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Atrial-fibrillation (AF) is the most common clinically encountered arrhythmia affecting over 1 per cent 
of population in the United States and its prevalence seems to be moving only in forward direction. A 
recent systemic review estimates global prevalence of AF to be 596.2 and 373.1 per 100,000 population in 
males and females respectively. Multiple mechanisms have been put forward in the pathogenesis of AF, 
however; multiple wavelet hypothesis is the most accepted theory so far. Similar to the conduction system 
of the heart, a neural network exists which surrounds the heart and plays an important role in formation 
of the substrate of AF and when a trigger is originated, usually from pulmonary vein sleeves, AF occurs. 
This neural network includes ganglionated plexi (GP) located adjacent to pulmonary vein ostia which 
are under control of higher centers in normal people. When these GP become hyperactive owing to loss 
of inhibition from higher centers e.g. in elderly, AF can occur. We can control these hyperactive GP 
either by stimulating higher centers and their connections, e.g. vagus nerve stimulation or simply by 
ablating these GP. This review provides detailed information about the different proposed mechanisms 
underlying AF, the exact role of autonomic neural tone in the pathogenesis of AF and the possible role of 
neural modulation in the treatment of AF.
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Introduction

 Atrial fibrillation (AF) is the most common 
clinically encountered arrhythmia affecting over 
three million people in the United States with the 
prevalence rate of about 1.1 per cent1. Different studies 
have projected dissimilar burdens of this disease, 
ranging from 5.6 to 12.1 million by the year 20501-3. 
The difference in projected prevalence could be due 
to difference in sample population as well as the time 
period during which the particular study was done1. 
AF is more prevalent in the elderly populations1 and 
in males as compared to females3. A recent systemic 
review estimates global prevalence of AF to be 596.2 

and 373.1 per 100,000 population in males and 
females respectively4. In addition, it is reported to be 
more common in the Whites as compared to Blacks, 
however, the difference is significant only in persons 
aged >50 yr3. In spite of such a high prevalence and 
burden, the underlying mechanisms, therapeutic 
recommendations as well as the role of non-modifiable 
risk factors including genetics underlying AF are not 
completely understood. Currently available options 
to treat or prevent AF episodes (drugs and catheter 
or surgical ablation) are not always effective, which 
necessitate the need for the development of new 
therapeutic modalities. In this review, we will discuss 
the possible role of autonomic modulation to prevent 
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and manage AF, which might be a non-ablative and non-
pharmacologic yet more effective and safer therapeutic 
option in future. 

Current treatment options

 Currently, AF management revolves around rate/
rhythm control, along with anticoagulation for stroke 
prevention. Rate control is achieved either with anti-
arrhythmic drugs (AADs) or by modification of the 
atrioventricular (AV) node while, rhythm control 
is achieved with anti-arrhythmic drugs, catheter 
ablation or surgery. Regardless of the strategy used, 
anticoagulant use is mandatory in patients at risk of 
developing stroke5. 

Pharmacotherapy

 The results of the AFFIRM (The Atrial Fibrillation 
Follow-up Investigation of Rhythm Management) 
trial6, found that roughly 50 per cent of AF patients 
on various classes of anti-arrhythmic drugs were in 
sinus rhythm at the end of one year, although those 
on amiodarone showed a 62 per cent success rate. A 
substantial portion of the treated AF population was 
unresponsive to AADs therapy. It is reasonable to 
assume that this group would constitute candidates for 
catheter or surgical ablation. Currently, use of either 
option (rate control or rhythm control) is dependent 
on the patient’s age, severity of symptoms, associated 
cardiac disease and other co-morbid conditions, 
which might restrict some of the therapeutic options7. 
Limited efficacy, occasionally intolerable side effects 
and possible mortality risk makes catheter ablation 
an alternative for AADs to achieve sinus rhythm in a 
significant group of patients.

