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Abstract

Triple-negative breast cancer (TNBC) refers to the breast cancers that express little human epidermal growth factor receptor 2 (HER2),
progesterone receptor (PR) and oestrogen receptor (ER). When compared to other types of breast cancers, TNBC behaves more aggressively
with relatively poorer prognosis. Moreover, except chemotherapy, no targeted treatments have been approved yet until now. Although the
molecular-biological mechanisms of the initiation and development of TNBC have been explored a lot, the exact details underlying its progres-
sions are still not clear. Long non-coding RNAs (lncRNAs), with the length greater than 200 nucleotides, are non-protein coding transcripts.
Previous researches have shown that lncRNAs are significantly involved in a variety of pathophysiological processes such as cell migration,
invasion, proliferation, differentiation and development. lncRNAs’ dysregulated expressions have been observed in many types of tumours
including TNBCs. This article will review the functional roles and dysregulations of lncRNAs in TNBCs. These lncRNAs are worthy of exploitation
regarding their potential application values of TNBC’s diagnosis and treatment.

Keywords: Long non-coding RNAs� triple-negative breast cancer� expression

Introduction

TNBCs account for almost 20% of all types of breast cancers across the
world (approximately, 0.2 million cases per year). TNBCs tend to be more
usually diagnosed in young females (<40-year-old) than hormone-posi-
tive breast cancers. According to Trivers et al.’s [1] survey data, there
were twofold higher attributable risks of TNBCs in ≤40-year-old females
than >50-year-old females. Additionally, TNBCs are more common
among black women than white women. Histopathologically, TNBCs are
more likely to be of high grade (mostly are infiltrating ductal carcinomas,
though a rare histologic subtypes, medullary carcinoma, is also generally
triple-negative) [2]. TNBC can exhibit geographic necroses, stromal lym-
phocytic responses and pushing borders of invasion [3]. By definition,
TNBCs lack immunohistochemical expressions of HER2, PR and ER. As
the three biomarkers are currently the only known approved therapeutic
targets of breast cancer, considerable effort has been made to better
understand other biological forces driving TNBC [3, 4].

Although the TNBCs mostly consist of the basal-like molecular
subtype, considerable heterogeneities within TNBCs still exist. As
examples, in one study of utilizing DNA and RNA profiling of TNBCs,
four stable subtypes were identified: basal-like immune-activated,
basal-like immunosuppressed, mesenchymal and luminal androgen
receptor [5]. Other molecular-biological mechanisms underlying
TNBC’s development include mutations and dysregulated expressions
of many DNA repair genes [e.g. breast cancer susceptibility gene
(BRCA)] [6] and tumour-suppression genes such as p53 [7]. These
molecular features may have implications for chemotherapy sensitiv-
ity to platinum or other directly DNA-damaging agents. The identifica-
tion of effective biomarkers for early diagnosis of TNBCs and a better
understanding of the systems of the neoplastic advancement are con-
sequently keenly awaited.

LncRNA and cancers

LncRNAs, with the length greater than 200 nucleotides, are non-
protein coding transcripts. Their roles in cancer initiation and
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progression have been explored a lot [8]. Although LncRNAs
were initially considered to be only a promiscuous RNA poly-
merase-II activity or a transcriptional noise, research increasingly
suggests that lncRNAs play important roles in a repertoire of
biological processes, including cell invasion, apoptosis, prolifera-
tion, differentiation and development [9]. Various mechanisms
have been observed in biological experiments, including micro-
RNA sequestration, mRNA stability regulation, pre-mRNA splicing,
RNA polymerase-II negative-regulation, recruitment of co-activa-
tors, chromatin remodelling and so on. As an example, lncRNA
HOTAIR was found to be overexpressed in patients with breast
cancer and could repress the expressions of metastasis-suppres-
sion genes, thus aggravating cancer metastases [10]. Another
example is lncRNA SNHG12, a cell-cycle regulator, which is
down-regulated in breast cancer tissues [11]. LncRNA CCAT2,
UCA1 and H19 have all been reported in a number of neoplasms
referring with metastases, apoptosis, survival and proliferation
[12]. Hence, lncRNA regulates gene expressions and exert influ-
ences on molecular-biological functions through various mecha-
nisms.

