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Explosive death induced by mean–
field diffusion in identical oscillators
Umesh Kumar Verma1, Amit Sharma1,2, Neeraj Kumar Kamal1, Jürgen Kurths3,4 & Manish Dev 
Shrimali1

We report the occurrence of an explosive death transition for the first time in an ensemble of identical 
limit cycle and chaotic oscillators coupled via mean–field diffusion. In both systems, the variation of the 
normalized amplitude with the coupling strength exhibits an abrupt and irreversible transition to death 
state from an oscillatory state and this first order phase transition to death state is independent of the 
size of the system. This transition is quite general and has been found in all the coupled systems where 
in–phase oscillations co–exist with a coupling dependent homogeneous steady state. The backward 
transition point for this phase transition has been calculated using linear stability analysis which is in 
complete agreement with the numerics.

Synchronization1, 2 and suppression of oscillations3–6 are two most prominent emergent dynamics of the coupled 
oscillators. In synchronization, the collective dynamics of coupled system changes from incoherence to coher-
ence. Although, the master stability function formalism7, 8 suggests that synchronization is a second order phase 
transition and the order parameter, which distinguishes coherence from incoherence, varies smoothly with the 
coupling strength, a non–trivial explosive synchronization9, 10 has been recently found in networks of coupled 
oscillator. The nature of phase transitions depends on the network topology and the characteristic dynamics of 
the oscillators in the network of dynamical systems. In the explosive transition, the order parameter exhibits an 
extremely abrupt jump at the transition point and shows a hysteresis behavior with distinct forward and backward 
transitions10. In the network of oscillators, adding even one new coupling, a connection between two oscillators 
or enhancing the coupling strength, can lead to the emergence of synchronized states11, 12.

Suppression of oscillations is another collective behavior of coupled oscillators and comes under two classes, 
namely, amplitude death (AD)3, 4 and oscillation death (OD)5, 6, depending on their origin. AD refers to a state, 
where all oscillators arrive at a common stable steady state, which is also a steady state of uncoupled oscillators, 
due to coupling. However, in case of OD coupled oscillators populate different coupling dependent steady states, 
which are created due to a coupling. This coupling seems to break the inherent symmetry of the oscillator and 
thus give rise to stable inhomogeneous steady states (IHSS) along with coupling dependent homogeneous steady 
states (HSS)5, 6. Since, all the oscillators populate the same steady states in HSS, this state is also termed as non–
trivial amplitude death (NTAD) in the literature. AD is a widely studied topic due to its application in systems 
where suppression of unwanted oscillations is necessary, e.g.– in laser and mechanical engineering systems13, 14, 
etc., whereas OD has significant applications in biological systems, e.g.– cell differentiation etc.15, 16. Recently, 
there has been a lot of interest in understanding the transition from AD to OD in coupled oscillators and it has 
been found that a Hopf bifurcation in the coupled system stabilizes the trivial fixed point first, which on larger 
coupling gives birth to coupling dependent steady states known as HSS and IHSS through a pitchfork bifurca-
tion5, 6, 17. Thus, the transition to death state from oscillatory state with coupling seems to be a second order phase 
transition.

However, an abrupt transition from an oscillatory state to a death one in coupled oscillators was also found18 
where it was demonstrated that, apart from the Kuramoto model, an explosive transition might occur in a dynam-
ical system involving amplitudes. This finding has extended the view of explosive transitions to amplitude models. 
It is well known that for the occurrence of a first order phase transition, two phases must co–exist over a param-
eter range. In many systems, e.g. in chemistry19 and physics20, the coexistence of stable oscillations and death 
has been demonstrated. Also, this situation has been found in various models of coupled limit–cycle and chaotic 
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oscillators21, 22. Hence, it will be interesting to know the occurrence and mechanism behind any explosive tran-
sition from oscillatory to death state in a coupled system of identical oscillators. In this letter, we report the first 
evidence of a first–order phase transition with hysteresis in ensemble of identical oscillators. To study this phase 
transition, we consider an ensemble of limit–cycle and chaotic oscillators coupled via mean–field diffusion23–28.

Results
To describe this explosive transition, we first consider N identical Van der Pol (VdP) oscillators coupled via a 
mean–field diffusion. The dynamics of this coupled system can be written as,
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1= ∑ =  is the mean field of the state variable ‘x’. The parameter Q, with 0 ≤ Q <1 , is 
the intensity of the mean field and k is the strength of coupling.

To study the variation of the collective behaviour of systems with the coupling strength, k, we define an order 
parameter in term of average amplitude. The amplitude of each oscillator is numerically calculated by using the 
difference between the global maximum and minimum values of the time series of oscillator over a sufficiently 
long interval at a particular coupling strength k, defined as a k x x N( ) ( )/i

N
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parameter, A(k), which is the normalized average amplitude23, 29 is now defined as,
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Thus, A(k), measures the average amplitude of all the oscillators in the coupled systems and for an oscillatory 
state the value of A(k) > 0, while for a death state A(k) = 0. We can also define another order parameter E(k)29, 30, 
which is the normalized mean incoherent energy of the system and is given by,
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where Xj(k) and Xj(0) represent the state variables of the j-th oscillator at the coupling strength k and 0 respec-
tively, X* represents the fixed point of the coupled system, and .  denotes the average over time. Clearly, the 
parameter E(k) has non–zero value when the system is in the active state.