Catheter ablation

 Catheter ablation has shown overwhelming success 
in many heart rhythm disorders but unfortunately not as 

much in AF. It was the surprising discovery of the origin 
of ectopic beats from pulmonary veins that formed the 
basis for the modern technique of catheter ablation in 
patients with AF8,9. The initial approach of ablating 
trigger points in pulmonary veins8-10 has changed 
progressively to pulmonary vein isolation (PVI) by 
applying circumferential lesions around PV ostia11-14 
to prevent triggers from reaching the atrial substrate. 
A worldwide multicenter survey regarding PVI by 
Cappato et al15 showed the success rate of catheter 
ablation to reach up to 70 per cent without AADs and 
80 per cent with the addition of AADs. Of importance, 
this success rate was achieved after performing 
about 1.3 procedures per patient15. More recently, 
Weerasooriya et al16 described long-term follow up 
of patients following catheter ablation. Arrhythmia 
free survival rates following single catheter ablation 
procedure were 40, 37 and 29 per cent at the end of 
1, 3 and 5 yr, respectively. When repeat procedures 
were done after AF recurrence; with a median of two 
procedures per patient, success rates increased up to 87, 
81 and 63 per cent, respectively over the same yearly 
periods16. Further support for these findings has been 
reported in several, specifically five additional, long-
term studies of success rates during follow up periods 
ranging from 3-6 yr (Table). These studies in patients 
with paroxysmal and persistent AF, consistently found 
low success rates, <40 per cent for a single procedure. 
Burkhardt et al22 stated that the persistent forms of AF 
showed similarities to metastatic cancer. 

 It should be mentioned that Nademanee et al23 
reported success rates as high as 91 per cent. They 
based their success rates on ablation of atrial sites 
showing complex fractionated atrial electrograms 
(CFAE). It was only later that they proposed that GP 
(ganglionated plexus) ablation might inadvertently 
be involved in their success rates24. Our own clinical 

Table. Comparative success rates of long-term single and multiple pulmonary vein isolation procedures for treating atrial fibrillation
Study Follow up (yr) Success rate (%) Number of patients

Single Multiple
Sorgente et al17 6 23 39 153
Bertaglia et al18 6 55 - 177
Tilz et al19 5 20 45 202
Chao et al20 3 28 - 88
O’Neill et al21 4 54 95 153
Weerasooriya et al16 5 29 63 100
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studies combining GP ablation and pulmonary vein 
isolation (PVI) showed success rates approximating 
those by Scherlag and colleagues25. A randomized 
study by Katritsis et al26 in three groups of patients with 
PVI alone, GP ablation alone and PVI plus GP ablation 
confirmed more than 20 per cent greater success rate 
in the last group compared to the others (61-85%). A 
limitation of these latter findings is the shorter follow-
up periods (1-2 yr). This highlights the need for a 
more effective approach, which would decrease the 
need of repeat procedures and to successfully treat the 
remaining 13-19 per cent with recurrent AF. 

 Catheter ablation has its own disadvantages.  
Catheter ablation leads to complications in approximately 
4.5 per cent15; some of the serious complications 
include cardiac tamponade, PV stenosis, phrenic nerve 
injury, esophageal injury or thromboembolism. Gibson 
et al27 have reported the ‘left atrial stiffness syndrome’ 
i.e. pulmonary hypertension (PH) with left atrium (LA) 
diastolic dysfunction in patients undergoing extensive 
catheter ablation in an effort to decrease the recurrence 
rates of AF. In addition, Schwarz et al28 have described 
that micro-embolic load of patients undergoing AF 
ablation is not less than those undergoing major cardiac 
surgery. This has been demonstrated by them in terms 
of neuropsychological decline seen after left atrial 
catheter ablation in AF most probably due to cerebral 
embolic lesions. Similarly, Gaita et al29 have shown 
a risk of symptomatic cerebral ischaemia or silent 
cerebral ischaemia that can be detected on magnetic 
resonance imaging (MRI) following catheter ablation 
of AF. 

 These multiple pitfalls prompted us to search for 
new modalities of treatment, which are more efficient 
and accompanied with fewer complications. Neuro-
modulation could provide such a breakthrough in the 
form of a potentially non-invasive non-pharmacologic 
option to manage atrial fibrillation. 