An increasing number of researches have demonstrated the
dysregulated expressions of lncRNAs in varieties of cancers,
including breast cancer, cervical cancer, prostate cancer, oeso-
phageal squamous cell carcinoma, colorectal cancer, nasopharyn-
geal carcinoma, hepatocellular carcinoma, osteosarcoma and
gastric cancer [13]. One of the commonest dysregulation forms
of lncRNA is elucidated by Iyer et al.’s [14]integrative analyses of
approximately 7200 RNA-sequencing libraries from cancer and
non-cancer tissues and cells, which identified over 8000 cancer-
related lncRNAs. These deregulated lncRNAs could function as
tumour-suppressor genes or oncogenes. Overexpressions of such
onco-lncRNAs or silencing or repression of anti-oncogenes could
aggravate the malignancy, including cell reprogrammed energy
metabolism, apoptosis resistance, over-angiogenesis, metastasis,
increased invasiveness, replicative senescence, growth-suppres-
sion resistance and sustained proliferations. Together, these stud-
ies demonstrate that lncRNAs play critical roles in various
biological and pathological processes, including apoptosis, cell
proliferations and tumourigenesis.

Profiles of lncRNA expressions in
TNBCs

Augoff et al.[15] in 2012 first published the study on lncRNA
expression profiles in TNBC. In their report, they identified that
the hypermethylation of gene promoter is an important mecha-
nism to silence miR-31 in basal-subtype TNBC cells, then
mapped miR-31 to the intronic sequences of a new lncRNA
LOC554202, which could regulate the transcriptional activity of
miR-31 [15]. Both the lncRNA LOC554202 and miR-31 are up-
regulated in luminal-subtype cells and down-regulated in
basal-subtype TNBC cells. Additionally, through using techniques
of bisulphite-converted DNA sequencing and methylation-specific

PCR, they showed that the LOC554202 promoter-associated
CpG island is significantly hypomethylated in the luminal-subtype
cells and significantly methylated in the basal-subtype TNBC cells
[15].

Further literatures related to the profiles of lncRNA expressions in
TNBC also detected a series of dysregulated lncRNAs. By virtue of
transcriptome microarrays on 165 TNBC samples, Liu et al.[16] made
a detailed study on the transcriptome profiling. By calculating the
empirical cumulative distribution functions using k-means clustering,
they could work very well on determining optimal numbers of TNBC
subtypes. These TNBC samples could be divided into four subtypes:
basal-like and immune suppressed (BLIS) subtype, mesenchymal-like
subtype (MES) subtype, luminal androgen receptor subtype (LAR)
subtype and immunomodulatory (IM) subtype. One of the most up-
regulated lncRNAs in the IM-subtype TNBC was ENST00000443397.
In the LAR-subtype TNBC, expressions of lncRNA ENST00000447908
were increased. In the MES-subtype TNBC, the most up-regulated
lncRNA was NR_003221. In the BLIS-subtype TNBC, the most up-
regulated lncRNA was TCONS_00000027 [16]. Besides lncRNAs
expression microarray analysis, more and more bioinformatics meth-
ods have been used for lncRNA exploration. Recently, Koduru
et al.[17] analysed online available small RNA-sequencing database
derived from 24 TNBC samples and 14 adjacent non-cancer tissue
samples and re-mapped various subtypes of non-coding RNAs. They
found 61 lncRNAs, among which, 33 were down-regulated (top 5:
lnc-ZNF75D-2:2, lnc-FLOT2-1:1, lnc-NEK8-2:1, lnc-FLT3LG-1:7 and
lnc-PAPLN-2:1) and 28 were up-regulated (top 5: lnc-ELP4-3:1, lnc-
EIF2C2-1:1, lnc-PURA-2:1, lnc-SC5DL-3:1 and lnc-DNAJC16-1:1)
[17].

Long intergenic non-coding RNA for
kinase activation (LINK-A)

LINK-A, also called NR_015407 or LOC339535, is a � 1.5 kb
intergenic lncRNAs [18]. LINK-A is considered to play a significant
role in the growth-factor-mediated HIF1a cell signal transduction
pathway. According to Lin et al.’s study, LINK-A expression levels
were much higher in 2 stage-III TNBC tissues than in their paired
adjacent non-cancer breast tissues, ERPR+/HER2+, HER2-/ERPR+
and ERPR�/HER2+ breast cancer tissues, suggesting the close
association between TNBC and LINK-A expressions [18]. Consis-
tently, they also found that overexpressed LINK-A in TNBC tissues
and cells are associated with poorer prognoses and progression-
free survivals [18]. Moreover, different from typical nuclear
lncRNAs, they found that LINK-As are mainly located adjacent to
cellular membranes or in cytoplasm [18]. LINK-A could promote
tumourigenesis in TNBC through LINK-A-dependent signalling
pathway activation. Hence, targeting LINK-A, with much promising
therapeutic potential, might be able to provide a favourable strat-
egy to block the HIF1a signalling pathway in TNBCs. Whether
LINK-As are released into circulation continuously through cell
apoptosis or actively secreted from TNBC cells through exosome
pathways still needs further research.
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The HOX transcript antisense
intergenic lncRNA (HOTAIR)

