IL-13, IL-12-p70, IL-16, IL-17, IL-23, IL-27, CXCL-11,
CCL-4, CXCL-12, CCL-17, TNF-a or TREM-1 was not detected. Data are given as means 6 S.D. (n = 6, each) of normalized intensity. Significance was
calculated by 2-way ANOVA. C57Bl6 vs. alb-SREBP-1c mice: *p,0.01.
doi:10.1371/journal.pone.0031812.g006
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Genotyping
Genomic DNA was extracted from ear biopsies taken at

weaning with a tissue kit (Qiagen, Hilden, Germany) according to

manufacture’s instructions. Routinely, 50 ng DNA was used for

PCR with SREBP-1c-NT (59-TAGGCCAGGGAACTGACTG-

39) and albumin promoter (59-ATGCGAGGTAAGTAT-39)

specific primers.

Preparation of cell extracts and Western Blot analyses
To detect the expressed HA-SREBP-1c at protein level, nuclear

extracts were prepared according to [65] from 10 mg of snap-

frozen tissue samples. An antibody against HA peptide conjugated

with peroxidase (clone 3F10, 1:5000, Roche, Mannheim,

Germany) was used for western blot detection. For normalizing,

blots were probed with a-tubulin antibody (Santa Cruz).

Visualization was performed with ECLTM plus Western Blotting

detection reagents using a Versadoc instrument (BioRad).

RNA extraction and real time (RT)-PCR analyses
For expression analyses, 10 mg liver tissue per individual animal

was snap frozen in liquid nitrogen immediately after liver

resection. Biopsies were lysed with Qiazol (Qiagen, Hilden,

Germany). Total RNA extraction, Real time (RT) PCR analyses

(Assay on DemandTM, 26Universal PCR Mastermix, ABI Prism

7000 Sequence Detection System Applied Biosystems, Darmstadt,

Germany) and specific detection of endogenous mouse SREBP-1a

and SREBP-1c isoforms were performed with mSREBP-1aFP

59GAGGCGGCTCTGGAACAGA39 or mSREBP-1cFP

59GGAGCCATGGATTGCACATT39, common reverse primer

mSREBP-1RP 59CACTGTCTTGGTTGTTGATGAGCTG39,

and specific probe SREBP-1(a/c) [59]6-FAM TATCAACAAC-

CAAGACAGTGACTTCCCTGGC [39]TAMRA as previously

reported [38]. The expression of the HA-SREBP-1c transgene in

liver was confirmed with human specific primers (59ATGTGG-

CAGGAGGTGGAGAC39), a primer derived from the HA-tag

sequence (59TACGACGTCCCAGACTACG39) and the identical

probe. Data were normalised to 18 S RNA content.

Clinical chemistry parameters
Blood parameters were measured at 24 weeks of age (n = 20).

Blood glucose was measured with FreestyleTM, and triglycerides,

cholesterol, total protein and liver enzymes (ALT, AST) were

determined on a Hitachie 912 laboratory automat (Roche,

Mannheim, Germany). Liver biopsies were minced in NaCl

solution (0.9% (w/v), pH 7.5) and homogenized using an

ultraturax. To determine fatty acid content, serum or homogenate

from liver biopsies minced in NaCl solution (0.9% (w/v), pH 7.5)

were pelleted by centrifugation (800 g for 5 min at 4uC), and the

pellet was subjected to fatty acid quantification. For gas

chromatography (GC) analyses, sample preparation and resolution

was performed as described [65]. Serum insulin levels (mU/l) were

measured in triplicate by ELISA according to the manufacture’s

recommendation (Mercodia, Uppsala, Sweden).

Histology
Tissues of the Lobus caudatus, Lobus sinister- and Lobus dexter

lateralis were fixed in 4% paraformaldehyd/PBS and embedded in

paraffin with automated standard histological procedures (Ex-

celsiorTM, Thermo Shandon GmbH, Frankfurt, Germany).

Standard hematoxylin and eosin (HE) staining was performed

on 3 mm deparaffinized sections. Glycogen storage was monitored

with PAS staining (Merck, Darmstadt, Germany). Fibers and the

extra cellular matrix were visualized using the ‘‘van Gierson kit’’

(Merk, Darmstadt, Germany). For oil red O staining, cryopro-

tected liver was frozen under liquid-nitrogen-cooled isopentane

and stored in liquid nitrogen until proceeding. Tissue sections were

stained with oil red O solution, rinsed excessively with water, and

retained dye was eluted by 40% isopropanol followed by H2O.

