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Abstract

The applicability of mitochondrial nad6 sequences to studies of DNA and population variability in Lepidoptera was
tested in four species of economically important moths and one of wild butterflies. The genetic information so ob-
tained was compared to that of cox1 sequences for two species of Lepidoptera. nad6 primers appropriately amplified
all the tested DNA targets, the generated data proving to be as informative and suitable in recovering population
structures as that of cox1. The proposal is that, to obtain more robust results, this mitochondrial region can be
complementarily used with other molecular sequences in studies of low level phylogeny and population genetics in
Lepidoptera.
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Lepidoptera is the best-known order among insects,

with relatively well-established systematic for most groups

(Freitas et al., 2006). It presents a number of monophagous

and polyphagous moth species, capable of inflicting severe

losses in several of the major agricultural commodities

worldwide (Barros et al., 2010; Molina-Ochoa et al., 2010).

On the other hand, a rising number of butterfly species have

been targeted in conservation programs, leading these in-

sects to be considered flagship taxa for conservation (New,

1997). Knowledge on species genetic relationships, popu-

lation structures and patterns of gene flow among popula-

tions is a key, not only to the development of pest-manage-

ment programs (Krafsur, 2005), but also to the selection

and use of organisms for conservation initiatives (Dale and

Beyeler, 2001).

The usefulness of animal mitochondrial DNA

(mtDNA), as a molecular marker for studies of population

structure, is well-known on account of ease in manipula-

tion, rapid mutation rate, supposed lack of significant re-

combination, and availability of universal primers (Avise,

1986; Moritz et al., 1987; Simon et al., 1994). Recently, the

use of the cytochrome c oxidase I gene (cox1) has largely

replaced that of other mitochondrial regions in studies with

animals, including many Lepidoptera (Silva-Brandão et al.,

2009), ever since its proposal as a “DNA barcode” for spe-

cies diagnosis and delimitation (Hebert et al., 2004), as well

as its historical application in population genetics and

phylogeographic studies (Avise, 2000). Notwithstanding,

the recent availability of complete mitochondrial genomes

of several Lepidoptera species (Cameron and Whiting,

2008; Yang et al., 2009), has facilitated the evaluation and

establishment of new genes for studying population genet-

ics within the group. Subunits of nicotinamide adenine

dinucleotide dehydrogenase (NADH), such as nad1 (Miller

et al., 2009), nad4 (Gomez et al., 2009) and nad5 (Meraner

et al., 2008), are beginning to be exploited in studies of

population structure. These genes have already been widely

used in studies at higher taxonomic levels (Weller et al.,

1994; Morinaka et al., 1999; Yagi et al., 1999), subunits of

nad having proved to be more variable than the other mito-

chondrial regions frequently used in such instances

(Cameron and Whiting, 2008).

The subunits of both cox and nad are related to the ox-

idative phosphorylation complexes encoded by the mito-
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chondrial genome (Montooth et al., 2009). The gene that

codifies subunit 6 of NADH (nad6) provides instructions

for making a protein, NADH dehydrogenase 6, officially

named “mitochondrially encoded NADH dehydrogenase

6”, which is part of a large enzymatic machinery known as

Complex I (Genetics Home Reference, 2011). The nad6

gene ranges from 480 to 540 bp within the mitochondrial

genomes of the 32 species of Lepidoptera available in

GenBank.

Both the applicability of primers designed to amplify

the mitochondrial gene nad6, and the efficacy of this region

in differentiating populations, were tested with four species

of moths considered economically important in Brazil, as

well as one wild butterfly species. The genetic information

so obtained was also compared with information provided

by cox1 on two of these species, the sugarcane borer

Diatraea saccharalis (F.), the main pest of sugarcane

(Saccharum officinarum L.) and an important one of corn

(Zea mays L.), as well as Hermeuptychia atalanta Butler, a

widely distributed Nymphalidae butterfly.