The route to oscillation suppression can be numerically analyzed by computing the value of A(k) and E(k) 
adiabatically, both in forward and backward directions. Here, the dynamical equations are solved numerically for 
a random initial condition at some initial value k = ko and A(k) and E(k) are calculated in the stationary regime. 
Then, we increase the coupling by a small value δk and, using the outcome of the last run as the initial condition, 
calculate the new values δ+A k k( )o  and E k k( )o δ+ . We repeat these steps until a maximal value kmax is reached. 
In the same way, the backward continuation is done by decreasing the coupling by steps of size δk from the max-
imal value of kmax. In all of the results presented here, we used k 0 02δ = . , but our conclusions do not depend on 
this value of the increment.

In Fig. 1, the variation of A(k) and E(k), calculated by the procedure described above, is shown with k. Here, 
Fig. 1(a) and (c) exhibit a typical second order transition from oscillatory to death state and we find that the for-
ward and backward transition point for b = 1 and Q = 0.5 are the same. However, in Fig. 1(b) and (d), which is 
shown for the parameter values b = 2 and Q = 0.5, we observe a sudden jump in the order parameters to A(k) = 0 
& E(k) = 0 respectively in forward continuation which indicates the suppression of oscillations in the whole sys-
tem. Similarly, the backward continuation also shows a sharp transition from A(k) = 0 & E(k) = 0 to a finite value 
which indicates oscillations in the system. These two transition points are at different value of k, and thus, a hys-
teresis area is observed which is reminiscent of a first order phase transition. The time dependent behavior of the 
mean–field, < > = ∑ =x x

N j
N

j
1

1 , is also shown in Fig. 1(e) and (f) for both forward and backward continuation 
respectively and for representative values of the coupling strength. It clearly indicates the abrupt transition of the 
amplitude as the strength of the coupling is changed.

The dynamical states of the coupled VdP oscillators obtained by both forward and backward continuations 
of k in the parameter space, are shown in Fig. 2. In this figure, OS, AD, HSS and HA represents oscillatory state, 
amplitude death, homogeneous steady state and hysteresis area respectively. Interestingly we uncover that the 
first order transition to death (HSS) occurs only when b > 1, while the second order transition occurs for b ≤ 1. In 
Fig. 2(a), the horizontal dashed line separates these two regions. We have found that, in the case of first order tran-
sition, the system is stabilized at the coupling dependent HSS, while in the case of second order transition, the sys-
tem is stabilized at the origin. Also, the increase of b leads to an increase in HA in the parameter space (Fig. 2(a)).

The backward transition point for this explosive transition of this system can be computed by the stability 
analysis of HSS. The HSS for this system are, ⁎ ⁎ ⁎ ⁎x x y y i N( , , 1, , )i i= = ∀ = … , where = −

−
⁎x 1
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b

2 2 (1 )⁎ . For this point, the 2N × 2N Jacobian matrices can be written in the form of a block 
circulant matrix31 J = circ (A, B, B…, B), where,
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Figure 1.  The transition from an oscillatory state to a quenched oscillation state of the coupled VdP oscillators 
is shown. Under the variation of the coupling strength, k both forward (black) and backward (red) continuations 
of the normalized amplitude, A(k), and normalized mean incoherent energy, E(k), are shown in (a) and (c) for 
b = 1.0 and (b) and (d) for b = 2.0. Time–series of the mean–field near the transition point for (e) forward and 
(f) backward continuations of Eq. (1) for b = 2.0. The other parameters are Q = 0.5 and N = 100.
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Figure 2.  Different dynamical regions of the system described by Eq. (1) are plotted in the parameter planes. 
These dynamical regimes are observed over the range of value in (a) (b − k) parameter space at Q = 0.5, and in 
(b) (Q − k) parameter space at b = 2. The size of networks is N = 100. For details see the text.
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Thus, 2(N − 1) eigenvalues of the matrix J will be 2(N − 1) times degenerated and are equal to the eigenvalue 
of the matrix (A − B). The rest of the two eigenvalues will be equal to the eigenvalues of the matrix + −A N B( 1)  
which decide the stability of the HSS. The characteristic equation corresponding to the matrix + −A N B( 1)  is,
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The value of k as a function of Q is shown by the solid black line in both Fig. 2(a) and (b). These analytical 
curves clearly separate the oscillatory region from the hysteresis area which are obtained numerically. Thus, for a 
particular value of the mean–field density, Q, the critical value of the coupling at which the backward transition 
occurs is given by Eq. (6). The coexistence of two different types of solutions, namely, oscillatory and HSS solu-
tions, at the point of forward transition may be attributed to some kind of imperfect bifurcation due to which the 
oscillatory solutions lose their stability.