Determination of the cytokine profile in serum and
adipocytes

For parallel detection of various cytokines, serum or concen-

trated supernatant of adipocytes of C57Bl6 and alb-SREBP-1c

mice were hybridized with array membranes according to the

protocol supplied by the manufacturer (Proteome ProfilerTM;

R&D Systems, Abingdon, UK). Serum samples were proceeded

directly. For analyses of cytokine profiles of adipocytes derived

from the visceral compartment, conditioned medium was

Table 5. Physiological parameters and serum lipid
composition.

C57Bl6 alb-SREBP-1c

ALT [U/l] 31.45613.72 61.76623.94**

AST [U/l] 30.22619.55 71.00623.49**

cholesterol [mg/dl] 106.08616.71 106.53620.83

triglceride [mg/l] 124.23633.17 221.76640.67**

leptin [ng/ml] 15.8165.71 55.4065.91**

FFA serum [g/l] 0.9060.1 2.4260.19**

TFA liver [mg/g
tissue]

24.1765.39 37.4769.89**

TFA fat [mg/g tissue] 748.03634.46 819.93633.50

Data are mean 6 SD (n = 20). T-test C57Bl6 vs. alb-SREBP-1c: **p,0.01.
Clinical parameters were measured in C57Bl6 and alb-SREBP-1c mice (n = 20, for
each). Triglycerides cholesterol, total protein and liver enzymes (ALT, AST) were
determined on a Hitachie 912 laboratory automat. Students t-test was
performed to determine significance (C57Bl6 vs. alb-SREBP-1c mice: **p,0.01).
doi:10.1371/journal.pone.0031812.t005

Table 6. Fatty acid composition of serum.

genotype
C16:0
[%]

C16:1
[%]

C18:0
[%]

C18:1
[%]

C18:2
[%]

C18:3
[%]

C20:4
[%]

C57Bl6 26.0661.01 1.3060.10 14.0560.69 19.1060.62 31.0560.81 0.7060.17 6.6860.83

alb-SREBP-1c 25.7360.95 1.7360.55 12.5061.28 19.9060.86 30.4561.27 1.0560.11 7.9860.65

Fractional content of selected fatty acids. Data are mean 6 SD (n = 20).
The specific composition of free fatty acid was determined by GC analyses in serum of C57Bl6 and alb-SREBP-1c transgenic animals (n = 20, each). Students t-test was
performed to determine significance (observed alterations did not reach significance limit p,0.05).
doi:10.1371/journal.pone.0031812.t006
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prepared from freshly isolated adipose tissue according to [66].

The fractionated supernatants were concentrated by using

filtration devices with a cutoff of 3 kDa (Amicon Ultra, Millipore,

Bad Schwalbach, Germany) to a final volume of 200 ml culture

medium/g of adipose tissue starting material. Six replicates per

genotype were analyzed pairwise (blot 1: C57Bl6 vs blot 2:alb-

SREBP-1c) and handled in parallel troughout the entire

procedure. Exposure of each pair of arrays was also performed

in parallel. and data were collected and processed as one file

(Versadoc instrument (BioRad)). For normalization, local back-

ground hybridization signals were substracted from the spot

intensities, and each spot was normalized to the internal

hybridization positive controls. Normalised data were analysed

pairwise for genotype-specific differences as processed, and results

per pair were used to determine the mean differences in cytokine

abundance.

Statistical analysis
Values are presented as means 6 SD. Statistical analyses were

performed via either the Student T-test or by 2-way ANOVA

using Prism 4.03 (GraphPad Software Inc., San Diego) as

indicated.

Figure 7. Cytokine profile in serum of C57Bl6 and transgenic alb-SREBP-1c animals. The cytokine content in serum was analyzed using the
Proteome ProfilerTM; R&D Systems, (Abingdon, UK). Spot intensities were normalized to background and positive controls set to 100% intensity.
Presented numbers on membranes mark targets as follows: (1) C5a; (2) CSF-3; (3) sICAM; (4) INF-c; (5) IL-12-p70; (6) CXCL-1; (7) CSF-1; (8) MCP-1; (9)
TIMP-1; (10) TREM-1. Abundance of: CXCL13, CSF-2, CCL-1, CCL-11, IL1-a, IL1-ß, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-13, IL-16, IL-17, IL-23, IL-27,
CXCL-10, CXCL-11, MCP-5, CXCL-9, CCR-1a, CCL-4, CCL-2, CCL5, CXCL-12, CCL-17 or TNF-a was not detected in serum. Data are given as means 6 S.D.
(n = 6, each) of normalized intensity. Significance was calculated by 2-way ANOVA. C57Bl6 vs. alb-SREBP-1c mice: *p,0.01.
doi:10.1371/journal.pone.0031812.g007
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