A total of 107 specimens from five species of

Lepidoptera were sampled from distinct populations (Ta-

ble 1). Total genomic DNA was obtained from the thoracic

tissues of each, according to the Invisorb Spin Tissue kit

(Uniscience) protocol. Extracted DNA was stored in a TE

buffer at -20 °C. Primers for nad6 gene amplification were

designed, based on the alignment of complete mitochon-

drial genomes of all the Lepidoptera species available in

GenBank (alignment available upon request). Forward and

reverse primers were named according to their reference

positions on the mitochondrial genome of Manduca sexta

(L.) (GenBank accession number NC_010266), the for-

ward primer thus beginning at 10090 (tPro-J10090-

5ATCWATAATCTCCAAAATTAT 3), and the reverse at

10624 (ND6-N10624-5 GGNCCATAAAAAATATTWGT

3), thereby totaling 534 bp. Complete (for D. saccharalis)

or partial (for H. atalanta) cox1 fragments were amplified

according to Silva-Brandão et al. (2008).

The nad6 gene was amplified using 1 �L of total

DNA, 2.0 mM of MgCl2, 40 �M of dNTPs, 0.2 mM of each

primer, 1U of GoTaq DNA Polymerase (Promega), and

10% of 10X Taq buffer, in 25 �L of final volume. The am-

plification protocol was as follows: an initial denaturation

step at 94 °C for 5 min, 35 cycles of denaturation at 94 °C

for 45 s, annealing at 45 °C for 45 s, and elongation at 60 °C

for 1.5 min, followed by an extension step at 60 °C for

5 min. Aliquots were then analyzed by electrophoresis in

1% agarose gel. After purifying from primers and deoxy-

nucleotides with ExoSAP-IT (GE Healthcare), the PCR

products were then sequenced by an ABI Prism BigDye Kit

protocol in an ABI 3700 automated sequencer (Applied

Biosystems), with the forward primer used for amplifica-

tion. Sequences were analyzed with the FinchTV 1.4.0 pro-

gram (Geospiza Inc.), and manually aligned with BioEdit

7.0.5.3 (Hall, 1999).

Sequence divergence was quantified with the p-dis-

tance model of nucleotide substitution (Nei and Kumar,

2000), implemented into the MEGA v.5.0 program (Ta-

mura et al., 2011). Employing the same model and pro-

gram, the Neighbor-Joining (NJ) clustering algorithm (Sai-

tou and Nei, 1987) was applied for graphically obtaining

phenetic distances among D. saccharalis and H. atalanta

individuals. Robustness of each branch was defined with

the non-parametric bootstrapping procedure (Felsenstein,

1985), with 1,000 replicates. Standard parameters of DNA

polymorphism were estimated in DnaSP v.5.10 (Librado

and Rozas, 2009) and MEGA v.5.0 (Tamura et al., 2011).

The primers proposed here adequately served for am-

plifying the nad6 region in all the species tested (GenBank

accession numbers are shown in Table 2). The reported se-

quence length variation was due to the quality of the last

bases sequenced. DNA polymorphism was low throughout

(Table 2), although low genetic variability is the general

rule for lepidopteran pest species (Coates et al., 2004; Saw

et al., 2006; Behere et al., 2007). Genetic distances for Ala-

bama argillacea (Hübner) and Heliothis virescens (F.) pop-

ulations ranged from 0.0 to 0.006, and from 0.0 to 0.032 for

Spodoptera frugiperda (J.E. Smith). DNA polymorphism

and pairwise genetic distances were higher in S. frugiperda

populations than in all the other species, with most nucleo-

tide substitutions being non-synonymous (Table 2). Wor-

thy of note, these populations were sampled on two

different crops (corn and cotton), even though no difference

was found between populations collected in these two host

plants in a previous study that applied RAPD markers

(Martinelli et al., 2006). Nonetheless, corn and rice bio-

types of S. frugiperda have already been recorded in Brazil,

when using AFLP markers (Busato et al., 2004).

As regards D. saccharalis populations, the analysis of

information provided by nad6 and cox1 showed the same

amount of DNA variation for the two (Table 2). Genetic

distances based on the two regions ranged from 0.0 to

0.004. However, the general pattern of genetic divergence

was different, for with the overall increase, cox1 diver-

gence becoming more pronounced at the 3rd codon position

(Figure 1 A and B). Both regions presented similar results

in recovering population structure (Figure S1). Pairwise ge-

netic distances of concatenated data also ranged from 0.0 to

0.004, NJ analysis resulting in a topology similar to that

based only on cox1 sequences (Figure 2 A).