From this result, we can explain the phenomenology of this explosive transition. Here, an increase in k leads 
to synchronization in the coupled system. Due to the adiabatic evolution and co–existence of stable oscillatory 
solutions along with stable HSS solutions, the oscillatory solution persists for larger k in forward continuation. 
Once these oscillatory solutions loose their stability, the whole system go to stable HSS and there is an abrupt 
decay of A(k) and E(k). Similarly, during backward continuation, the system at HSS goes to stable oscillatory 
solutions once HSS loses its stability and there is an abrupt rise of the values of order parameters, A(k) & E(k), as 
can be seen in Fig. 1(b) and (d).

To generalize this mechanism, we now consider N chaotic Lorenz oscillators interacting via mean–field diffu-
sion and whose dynamics is given by,
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where, = …i N( 1, 2, , ) is the oscillator index. σ = =r10, 28 and b 8
3

=  are the parameters of a chaotic Lorenz 
oscillator. k and Q are the strength of coupling and intensity of the mean field, x , respectively.

Figure 3(a) again exhibit an abrupt transition of A(k) in both forward and backward continuation indicating 
a first order transition to a quenched oscillation state from an oscillatory state and vice–versa. This statement is 
also well corroborated by Fig. 3(b) which shows the variation of another order parameter E(k) with k. The differ-
ent collective behavior of this system over the variation of the parameters k and Q is shown in Fig. 3(c), using both 
forward and backward continuation. Here, we find three regions, namely, OS, HSS, and HA, where both oscilla-
tory and steady state solutions co–exist. The backward transition point can also be calculated from the stability of 
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The 3(N − 1) eigenvalues of J will be (N − 1) times degenerated and are equal to the eigenvalue of the matrix 
(A − B). The rest of the three eigenvalues will be equal to the eigenvalues of the matrix + −A N B( 1)  which give 
the stability of the HSS solutions. The characteristic equation corresponding to the matrix + −A N B( 1)  is,

d d d 0, (9)3
2

2
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0
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− = +bv u b, 1  and ⁎σ= −v r z( ). From Eq. (9), the condition for stabilization of HSS is obtained and it is given 
by,
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Fig. 3(c) by the solid black line and is the locus of the backward transition points of this first order transition.

Thus, the mechanism leading to this abrupt transition is similar to the mechanism discussed for the case of 
coupled VdP oscillators. To corroborate more, we calculate the variation of the largest Lyapunov exponent of this 
system on k which is shown in Fig. 4(a). Here, the largest Lyapunov exponent drastically changes its value from 
positive to negative at the point of transition. Thus, the coupled system is in a chaotic state before the transition 
and after that it settles to coupling dependent homogeneous steady state. The probability density of largest finite 
time Lyapunov exponent for this coupled system also indicate the transition from a chaotic state to a fixed point 
state at the point of transition. For more understanding of this phenomena, we also calculate the normalized 
synchronization error, k( ) S k

S
( )
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ρ = , as a function of k, where,
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Here, <..> represents the long time average. Clearly, for complete synchronization k( ) 0ρ = . The plot of ρ(k) 
for various values of k is shown in Fig. 4(b). Here, both, the maximum Lyapunov exponent and the normalized 
synchronization error are calculated adiabatically. From Fig. 4(a) and (b), it is clear that all oscillators first syn-
chronize among themselves at a critical value of coupling which is shown by the point ‘P’ and as the coupling 
strength increases further the oscillatory solutions loose their stability and the system goes to HSS.

Discussion
To conclude, we have studied the suppression of oscillations from oscillatory state of an ensemble of limit–cycle 
and chaotic oscillators from phase transition point of view. We have shown for the first time that this transition 
can be of first order with hysteresis in systems of identical oscillators. The underlying mechanism of this explosive 
transition is also discussed which is qualitatively the same for limit–cycle and chaotic oscillators. Although the 
results presented here are for the case N = 100, we have found these independent of the number of oscillators 
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Figure 3.  Forward (black) and backward (red) continuation diagram of (a) the normalized amplitude, A(k), 
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in the system. Apart from explosive death, the bistability in terms of activity and quiescence in these systems 
can also be accounted for the observed phenomena of annihilation and single–pulse triggering in biological 
systems32. The ceasing of spontaneous activity in a system by applying a sub–threshold pulse is termed as anni-
hilation and it has been observed in the eclosion rhythm of fruit flies, the circadian rhythm of bioluminescence 
in marine algae, the sinoatrial node in the heart and the Hodgkin–Huxley equations32–35. Also, injection of a 
supra–threshold current pulse in the system, restarts the activity from quiescence which is termed as single-pulse 
triggering and has been observed in the sinoatrial node in the heart and the Hodgkin–Huxley equations33–35. In 
all these biological systems, there must be a bistability of oscillatory and steady state solutions. Once the forcing in 
form of a signal is applied to them, the nature of the dynamics changes and the system shows activity from quies-
cence or vice–versa. We hope, our studies will not only provide the mechanism for these biological processes but 
also provide a better understanding of explosive transitions in coupled dynamical systems. In diluted networks, 
emergence of first order transition to synchronized states have been found due to adding a new connection in the 
coupled oscillators12, 36–38. Although, we have studied the transition from active to inactive state in globally cou-
pled systems, it will be interesting to study the effect of adding or removing a link between the nodes in complex 
networks on these explosive transitions.
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