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Abstract

Background

Studies have implicated schistosomiasis as a cause of intestinal barrier disruption, a salient

feature of environmental enteric dysfunction (EED), as eggs translocate from the sterile

bloodstream through the gut wall. We examined the longitudinal impact of praziquantel

(PZQ) treatment on a) EED biomarkers and b) Insulin growth factor I (IGF-1), a key driver of

childhood linear growth, since EED has been implicated in linear growth stunting.

Methodology

290 children infected with S. mansoni in Brazil were treated with PZQ at baseline. EED bio-

markers lipopolysaccharide (LPS) and intestinal fatty acid binding-protein (I-FABP) were

measured, as well as IGF-1 at baseline, 6 and 12-months. Multivariate regression analysis

was applied to assess associations between S. mansoni intensity and plasma biomarkers

(LPS, I-FABP, and IGF-1), controlling for potential confounding variables.

Principal findings

At baseline, S. mansoni infection intensities were 27.2% light, 46.9% moderate, and 25.9%

heavy. LPS concentrations were significantly reduced at the 12-month visit compared to

baseline (p = 0.0002). No longitudinal changes were observed for I-FABP or IGF-1 in the 6-

or 12-month periods following baseline treatment. After 6-months, I-FABP concentration

was significantly higher in high vs low intensity (p = 0.0017). IGF-1 concentrations were sig-

nificantly lower among children with high and moderate vs low intensity infections at each

study visit.
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Conclusions/significance

We report that S. mansoni infection impacts LPS, I-FABP and IGF-1. These findings sug-

gest a mechanistic role for EED in schistosomiasis-related morbidities, particularly linear

growth.

Author summary

Schistosoma mansoni is a tropical parasitic infection that causes intestinal schistosomiasis.

In infected humans, the parasite worms shed eggs that migrate across the gut barrier,

which damages intestinal structure and function. In children, intestinal schistosomiasis

leads to anemia, undernutrition, and linear growth stunting. The mechanistic pathways

between schistosomiasis and stunting are not fully understood, but this research explores

the role of environmental enteric dysfunction (EED) in schistosomiasis-related morbidity.

EED is an intestinal condition that affects children living in areas of poor water, sanita-

tion, and hygiene and also leads to impaired growth and stunting. In a longitudinal cohort

of Brazilian children infected with S. mansoni, we measured blood biomarkers of EED

and linear growth at three time points over 12 months. All of the children were treated for

schistosomiasis at baseline, and after 12 months, we observed a significant decrease in a

marker of EED, suggesting improvement in gut integrity. We also found that children

who had higher parasite egg burden at the baseline visit had lower levels of insulin-like

growth factor-1, a hormone that drives growth in children. Our findings suggest that EED

may play a role in schistosomiasis-related stunting and furthers our understanding for

S. mansoni pathogenesis in children.

Background

Human schistosomiasis, a Neglected Tropical Disease (NTD), affects over 140 million individ-

uals and remains a significant cause of morbidity and mortality in developing countries,

despite available drug treatment [1,2]. Two of the three main species affecting humans, S. japo-
nicum and S. mansoni, live in the mesenteric venules and deposit thousands of eggs daily that

migrate through vessel walls, the interstitium, and ultimately penetrate the gut wall to pass into

the gut lumen for excretion in feces. If untreated, higher egg burden and longer duration of

infection can lead to more severe morbidity, namely liver fibrosis and hepatosplenic disease,

which in some cases culminates in portal hypertension and death [3]. Much of the global bur-

den of disease impacts children, whereby schistosomiasis can cause anemia, undernutrition,

linear growth stunting, and impaired neurocognitive development [4–10]. S. mansoni is

endemic in Brazil, one of the few nations in the Americas that has not eliminated this NTD

[11,12].

Schistosomiasis is a chronic inflammatory disease, resulting in the elaboration of pro-

inflammatory cytokines detectable in the systemic circulation [13–15]. In the context of

schistosomiasis, these inflammatory responses are implicated in the pathogenesis of anemia,

undernutrition, and linear growth faltering [7,10,13–20]. Prolonged systemic inflammation

in children has been linked to disruptions in the insulin-like growth factor (IGF) axis, which

is a main regulator of linear growth [21]. Studies in children with chronic inflammatory dis-

eases, both infectious and non-infectious in origin, have shown that increased concentrations

of pro-inflammatory biomarkers and decreased concentrations of anabolic growth factors,
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such as insulin-like growth factor-1 (IGF-1), are associated with linear growth faltering [22–

24]. Specific to S. mansoni infection, children experiencing hepatic fibrosis or hepatosplenic

schistosomiasis had significantly lower IGF-1 concentrations compared to uninfected chil-

dren [25,26].

