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types of glycerophospholipids with different polar heads 
at the  sn -3 position in the glycerol backbone, such as phos-
phatidylcholine (PC), phosphatidylethanolamine (PE), 
phosphatidylserine (PS), phosphatidylinositol (PI), phos-
phatidylglycerol (PG), and cardiolipin (CL) are generated 
( 4, 5 ). Subsequently, glycerophospholipid acyl chains 
are remodeled by the orchestrated reactions of phos-
pholipase As (PLAs  ), acyl-CoA synthases, transacylases, and 
lysophospholipid acyltransferases (LPLATs) ( 5–9 ). This 
glycerophospholipid remodeling (also called Lands’ cy-
cle) was originally described in 1958 and is involved in the 
generation of a large variety of cellular glycerophospholip-
ids (  Fig. 1  ) ( 10, 11 ).  Thus far, investigations of glycero-
phospholipid remodeling have mainly focused on PLAs, 
especially in the production of lipid mediators ( 6–8 ). How-
ever, in recent years, various LPLATs have been identifi ed 
from the 1-acylglycerol-3-phosphate  O -acyltransferase (AG-
PAT) and membrane bound  O -acyltransferase (MBOAT) 
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 One of the major components of cellular membranes is 
a class of molecules known as glycerophospholipids, which 
are synthesized from glycerol-3-phosphate (G3P) in a de 
novo pathway that initially produces phosphatidic acid 
(PA) and diacylglycerol (DAG) or cytidine diphosphate-
DAG (CDP-DAG) ( 1–3 ). Via the de novo pathway, various 
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of PUFA-containing glycerophospholipids ( 8 ). Glycerophos-
pholipids containing PUFAs, such as arachidonic acid, li-
noleic acid, EPA, and DHA, are known as major sources of 
fatty acid-derived lipid mediators and endocannabinoids 
( 8, 13–15 ). Although numerous studies have shown the 
importance of PLAs in producing lipid mediators, the in-
volvement of LPLATs in lipid mediator production is 
poorly understood ( 6, 7 ). 

 At present, lyso-PC (LPC) acyltransferase (LPCAT)2, 
LPCAT3, lyso-PI (LPI) acyltransferase (LPIAT)1, and lyso-PA 
(LPA) acyltransferase (LPAAT)3 are reported to incorpo-
rate PUFAs into lysophospholipids with different acceptor 
preferences ( 16–20 ). LPCAT3 is ubiquitously expressed, es-
pecially in liver, testis, kidney, pancreas, and adipose tissue 
( 17, 18 ). Expression of LPCAT3 mRNA is controlled by 
PPAR �  and liver X receptors, and is induced during adipo-
genesis ( 21, 22 ). Knockdown of LPCAT3 by siRNA reduces 
arachidonic acid incorporation into PC and production of 
eicosanoids ( 23 ). Similar results were obtained from the 
treatment of thimerosal, a LPLAT inhibitor, and triacsin C, 
an acyl-CoA synthetase inhibitor ( 24–28 ). These reports 
suggested that the control of arachidonic acid pools in 
membrane glycerophospholipids is important for the eico-
sanoid production. Furthermore, it has been reported that 
induction of LPCAT3 ameliorates saturated free fatty acid-
induced endoplasmic reticulum (ER) stress in vitro ( 29 ). 
Using liver-specifi c LPCAT3 overexpression and knock-
down mice, the study demonstrated that LPCAT3 regulates 
hepatic infl ammatory cytokine levels and infl ammation. Al-
though the exact mechanism is unclear, the authors suggest 
that LPCAT3 may control infl ammation by altering the fatty 
acid composition of PC. 

 Although LPCAT2 and LPCAT3 can produce arachi-
donic acid-containing PC, the substrate preference and 
expression pattern for each differs. While LPCAT3 prefers 
1-acyl LPC as an acyl acceptor, LPCAT2 utilizes both 1-acyl 
LPC and 1-alkyl LPC ( 16–18 ). LPCAT2 is highly expressed 
in infl ammatory cells such as macrophages and neutro-
phils, which contain ether-phospholipids, and LPCAT2 is 
believed to contribute to the production of lipid mediators 
in these cells ( 16 ). Induction of LPCAT2 has been observed 
in three scenarios:  i ) in macrophages by lipopolysaccha-
ride and CpG oligodeoxynucleotide 1826 stimulation;  ii ) 
in the spinal cords of mice with experimental allergic en-
cephalomyelitis; and  iii ) in mice with peripheral nerve in-
jury ( 16, 30, 31 ). These observations support the hypothesis 
that LPCAT2 may be involved in lipid mediator production 
under infl ammatory conditions. In addition to LPCAT activ-
ity, LPCAT2 and LPCAT1 also possess lyso-platelet-activating 
factor (PAF) acetyltransferase (lysoPAFAT) activity for the 
production of PAF ( 16, 32 ). It has been reported that 
LPCAT2, but not LPCAT1, is activated by phosphorylation 
at Ser34 by lipopolysaccharide stimulation for 30 min ( 33 ). 
The biological importance of the dual activities in PAF and 
PAF-precursor glycerophospholipid production remains 
to be elucidated. 