Mechanisms of AF and the role of autonomic 
nervous system (ANS)

 During the last century there was an ongoing 
polemic concerning the mechanisms underlying atrial 
fibrillation30-33. Multiple mechanisms have been put 
forward so far in the pathogenesis of AF that include 
coexistence of multiple reentry circuits (Garrey and 
Mines)34 or single reentry circuit with fibrillatory 
conduction (Thomas Lewis)34 or the rapid discharge 
of ectopic foci35. However, the multiple wavelet 
hypothesis proposed by Moe and Abildskov became the 

most accepted theory36 based on the advent of computer 
mapping techniques35 that reinforced the concept of 
multiple reentrant circuits. These basic experimental 
studies eventually became the prevailing view of 
cardiologists and cardiothoracic surgeons. The Maze 
procedure originated by Cox and associates38 separated 
the atria into discrete segments by surgical incisions 
to specifically interrupt these multiple reentrant 
circuits. However, the seminal findings of Jais and 
colleagues9 and Haissaguerre et al8 that ectopic firing 
within pulmonary veins in patients with AF, resistant 
to drug therapy, resurrected the focal mechanism 
concept. Further studies showed that non-pulmonary 
vein sites of focal ectopy arising from the posterior left 
atrium8, superior vena cava40-42, persistent left superior 
vena cava43, ostium of the inferior vena cava44, vein 
of Marshall45,46, crista terminalis45 and coronary sinus 
ostium47 could also induce AF. 

 From these observations, a fundamental question 
arises. How does the focal firing at the pulmonary 
veins (PVs) or other locations become transformed 
into AF? Scherlag et al48 demonstrated that the number 
of stimulated impulses applied to the PV would not 
induce AF unless there was simultaneous activation 
of the cluster of neurons called ganglionated plexi 
(GP) adjacent to that PV49 (Fig. 1). Of importance, 
GP activation is achieved with electrical stimulation 
that does not excite the atrium. Extensive studies by 
Randall and his associates50 have provided evidence 
of the existence of multiple GP and an interconnected 
neural network throughout the atria and ventricles 
constituting an intrinsic cardiac autonomic nervous 
system (ICANS). Po et al51 caused focal firing in 
either the right or left superior PV after injecting the 
neurotransmitter acetylcholine (ACh) into the GP 
anatomically adjacent to those PVs. Further, Lemola 
et al52 performed PV isolation in dogs while preserving 
the GP and then ablated the GP while leaving the PV 
intact. Using vagal induced AF in both cases they 
concluded, "it is the PV associated ganglia not the PV 
themselves that are important in vagally mediated AF 
promotion".

 But, how exactly does these GP induce AF? 
Accumulated evidence by Scherlag et al53 suggested 
that the release of cholinergic neurotransmitters 
from these GP causes shortening of atrial and PV 
sleeve refractoriness. The concomitant release of 
adrenergic neurotransmitters mobilizes excess calcium 
intracellularly leading to early after depolarizations 
(EADs) and triggered firing particularly in PV cells. 
Furthermore, additional studies by Patterson et al54,55 



provided added evidence suggesting that PV myocytes 
show distinctive cellular electrophysiological 
differences from adjacent atrium, particularly, shorter 
action potential duration (APD). Moreover, the PV 
tissue exhibited greater sensitivity to both cholinergic 
and adrenergic stimulation than adjacent atrial tissue. 
Thus, local stimulation of nerve endings in the 
PV induced release of acetylcholine which further  
shortened APDs while release of the adrenergic 
neurotransmitters induced EADs leading to rapid, 
triggered firing. The underlying mechanism for the 
EADs relates to the temporal disproportionality 
between the very short APD and the longer lasting 
calcium transient in the PV myocytes. Under autonomic 
stimulation these differences are further exacerbated 
so that the effects on the sodium-calcium exchanger 
favours excess calcium entry thereby leading to EAD 
formation55, i.e., triggered PV firing. Hence, they 
concluded that hyperactivity of these local cardiac GP 
played a critical role in initiating the paroxysmal form 
of AF resistant to drugs and cardioversion. Since, all 
of these studies were performed in acute anaesthetized 
dogs, it is important to note that a recent review has 
detailed the use of continuous neural recordings in 
ambulatory dogs. The animals were subjected to 
pacing induced AF for days or weeks so as to promote 
the spontaneous occurrence of AF. Direct autonomic 
recordings in ambulatory canine models demonstrated 
that simultaneous sympathovagal discharges are the 
most common triggers of paroxysmal atrial tachycardia 
and paroxysmal atrial fibrillation56.

Role of ANS in the pathogenesis of AF and what are 
the clinical implications? 