The 5’ end of cox1 (the proposed “barcode”) and

nad6 yielded almost the same results for H. atalanta, with

similar values for general parameters of DNA polymor-

phism (Table 2). Pairwise genetic distances among nad6

sequences ranged from 0.0 to 0.007, and among cox1 from

0.0 to 0.006. Divergences, which occurred mainly at the 3rd

codon position (Table 2), became progressively greater to-

gether with the overall increase (Figure 1 C and D).

Phenetic relationships obtained with the two datasets were

different, although both regions recovered a cluster com-
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Table 1 - Species of Lepidoptera, populations and number of specimens used to test the primers designed to amplify the mitochondrial region nad6.

Species (Family) Host plant Populations: Locality, State (Code*; number of specimens) Latitude Longitude

Alabama argillacea Cotton Campina Grande, PB (2) 7°13’52” S 35°52”55.1”W

(Noctuidae) Campo Verde, MT (2) 15°32’42.7” S 55°9”55.6”W

Chapadão do Sul, MS (3) 18°46’44” S 52°36”59.4”W

Cristalina, GO (2) 16°46’0.9” S 47°36’29.9”W

Luis Eduardo Magalhães, BA (2) 12°51’57.9” S 45°47’53.7”W

Montividiu, GO (2) 17°47’49.1” S 50°54’0.2”W

Primavera do Leste, MT (1) 15°33’32.7” S 54°17’51.2”W

Roda Velha, BA (2) 12°41’48.6” S 45°49’57.6”W

São Disidério, BA (2) 12°21’7.6” S 44°59’3.2”W

Diatraea saccharalis Corn Bambuí, MG (Ds_MG_Zm; 3) 20°1’8.7” S 45°57’37.8”W

(Crambidae) Catalão, GO (Ds_GO_Zm; 3) 18°9’43.6” S 47°56’38.2”W

Itaberá, SP (Ds_SP_Zm; 3) 23°51’20.7” S 49°8’8.7”W

Passo Fundo, RS (Ds_RS_Zm; 3) 28°15’38.5” S 52°24’28.8”W

Ponta Grossa, PR (Ds_PR_Zm; 3) 25°5’40.4” S 50°9’47.9”W

Primavera do Leste, MT (Ds_MT_Zm; 3) 15°33’32.7” S 54°17’51.2”W

Sugarcane Jaboticabal, SP (Ds_SP1_So; 3) 21°15’21.7” S 48°19’22”W

Maringá, PR (Ds_PR_So; 3) 23°25’34.6” S 51°56’8.8”W

Monte Alegre, MG (Ds_MG_So; 3) 21°24’4.4” S 46°15’12.4”W

Pradópolis, SP (Ds_SP2_So; 3) 21°21’35.3” S 48°4’21.5”W

Heliothis virescens Cotton Chapadão do Sul, MS (3) 18°46’44” S 52°36”59.4”W

(Noctuidae) Luis Eduardo Magalhães, BA (3) 12°51’57.9” S 45°47’53.7”W

Palmeiras, GO (3) 16°47’23” S 49°55’58.5”W

Primavera do Leste, MT (3) 15°33’32.7” S 54°17’51.2”W

Riachão das Neves, BA (3) 11°44’49” S 44°54’25.5”W

Rio Verde, GO (3) 16°46’0.9” S 47°36’29.9”W

Sapezal, MT (3) 12°59’21.8” S 58°45’52”W

Sinop, MT (3) 11°52’31.3” S 55°30’17.7”W

Hermeuptychia atalanta - Campinas, SP (Ha_SP; 3) 22°54’25.4” S 47°3’47.8”W

(Nymphalidae) Catuípe, RS (Ha_RS; 3) 28°14’59.8” S 54°0’20.3”W

Jundiaí, SP (Ha_SP2; 3) 23°11’15.1” S 46°53’9.3”W

Paranaíta, MT (Ha_MT; 3) 9°40’22.7” S 56°28’50.3”W

Porto Mauá, RS (Ha_RS2; 3) 27°34’15.7” S 54°40’13.4”W

Santa Teresinha, BA (Ha_BA; 3) 12°44’59.4” S 39°31’6.1”W

Sousas, SP (Ha_SP3; 3) 22°52’52” S 46°57’57”W

Spodoptera frugiperda Cotton Acreúna, GO (2) 17°23’41.7” S 50°22’57”W

(Noctuidae) Barreiras, BA (2) 12°8’55.22” S 44°59’45.78”W

Primavera do Leste, MT (2) 15°33’32.7” S 54°17’51.2”W

Unaí, MG (2) 16°20’38.11” S 46°54’30.04”W

Corn Douradina, MS (1) 22°2’12.59"S 54°36’42.07”W

Luis Eduardo Magalhães, BA (1) 12°51’57.9” S 45°47’53.7”W

Passo Fundo, RS (1) 28°15’38.5” S 52°24’28.8”W

Ponta Grossa, PR (2) 25°5’40.4” S 50°9’47.9”W

Sapezal, MT (1) 12°59’21.8” S 58°45’52”W

Uberlândia, MG (2) 18°54’52.88” S 48°16’8.43”W

*Code was applied only for populations analyzed with both markers (cox1 and nad6).
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Figure 1 - Percent of overall pairwise divergence, based on a p-distance