Although there is a strong correlation between pro-inflammatory cytokines and schistoso-

miasis-related morbidity [7,14,20], the mechanisms by which schistosome infection results in

the elaboration of pro-inflammatory cytokines and consequent morbidity remain understud-

ied. Another driver of inflammatory responses is microbial translocation (MT), whereby lumi-

nal microbes cross the intestinal wall into the normally sterile bloodstream [27]. MT is a

feature of environmental enteric dysfunction (EED), an acquired subclinical condition of the

small intestine associated with impaired linear growth and chronic undernutrition in children

exposed to conditions of poor water, sanitation, and hygiene [28,29]. MT is typically detected

by the presence of serum lipopolysaccharide (LPS) or endotoxin, LPS binding protein (LBP),

or circulating antibodies against LPS [30] in serum. There is increasing evidence linking schis-

tosomiasis with MT. During schistosome infection, the passage of eggs into the gut lumen

damages the integrity of the gut wall, which can enable MT into the bloodstream. Schistosome

egg-induced MT may represent an important stimulus for pro-inflammatory responses during

schistosome infection. Studies have shown higher concentrations of MT biomarkers among

adults with schistosomiasis compared to uninfected individuals [31,32]. Further, in adult

cases of hepatosplenic schistosomiasis, MT biomarkers were associated with systemic inflam-

mation [33]. However, a recent report among adolescents in Kenya found that LPS was not

correlated with schistosome egg burden and was not associated with infection intensity prior

to treatment [34].

To our knowledge, studies have yet to examine the impact of schistosomiasis treatment

on both gut health markers and IGF-1, a key promotor of linear growth in children. The

present study enrolled children infected with S. mansoni in Brazil to examine a) the relation-

ships between infection intensity (egg burden), gut health markers, and IGF-1 and b) the

longitudinal impact of S. mansoni treatment [praziquantel (PZQ)] on gut health markers

and IGF-1. We include gut health markers assessing both MT (LPS) and intestinal epithelial

damage [intestinal fatty acid binding-protein (I-FABP)], another characteristic feature of

EED.

Methods

Ethics statement

This study was approved by the Brazilian National Ethics Committee (CAAE 531.282). For

each participant, formal written informed consent was obtained from a parent. Additionally,

assent was obtained from participants� 7 years old.

Study area, population, and design

This longitudinal study was conducted in the Jequitinhonha Valley in northern Minas Gerais

State (MG), Brazil. Children with S. mansoni infection were recruited in schools from multiple

communities within five different municipalities between March-December 2014. Participant

recruitment and enrollment has been described previously [35]. Students and their parents or

legal guardians were invited by members of the study team to participate in the parasitological

screening. Students (n = 3,661) provided stool specimens and 20.4% (n = 750) were positive

for S. mansoni. The eligibility criteria included males and females between the ages of 6–15

years with S. mansoni infection. Those who were pregnant or breastfeeding or who had symp-

toms of diarrhea were excluded. Enrolled participants attended baseline, 4-week, 6-month,
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and 12-month study visits. Demographic and socioeconomic information was collected at the

baseline visit using questionnaires as previously described [36,37]. The present analysis

includes a sample of n = 290 participants who met the inclusion criteria for the cohort study

described above and who had available plasma for biomarker measurements (LPS, I-FABP,

and IGF-1).

At the baseline visit, all participants received treatment for S. mansoni infection: a single

oral dose of PZQ (60 mg/kg). Any participants with geohelminth infections at baseline were

treated with a single oral dose of albendazole (400 mg). Four weeks following PZQ treatment,

participants were re-assessed for S. mansoni infection and retreated if necessary. Re-infection

of S. mansoni was assessed at the 12-month visit, and any positive cases were treated with

PZQ. All treatments were administered with direct observation and under medical supervision

as recommended by the Brazilian Ministry of Health [38]. At baseline, 6-month, and

12-month visits, blood samples were collected in vacuum blood collection tubes and trans-

ported to the laboratory at the Instituto René Rachou, FIOCRUZ for processing, and plasma

fractions were stored in -80C freezers. Biomarkers (LPS, I-FABP, and IGF-1) were measured

in plasma collected at baseline, 6-month, and 12-month visits.