 The neuronal control of the heart is achieved by a 
highly connected and integrated neural network, which 
consists of : brain stem  vagal trunks  intrathoracic 
ganglia and sympathetic ganglia (intrathoracic extra-
cardiac innervation)  intrinsic cardiac autonomic 
nervous system57,58. The major portion of the last ICANS 
consists of GP, which are found within collections of fat 
pad containing autonomic nerve ganglia coordinating 
between neural network on the heart and higher centers 
in brainstem mainly via the vagus nerves57. 

 Under physiological conditions, the higher centers 
appear to have inhibitory influence on GP function. It 
has been shown that when the higher control is lost, 
GP become hyperactive. This may account for the 
increased prevalence of AF in the elderly59,60. Further, 
in studies conducted by Smith et al61 it was found 
that after chronic decentralization, intrinsic cardiac 
neurons undergo changes in membrane properties 
that may lead to increased excitability. After chronic 
decentralization, intrinsic cardiac neurons remain 
viable, are responsive to cholinergic inputs and show 
enhanced muscarinic responsiveness without changes 
in receptor abundance62. 

 Numerous studies have shown that stimulation 
of the GP adjacent to the orifice of the right or left 
superior PVs in normal dogs greatly facilitates the 
induction and maintenance of AF by rapid pacing at 

Fig. 1(A). Schematic representation of the right and left side of the heart as viewed through a right and left thoracotomy, respectively.  
The anterior right (ARGP) lies within a fat pad located at the left of the sulcus terminalis between the right superior and right inferior 
pulmonary veins (RSPV, RIPV, respectively). The inferior right (IRGP) is located at the junction of the inferior vena cava (IVC) and the right 
and left atrium (RA, LA, respectively). (B). The location of the superior left (SLGP) is shown at the junction of the left pulmonary artery 
(LPA) and the left superior pulmonary vein (LSPV). The inferior left (ILGP) is located at the posterior aspect of the left inferior (LIPV). 
Smaller GP are found at the lower part of the ligament of Marshall (LOM) close to the coronary sinus. Other abbreviations: Superior Vena 
Cava (SVC); right and left ventricles (RV, LV, respectively).
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the left atrium-pulmonary vein (LA-PV) junction 
(simulating PV firing)63. In their study determining the 
mechanisms of AF whereby focal firing from PVs is 
converted into AF, Scherlag et al48 demonstrated that it 
is the autonomic ganglia (AG) stimulation at the base 
of the right superior PV (RSPV), which provides a 
substrate for the conversion of PV firing into AF.

 The GP function as the "integration centers" 
modulating the autonomic interactions between the 
extrinsic and intrinsic cardiac ANS64,65. AF is more 
liable to occur due to intrinsic nerve stimulation at the 
PVs whereas peripheral atrial sites are more readily 
inducible for AF due to the extrinsic neural input59. The 
intrinsic cardiac autonomic nervous system also plays 
a crucial role in the acute stages of atrial electrical 
remodelling induced by rapid atrial pacing which 
induces and maintains AF66. In addition, data suggest 
that AF initiation in the LOM (ligament of Marshall) 
has an autonomic basis, and both sympathetic and 
parasympathetic neural elements play an important 
role in AF initiation. In fact, hyperactivity of the 
sympathetic neural elements in LOM may be crucial in 
the initiation of ventricular tachyarrhythmias as well67. 

Alternative methods for catheter ablation of AF: 
Targeting the ganglionated plexi

 Platt et al68 initially described the identification 
of the GP at the PV-atrial junctions by applying high 
frequency stimuli to these nerve clusters. In patients 
with persistent forms of AF, the response was a marked 
slowing of the ventricular rate (≥ 50%) during AF. 
Ablation of these GP terminated the persistent AF in 23 
of 26 patients who had a complete study with an overall 
success rate of 96 per cent during a short 6 month follow 
up68. More recent studies have reported highly variable 
success rates ranging from 25 to 78 per cent after  
≥ 1 yr of follow up69-71. It should be pointed out that in 
some of these studies GP ablation was performed by on 
anatomic identification of GP sites. No high frequency 
electrical stimulation was used to determine that these 
were ablated after radiofrequency applications70,71. 
Furthermore, the study showing the lowest success rate 
may have only performed partial ablation by missing the 
largest GP situated anteriorly between the right superior 
and inferior PVs, the anterior right GP. In this study69 
the GP were approached epicardially, the anterior right 
GP which is situated closely adjacent to the phrenic 
nerve precluded the separation of GP and phrenic 
nerve by stimulation and, therefore, that particular GP 
was not ablated69. Experimental studies have shown 
that partial GP ablation is not only less effective than 

complete GP ablation but partial ablation of the GP 
may increase the incidence of AF by exacerbating the 
heterogeneity of refractoriness across the atria thereby 
promoting macro-reentrant AF73,74.