HOTAIR is a 2.3 kb non-coding transcript derived from the intergenic
region of the HOXC homeotic gene cluster [12]. HOTAIR plays a criti-
cal role in oncogenesis, whose expressions significantly increased in
a variety of cancers including hepatocellular carcinoma [19], gastric
cancer [20], intestinal cancer [21] and breast cancer [22]. HOTAIR
overexpression correlates with more severe tumour distant metas-
tases and poorer prognosis. HOTAIR was the first lncRNA shown to
promote tumour progression and be related to poor prognosis in
breast cancer [23]. HOTAIR was involved in regulating malignant bio-
logical behaviour of TNBC through a variety of ways. HOTAIR
expression was significantly up-regulated by oestrogen in TNBC cells
MDA-MB-231 and BT549 and increased the migration of them.
HOTAIR can also indirectly suppress certain miRNA expressions in
TNBC, reverse epithelial-mesenchymal transition (EMT) partially,
decrease the breast cancer stem cell population, and attenuate cell
metastasis and invasion [24]. Considering the key roles of HOTAIR in
TNBC, attenuating HOTAIR functions to gain treatment effects is
promising [12]. Yang et al. also found Delphinidin-3-glucoside could
down-regulate HOTAIR expressions in TNBC cells in both vitro and
vivo. These studies elucidate some unidentified mechanism in TNBC
linking signalling with HOTAIR regulation which may be exploited for
therapeutic gain [25]. These researches identified several mecha-
nisms underlying TNBC’s genesis and progression. HOTAIR dysregu-
lation is the most important mechanism, which offers a new target
and orientation for TNBC therapy.

Rhabdomyosarcoma 2-associated
transcript (RMST)

RMST, located on chromosome 12q21 in human beings, was initially
reported in rhabdomyosarcomas and was found to be expressed at
lower levels in embryonal rhabdomyosarcomas than in alveolar rhab-
domyosarcomas [26]. Uhde et al. found that RMST exhibits promi-
nent expressions in regions of the roof plate of the anterior neural
tube, the isthmus and the midbrain floor plate. Subsequent studies
demonstrated that RMST was closely related to neuronal differentia-
tions [27]. Studies also have shown that together with sex determin-
ing region Y-box 2 (SOX2), RMST could co-regulate many
downstream genes involved in neurogenesis. In Ng et al.’s RNA inter-
ference and genome-wide SOX2-binding studies, RMST was found to
be indispensable for SOX2’s combination with promoter regions of
neurogenic transcription factors [27].

Yang et al. sequenced eight paired non-cancer samples and TNBC
samples, and identified several abnormally expressed lncRNAs, among
which, compared to adjacent non-cancer breast tissues, RMST was
significantly down-regulated in TNBC [28]. Moreover, low RMST were
also associated with poor outcomes and worse prognosis than higher
RMST, suggesting the cancer-suppression roles of RMST in breast
cancer [28]. However, Yang’s study had some limitations: (i) they did

not perform in vivo experiments or ectopic expressions, which could
help with confirming core lncRNAs’ roles in TNBCs; (ii) they only con-
ducted the strand-specific and Poly-A-dependent RNA sequencing,
which was likely to lead to the loss of lncRNAs without Poly-A.

Small nucleolar RNA host gene 12
(SNHG12)

Small nucleolar RNA host genes (SNHGs) have been reported to
contribute to the progression of cancers. SNHG12 (also known
as GAS5) is a novel lncRNA identified to be up-regulated in sev-
eral cancer cells, such as human osteosarcoma cell, nasopharyn-
geal carcinoma cell and human endometrial carcinoma [29, 30].
The original identification of SNHG12 from a subtraction cDNA
library depended on its increased abundance in growth-arrested
mouse NIH 3T3 fibroblasts [31]. Subsequently, it has been
shown that it was the alterations of the biodegradation rate
rather than the transcription rate that regulated the expression
levels of SNHG12 [32]. Mourtada et al. found that overexpression
of certain SNHG12 transcripts induces growth arrest and apopto-
sis in human breast cancer cell lines. SNHG12 levels were down-
regulated significantly in human breast cancer cell lines, suggest-
ing that the decrease in SNHG12 expressions might play impor-
tant roles in the oncogenesis. According to their study, in the
breast cancer cell lines, SNHG12 expressions were generally
inversely correlated to tumorigenic behaviours [11].