Laboratory measures

S. mansoni infection was determined by microscopy using the Kato-Katz fecal thick smear

method [39]. At screening, baseline, 4-week, and 12-month visits, participants provided stool

samples collected on two separate days. Slides were prepared and assessed in duplicate for each

stool sample within 24 hours of collection. For each visit, the slide concentrations of eggs per

gram of stool (EPG) were averaged, and any value equal to or greater than 1 EPG was consid-

ered positive. For quality control, 10% of the slides were randomly selected and examined by a

senior microscopist at the Instituto René Rachou, FIOCRUZ, in Belo Horizonte, MG. Plasma

LPS was quantified using the Pierce LAL Chromogenic Endotoxin Quantitation Kit (Thermo

Fisher Scientific, Waltham, MA, USA). Plasma I-FABP and IGF-1 concentrations were

measured by enzyme-linked immunosorbent assay (ELISA) using kits from R&D Systems

(Human FABP2/I-FABP DuoSet ELISA #DY3078, Human IGF-I/IGF-1 Quantikine ELISA

#DG100B). Biomarker measurements were conducted at the Instituto René Rachou, FIO-

CRUZ in Brazil.

Statistical analysis

S. mansoni intensity is reported in eggs per gram of stool (EPG) and intensity categories are

defined as light (1–99 EPG), moderate (100–399 EPG), and heavy (�400 EPG) [39]. Weight-

for-age z-score (WAZ) was calculated using the CDC growth chart reference for ages 0 to

<20 years, which considers age, weight, and sex. Socioeconomic status (SES) categories were

determined using methods designed by Gwatkin, et al. [40] and described previously [35].

Values are reported in median and interquartile range (IQR) unless otherwise stated. Multi-

variate regression analysis was applied to assess associations between plasma biomarker con-

centrations and baseline S. mansoni intensity category and changes in plasma biomarker

concentrations across study visits. Fully adjusted models applied automated stepwise selec-

tion with entry and stay thresholds of 0.1 to consider potential confounding variables

including age, sex, WAZ, SES, and hookworm infection status. Continuous variables

included in regression models were natural log-transformed. P values < 0.05 were consid-

ered significant. Statistical analyses were conducted using SAS Studio 3.8 (SAS Institute Inc.,

Cary, NC).
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Results

Population

Characteristics for the 290 participants are described in Table 1. The median age was 12.2

years (10.0–13.8 IQR), and 57.2% were male. The median S. mansoni intensity was 192 EPG

(90–516 IQR), and the proportions in light, moderate, and heavy intensity categories were

27.2%, 46.9%, and 25.9%, respectively. Of the 290 participants treated for S. mansoni infection

at baseline, 46 (16.2%) were re-infected at the 12-month visit. Analyses pertaining to the

12-month visit were also run separately excluding those 46 participants who were re-infected,

and none of the significant findings were impacted.

LPS

LPS concentration did not differ by S. mansoni intensity category at baseline nor at the 6- and

12-month follow-up visits (Fig 1, S1 Table). Following PZQ treatment administered during

Table 1. Participant characteristics at baseline, N = 290

n (%) or median (IQR)

Age (years) 12.2 (10.0–13.8)

Sex (male) 166 (57.2)

Weight (Kg) 36.0 (29.0–47.9)

Weight-For-Age z-score (WAZ) -0.55 (-1.27, 0.21)

Socioeconomic status (SES) level

1 (Lowest) 83 (29.3)

2 47 (16.6)

3 70 (24.7)

4 83 (29.3)

5 (Highest) 0 (0)

Community site

Astraluta 18 (6.2)

Caju 30 (10.3)

Córrego São João 40 (13.8)

Giru 38 (13.1)

Itaobim 21 (7.2)

Monte Formoso 39 (13.4)

Palha 26 (9.0)

Ponto dos Volantes 78 (26.9)

S. mansoni intensity (EPG) 192 (90–516)

S. mansoni intensity Category

Light (1–99 EPG) 79 (27.2)

Moderate (100–399 EPG) 136 (46.9)

Heavy (�400 EPG) 75 (25.9)

Hookworm infection status 32 (11.3)

Biomarkers

LPS (EU/mL) 0.26 (0.20–0.31)

I-FABP (pg/mL) 524.7 (283.3–865.5)

IGF-1 (pg/mL) 1,674.6 (969.4–2,259.7)