Newer possible therapeutic modalities for AF 
management

 As the role of ICANS including GP has been 
discussed, it seems obvious that finding a method 
to control ICANS can treat and/or prevent AF now 
being treated with standard AADs, catheter or surgical 
ablation. As mentioned earlier, adding GP ablation to 
conventional PVI could be an option since, clinically it 
has shown to increase the success rate from 70 to 91 per 
cent and 60 to 85 per cent in two different studies25,26. 
However, it has its own downsides of complications 
pertaining to catheter ablation, which have already 
been mentioned15. Therefore, another possibility could 
be stimulating higher centers that modulate control of 
lower centers, i.e. GP. 

 Vagus nerve stimulation (VNS) could serve as one 
of the promising future therapeutic modalities as it acts 
as a mediator between higher and lower autonomic 
nerve elements. A series of experiments done at our 
center have demonstrated the usefulness and efficacy of 
VNS in the treatment of AF75-78. The experiments were 
conducted with the help of wire electrodes inserted 
into vagosympathetic trunks followed by (low-level) 
stimulation at a voltage of 50 per cent or even 10 per 
cent below the level at which heart rate (HR) or AV 
conduction slows. It was demonstrated that low level 
VNS significantly decreased enhanced neural activity 
of the ICANS or GP resulting in suppression of AF 
inducibility. Suppressed AF inducibility was inferred 
from the final results of increased effective refractory 
period (ERP), decreased window of vulnerability 
(WOV) and increased AF threshold while, decreased 
function as well as neural activity in GP provided 
evidence for mitigation of GP following low level 
VNS75,76. Further experiments, particularly with right 
vagal stimulation alone, demonstrated that low level 
VNS has anticholinergic as well as anti-adrenergic 
effects and it abolishes chronotropic responses of 
the heart to both sympathetic or parasympathetic 
stimulation77,78. In our laboratory, these acute studies 
were performed in anaesthetized dogs while, others 
have now shown that low level VNS (LL-VNS) in 
ambulatory dogs susceptible for AF suppressed both 
spontaneously recurring paroxysmal AF as well as AT79.
It is hypothesized that autonomic nerve modulation by 
LL-VNS releases a neuropeptide called Vasostatin-1 
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(VS-1), which inhibits GP and reduces AF inducibility60. 
Unpublished results from animal studies done at our 
center have shown that VS-1 has anti-adrenergic and 
negative lusitropic effects, i.e. prolong refractoriness, 
and further, it mediates its anti-arrhythmic effect via 
endothelium-derived nitric oxide80. Perhaps LL-VNS 
can provide a new therapeutic approach to treat AF 
and also prevent AF recurrences. VNS is already 
a Food and Drug Administration (FDA) approved 
adjunctive treatment for refractory epilepsy as well 
as depression81- 83. But, being invasive, it comes with 
intraoperative and perioperative complications like 
peri-tracheal haematoma or vocal cord abnormalities 
including risk of aspiration. In addition, patient 
compliance might be an issue considering no person 
would like to have a stimulator placed in his neck84. 

 In an effort to find a non-invasive way to stimulate 
the vagus nerve, Yu et al85 performed low-level 
transcutaneous electrical stimulation at the tragus, 
i.e. anterior protuberance of the ear, to suppress AF 
inducibility via stimulation of auricular branch of 
vagus nerve found in this structure. Studies done in 
the anaesthetized dogs demonstrated that LL-VNS 
provides positive results in terms of increased ERP, 
decreased WOV and decreased neural activity in GP. 
Dietrich et al86 studied the feasibility of transcutaneous 
VNS at the inner side of tragus and showed the results 
by measuring activation in various regions in the 
brain using functional magnetic resonance imaging 
(fMRI). A positive Blood Oxygen Level Dependent 
(BOLD) response was detected during stimulation in 
brain areas associated with higher order relay nuclei 
of vagal afferent pathways. Evidences suggest that 
transcutaneous VNS is feasible and it can be objectively 
proven by recording Vagus Sensory Evoked Potential 
(VSEP) measured as a far field potential probably 
originating in vagus nuclei in brainstem87,88. However, 
further experimental and clinical studies are necessary 
to evaluate its efficacy. 