SNHG12 played important roles in cancer cell proliferation and
migration. Wang et al. discovered that SNHG12 was up-regulated in
colorectal cancer tissues and cells. They also detected the effect of
SNHG12 on cell proliferation, cell cycle, apoptosis and the related
proteins expression in CRC cells [33]. Subsequently, Wang et al. uti-
lized RNA sequencing (RNA-seq) to explore the lncRNAs expression
profiles in TNBC and identified that SNHG12 was remarkably
increased in TNBC [34]. Subsequently, they determined that SNHG12
is significantly up-regulated in 102 TNBC tumour tissues compared to
95 non-cancerous breast tissues by qRT-PCR (P < 0.001). The
expression levels of SNHG12 were statistically related to the lymph
node metastasis (P = 0.041) and the tumour size (P = 0.012) [34].
Patients with higher SNHG12 expression levels were inclined to have
larger tumours and metastatic lymph nodes. Mechanistic investiga-
tions show that SNHG12 is a direct transcriptional target of c-MYC.
The depletion of c-MYC by siRNA in TNBC cell lines BT-549 and
MDA-MB-231 significantly reduced SNHG12 transcript levels
(P < 0.05) [34]. In addition, SNHG12 levels were markedly increased
in BT-549 and MDA-MB-231 cells transfected with c-MYC overex-
pression plasmid. Silencing SNHG12 expression inhibits TNBC cells
proliferation and apoptosis promotion, whereas enforced expression
of SNHG12 promoted TNBC cells proliferation and migration. In addi-
tion, they reveal that SNHG12 was mainly located in cytoplasm and
may regulate MMP13 expression to promote cells migration [34].
However, SNHG12’s biological roles still have not yet been identified
in in vivo experiments, and the mechanisms by which SNHG12 medi-
ates the apoptosis or proliferation remains unclear.
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SnaR

SnaR, a double-stranded lncRNA of 117 nt, is transcribed by RNA poly-
merase-III linked with nuclear factor 90 (NF90). SnaR binds important
proteins implicated in multiple cellular functions by in vivo cross-linking
followed by immune-precipitation, indicating the possibility that it has
critical roles in the regulation of cancer’s initiation and progression [35].
Several snaR transcripts have been found to be associated with ribo-
somes in cytoplasm [36]. What is more, it has been observed that these
regulatory roles in cell growth and gene translation are species specific
and tissue specific. Lee H et al. reported that in 5-FU-resistant colon
cancer cells, snaR was down-regulated. Additionally, after 5-FU treat-
ment, the down-regulation could decrease Annexin V-positive (ANN+)
apoptotic cells, indicating that snaR might negatively regulate cell
growth and tissue development after 5-FU treatment [37]. In Lee et al.’s
study, diverse breast cancer cell lines based on molecular subtype,
namely BT20, BT474, T47D, SKBR3, MCF7 and MDA-MB-231, were
used to explore the role of lncRNAs [38]. Although various lncRNAs
were expressed highly in each cell line, snaR and ANRIL were identified
as being predominantly up-regulated in MDA-MB-231 cell line and the
hormone receptor-expressing cell line (MCF7). Particularly, snaR was
shown to be 16.82 � 3.44-fold more highly expressed in the TNBC
cells than control [38]. The invasion, migration and proliferation of
TNBC cells could be significantly inhibited after snaR-knockdown. So, if
the knockdown of snaR can be applied clinically to TNBC, it would
provide an innovative treatment for such cancer.

Conclusion

TNBC generally behaves more aggressively with a relatively poorer
prognosis than other phenotypes of breast cancer. Our understanding
of the cellular origin and pathogenic mechanisms of TNBC remains
fragmented. In the past several years, the researchers have witnessed
a steep rise of interest in the study of lncRNAs in many diseases,
including various kinds of cancer. Recent studies have identified a
series of dysregulated lncRNAs in TNBC. These lncRNAs may serve
as biomarkers and therapeutic targets for TNBC in the future.
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