EPG, eggs per gram of stool; LPS, lipopolysaccharide; I-FABP, intestinal fatty acid binding protein; IGF-1, insulin-

like growth factor 1

https://doi.org/10.1371/journal.pntd.0010837.t001
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Fig 1. Biomarkers by baseline S. mansoni intensity. Least squares means and standard errors for lipopolysaccharide

(LPS, EU/mL), intestinal fatty acid binding protein (I-FABP, pg/mL), and insulin-like growth factor 1 (IGF-1, pg/mL)

concentrations at each visit (baseline, 6-months, and 12-months) by baseline S. mansoni intensity category. Asterisks

represent significant differences determined by multivariate regression with light infection intensity as the reference

category. Stepwise selection retained variables of a) age and b) WAZ. Continuous variables were natural log-

transformed.

https://doi.org/10.1371/journal.pntd.0010837.g001
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the baseline visit, LPS concentrations were significantly reduced at the 12-month visit com-

pared to the baseline (Fig 2, S2 Table).

I-FABP

There were no differences in I-FABP concentrations by infection intensity category at the

baseline or 12-month visits. At the 6-month visit, the I-FABP concentration was significantly

higher for those in the heavy intensity category compared to the light intensity category (Fig 1,

S1 Table). I-FABP concentrations measured at the 6 and 12 month follow-up visits were not

significantly different from the baseline measures (Fig 2, S2 Table).

IGF-1

IGF-1 concentrations were significantly lower for those with moderate and heavy infection

intensity compared to light infection intensity at baseline, 6-month, and 12-month visits (Fig

1, S1 Table). There were no significant differences in IGF-1 concentrations measured at the 6

and 12-month visits compared to the baseline visit (Fig 2, S2 Table). In multivariate regression

models adjusting for age, IGF-1 concentrations were positively correlated with LPS concentra-

tions at the 6-month (p = 0.0218) and 12- month visits (p = 0.0445), but not at baseline

(p = 0.1105). In similar regression models adjusting for age, IGF-1 concentrations were not

correlated with I-FABP concentrations at any visit (Table 2).

Discussion

To better understand the mechanistic pathway between childhood schistosomiasis and associ-

ated morbidities, such as impaired linear growth, this longitudinal cohort study sought to

examine the relationships between S. mansoni infection and markers of gut health and the IGF

axis as one potential pathway. The results demonstrate that S. mansoni infection impacts EED

biomarkers, LPS and I-FABP, as well as IGF-1.

Compared to light infection intensity at baseline, participants with heavy or moderate infec-

tion intensity had significantly lower concentrations of IGF-1 measured at baseline, 6-month,

and 12-month visits. These age-adjusted findings contribute evidence that schistosomiasis egg

burden is associated with disruptions in the IGF axis, with long-term impacts during the 12

months following PZQ treatment. While the evidence is limited, previous case-control studies

have demonstrated associations between severe forms of disease–hepatic fibrosis or hepatos-

plenic schistosomiasis–and decreased IGF-1 concentrations compared to control groups

[25,26]. However, this is the first study to demonstrate an impact of schistosome egg burden

on IGF-1 in the absence of overt clinical disease. These findings suggest that intensity of schis-

tosomiasis infection leads to disruption in the IGF axis, which contributes to our understand-

ing of at least one mechanism underlying schistosomiasis-related morbidities, specifically

impaired linear growth in children.

There is strong evidence to support that chronic pro-inflammatory responses result in

impaired linear growth for children experiencing schistosomiasis or EED [14,21,23]. Cyto-

kines characteristic of a pro-inflammatory or T helper type-1 (Th1) mediated response disrupt

the IGF axis and culminate in impaired growth. This has been demonstrated in chronic

inflammatory childhood diseases, such as inflammatory bowel disease and chronic kidney dis-

ease, whereby increased inflammatory biomarkers and decreased anabolic growth factors like

IGF-1 are associated with linear growth faltering, as well as in insults of bacteremia from MT

[21,24]. Previous studies have shown that the MT biomarker LPS negatively impacts IGF-1

[41,42], however, in this cohort, LPS concentrations were positively correlated with IGF-1 six

and 12 months after PZQ treatment, and not at baseline during active infection. In other
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Fig 2. Biomarkers across visits. Least squares means and standard errors for lipopolysaccharide (LPS, EU/mL),

intestinal fatty acid binding protein (I-FABP, pg/mL), and insulin-like growth factor 1 (IGF-1, pg/mL) concentrations

across visits (baseline, 6-months, and 12-months). Asterisks represent significant differences determined by

multivariate regression with the baseline visit as the reference category. Stepwise selection retained variables of a)