 One other therapeutic method for the prevention and 
treatment of AF could be the application of low level–
electromagnetic fields (LL-EMF) to stimulate vagus 
nerves and suppress AF similar to the use of LL-VNS 
electrically. Yu et al89 showed that the dissected vagal 
trunks placed between small Helmholtz coils could 
be electromagnetically exposed to micro gauss level 
EMFs (0.34 micro gauss at 0.952 Hz). In experimental 
models exhibiting electrophysiological parameters for 
AF propensity and sustained AF inducibility, these 

EMF fields suppressed AF. Perhaps, the same effects 
could be achieved by LL-EMFs applied at the tragus. 
Jacobson et al90 suggested the possible use of externally 
applied Pico Tesla magnetic field in the treatment of 
neurological disorders. Sandyk et al91 described the 
successful treatment of multiple sclerosis by externally 
applied magnetic fields over scalp on three different 
days for 7 min each, which resulted in complete 
resolution of symptoms. Similar mechanisms can be 
used to stimulate cranial nerves including the vagus. In 
fact, some studies have already proven the possibility 
of stimulating facial nerves non-invasively with trans-
cranial magnetic stimulation; which could be another 
possible method to stimulate vagal nerves92-94.

 Another method to modulate autonomic nerve tone 
could be to ablate GP by the intra-vascular introduction 
of magnetic nanoparticles. Yu et al89 conducted 
experiments with the help of magnetic nanoparticles 
(MNPs) carrying a neurotoxin (N-isopropyl acrylamide 
monomer; NIPA-M). A cylindrical magnet was placed 
epicardially on the inferior right GP (IRGP). When 
MNPs carrying a neurotoxin were injected into the 
circumflex artery which supplies the IRGP; the 
magnetic field trapped the MNPs at the IRGP and the 
release of the neurotoxin inactivated the ganglia within 
the IRGP. Suppression of GP activity was noticed 
which, in turn could provide a salutary effect in treating 
AF. Iron particles present in MNPs were also detected 
in the IRGP with the help of Prussian blue staining of 
histological sections of the GP. 

 Our group is currently conducting experiments to 
further explore the efficacy, feasibility and associated 
complications of newer non-invasive and non-
pharmacologic modalities of treatment. It includes the 
role of MNPs in GP ablation by external EMFs and 
VNS (by electrical, chemical, mechanical or EMF 
stimulation). Fig. 2 depicts the chronology of events 
that lead to AF and how the neuromodulation strategies 
help in treating and/or preventing episodes of AF.

Autonomic modulation in other diseases

 Modulating autonomic tone is a potential method 
of treatment not only for AF but also for other 
pathological cardiac conditions including ventricular 
arrhythmias95, chronic heart failure96,97 as well as 
coronary heart disease. It could be an alternative in 
other medical diseases as well; especially, anxiety, 
migraine, Alzheimer’s disease, pain control, circulatory 
shock, myocardial ischaemia, gastrointestinal motility 
disorders and tumorigenesis98. 
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Conclusion

 In conclusion, AF is one of the major causes of 
morbidity and mortality particularly in elderly patients. 
Unlike other rhythm disorders, available treatment 
options lack long-term benefit in a significant subset of 
patients with AF. The role of ANS has been well proven 
by numerous experimental as well as clinical studies 
and its modulation could have a promising future in 
the treatment of AF. VNS and non/minimally invasive 
GP ablation could be new and effective methods for 
altering abnormal fibrillatory rhythms.

Future directions

 Autonomic neuromodulation could be a potential 
method for the treatment and/or prevention of AF and 
many other diseases of the internal organs. Still, there 
is a need for further experimental studies to be pursued 
before clinical trials can be performed to assess efficacy, 

particularly in the long-term. It is equally important to 
uncover the complexity of vagus nerve function and 
to better understand its role in physiologic as well as 
pathologic conditions. 
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