model of nucleotide substitution, plotted as a function of divergence by the

codon position of A. cox1 and B. nad6 of Diatraea saccharalis, and C.

cox1 and D. nad6 of Hermeuptychia atalanta.



prising samples from Paranaíta, MT (Ha_MT) (Figure S2).

Genetic distances of concatenated data ranged from 0.0 to

0.007. The combined analysis of cox1 and nad6 resulted in

the retrieval of a NJ tree with improved overall branch reso-

lution (Figure 2 B).

Mitochondrial regions are capable of revealing dis-

tinct rates of mutation, as well as pronounced heterogeneity

at different parts of the molecule (Ballard, 2000; Montooth

et al., 2009). In fact, a comparison between genes that cod-

ify the subunits of cytochrome oxidase (cox) and nad re-

vealed that, across insect taxa, nad accumulates many more

amino acid substitutions than cox, possibly due to a differ-

ent functional constraint (Montooth et al., 2009). The avail-

ability of several mitochondrial genomes of Lepidoptera is

now making all these regions accessible for consideration

as markers at every taxonomic level. The use of similar and

widely tested regions is appealing, since the study of com-

parable gene regions can contribute synergistically to a

broader idea of the evolution of any group of organisms

(Caterino et al., 2000). However, for many groups of ani-

mals, new regions can be as, or more informative than, the

currently used cox1-cox2 sequences (Cameron and Whit-

ing, 2008), specially for exploring variation at the intra-

specific level.

Furthermore, nad6 sequences worked as well as cox1

in recovering DNA variation and genetic relationships

among populations of D. saccharalis and H. atalanta. In

this way, nad6 might offer additional information, when

complementarily used with other regions in population-

genetics studies, since the combination of multiple genes

with variable mutation rates could facilitate the investiga-

tion of the complex evolutionary history of a group of

organisms (Cameron and Whiting, 2008). The easy ampli-

fication of the region presumes the applicability of the pro-

posed designed primers to other Lepidoptera species, mani-

fest through their successful amplification of target DNA of

all the species tested, in families as diverse and taxonomi-

cally distant as Nymphalidae and Crambidae. Thus, the

nad6 region itself can be applied to low level phylogeny

and population genetic studies, since the usual inclusion of

more than one molecular marker to generate more robust

data (Wahlberg and Wheat, 2008), would contribute to-

Mitochondrial genes applied to genetic populations studies on Lepidoptera 723

Figure 2 - Neighbor-Joining phenetic relationships among specimens of A. Diatraea saccharalis and B. Hermeuptychia atalanta, based on concatenated

data of cox1 + nad6 sequences and a p-distance model of nucleotide substitution. Numbers above the branches are bootstrap values of 1,000 replicates

(when values are higher than 50%). (Ds = D. saccharalis, SP = São Paulo, MG = Minas Gerais, PR = Paraná, MT = Mato Grosso, RS = Rio Grande do Sul;

Zm = corn, So = sugarcane; Ha = H. atalanta; SP = São Paulo, BA = Bahia, MT = Mato Grosso, RS = Rio Grande do Sul).



wards a more comprehensive view of the evolution of

lepidopterans, through facilitating the analysis of compara-

ble gene regions.
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