WAZ, b) age, c) sex, and d) S. mansoni infection intensity category. Continuous variables were natural log-

transformed.

https://doi.org/10.1371/journal.pntd.0010837.g002
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studies, a negative relationship between LPS and IGF-1 has been shown to be mediated by

polarized Th1/Th2 responses [43,44], and additional measures of associated cytokines would

offer a more comprehensive understanding of the MT and IGF axis associations in this popula-

tion. Given that schistosomiasis is a chronic inflammatory disease affecting children, future

research ought to target the mechanistic roles of inflammation and the IGF axis as they relate

to childhood morbidities, such as growth faltering.

Our findings demonstrate the impact of S. mansoni infection on LPS. In adjusted regression

models, LPS concentrations were significantly lower 12 months following PZQ treatment

compared to baseline. Similar studies evaluating MT biomarkers following PZQ treatment for

schistosomiasis showed no significant impact on LPS 6 months or 9 months after treatment

[45,46]. Our results suggest an even longer timeframe required for gut barrier healing follow-

ing the cessation of schistosome eggs traversing the gut wall.

The EED biomarker I-FABP is an intracellular enterocyte protein released into circulation

following injury to the gut epithelia [47,48]. To our knowledge, only one previous study has

examined I-FABP in the context of schistosomiasis [49]. In that study, adult fishermen in

Kenya with HIV infection, and some of whom were infected with S. mansoni, were treated

with antiretroviral therapy and PZQ at baseline as needed. I-FABP was measured at baseline, 2

weeks, 1 month, and 3 months post treatment. They found that I-FABP concentrations among

participants with S. mansoni infection did not differ between visits and were not associated

with S. mansoni EPG at any visit. However, those cases had relatively low infection intensity

compared to the current analysis. We observed associations between infection intensity cate-

gory and I-FABP concentrations 6 months following PZQ treatment. Concentrations of

I-FABP were significantly higher for participants with high egg burden compared to low

egg burden. Higher I-FABP concentrations related to higher egg burden at the 6-month visit

may be explained by residual eggs lodged in the tissue between the mesentery and the luminal

barrier and associated granulomatous inflammation, requiring time to more fully resolve

[50,51].

Because 16.2% of participants were found to be re-infected with S. mansoni infection at the

12-month follow-up visit, we re-ran the regression models pertaining to the 12-month visit

and excluded any participants who had become re-infected. Excluding these re-infected

Table 2. Linear regression of IGF-1 concentrations by EED biomarkers

Univariate Multivariate

ß P value ß P valuea

LPS (EU/mL)

Baseline 1.0032 0.1399 1.0526 0.1105

6-month 1.4388 0.0248 1.4454 0.0218

12-month 1.0588 0.0497 1.0650 0.0445

I-FABP (pg/mL)

Baseline -0.0544 0.3552 -0.0196 0.7331

6-month -0.0914 0.0387 -0.0685 0.1200

12-month -0.0272 0.5464 -0.0078 0.8620

LPS, lipopolysaccharide; I-FABP, intestinal fatty acid binding protein; IGF-1, insulin-like growth factor 1. Continuous variables were natural log-transformed.

All continuous variables natural log-transformed.
a) Stepwise selection considered variables of age, sex, WAZ, SES, and hookworm infection status. Of these, only age was retained and included in all multivariate

regression models.

https://doi.org/10.1371/journal.pntd.0010837.t002
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participants had no impact on the significant findings reported in the results section, and no

additional significant associations emerged.

The present findings offer evidence to support relationships between S. mansoni infection

and both EED and the IGF axis and further our understanding of the mechanistic pathways

between schistosomiasis and associated morbidities. The analysis of these mechanisms would

be strengthened by measuring circulating immunologic response markers (Th1 and Th2

cytokines) at each visit as well as collecting measures on schistosomiasis-specific morbidities

(anemia, linear growth, and hepatic fibrosis). Additionally, the findings would benefit from

enrolling participants without baseline S. mansoni infection who represent similar geographic

and demographic characteristics. Given the significant overlapping global burden of schistoso-

miasis and EED, it is essential that we elucidate the immunopathology of these illnesses in

order to prevent long-term morbidities in affected populations.
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