 In general, it is thought that PUFAs are mainly incorpo-
rated into glycerophospholipids in the remodeling path-
way. However, DHA-containing glycerophospholipids are 

families (  Table 1  ).  Although studies with tissue homoge-
nates initially suggested that each LPLAT recognizes a spe-
cifi c substrate, isolated LPLATs have shown promiscuous 
substrate specifi cities ( 5, 9, 12 ). Because the acyl composi-
tion of membrane glycerophospholipids is known to affect 
not only the production of lipid mediators but also mem-
brane properties, characterizing these LPLATs will reveal 
the biological importance of membrane glycerophospho-
lipid diversity. 

 In mammalian cells, glycerophospholipid composition 
differs among cell types, organelles, and inner/outer 
membranes, and these differences are known to play im-
portant roles in various cellular functions including signal 
transduction, vesicle traffi cking, and membrane fl uidity 
( 4 ). Recently, several molecules involved in phospholipid 
transport between membranes and in phospholipid scram-
bling in plasma membranes have been identifi ed. These 
factors are also important for constructing the specifi c 
composition of local membranes. 

 In this review, we summarize and discuss the biological im-
portance of the variety of membrane glycerophospholipids 
generated via glycerophospholipid remodeling by LPLATs. 

 GENERATION OF PUFA-CONTAINING 
GLYCEROPHOSPHOLIPIDS 

 Glycerophospholipid remodeling by the concerted ac-
tion of PLAs and LPLATs is important for the production 

  Fig.   1.  Biosynthetic pathways of glycerophospholipids. Upper panel 
shows the de novo synthesis (green lines) and the fatty acid remod-
eling (magenta lines) of glycerophospholipids. LPLATs involved in 
each reacylation of the lysophospholipids are indicated. Lower panel 
shows an example of the fatty acid remodeling of PC. In this reac-
tion, PLA2s release fatty acid (arachidonic acid) from the  sn -2 posi-
tion of PC, while LPCATs catalyze the reacylation at the  sn -2 position 
of LPC using acyl-CoA (arachidonoyl-CoA). The details are discussed 
in the text. PGP, phosphatidylglycerolphosphate.   
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signal transduction and stabilization of proteins, by con-
trolling the biophysical properties of the membrane ( 38 ). 

 FUNCTIONS OF DISATURATED 
GLYCEROPHOSPHOLIPIDS 

 Pulmonary surfactant is produced in alveolar type II 
(ATII) cells and is secreted into the alveolar space to pre-
vent collapse ( 39 ). Pulmonary surfactant is composed of 
lipids ( � 90%), mainly dipalmitoyl-PC (DPPC), and associ-
ated proteins ( � 10%) ( 39, 40 ). The microsomal fraction 
from ATII cells exhibits high LPCAT activity with palmi-
toyl-CoA, indicating that surfactant DPPC is produced in 
the remodeling pathway ( 41 ). Indeed, LPCAT1, which is 

synthesized in the remodeling pathway as well as in the 
de novo pathway, because CDP-ethanolamine:DAG etha-
nolamine transferase and PE- N -methyltransferase prefer 
DHA-containing DAG and PE, respectively, in rat liver 
microsomes ( 34–36 ). In fact, LPAAT3 can produce DHA-
containing PA, and LPAAT3 may contribute to the pro-
duction of DHA-containing glycerophospholipids in the 
de novo pathway. Overexpression of LPAAT3 in HeLa 
cells inhibits Golgi tubule formation and protein traffi ck-
ing ( 37 ). Although the mechanism underlying this is 
unclear, it is possible that the products of LPAAT3 (PUFA-
containing PAs) may affect membrane properties. Be-
cause PUFAs are reported to increase membrane fl uidity, 
these enzymes may be important not only for lipid medi-
ator production, but also for cellular functions, such as 

 TABLE 1. Summary of characteristics of LPLATs          

Name Other Names

Substrate In Vitro

Expression

Phenotypes of KO, 
Knockdown, 

and Mutations In Vivo ReferencesLysophospholipid Acyl-CoA

LPAAT1  a  AGPAT1, LPAAT � LPA — Ubiquitous — ( 117–119 )
LPAAT2  a  AGPAT2, LPAAT � LPA, LPI — Adipose, liver, 

  pancreas, heart
Lipodystrophy, 
 diabetes

( 117, 120–123 )

LPAAT3  a  AGPAT3, LPAAT � LPA, LPG, LPC, 
 LPE, lyso-PAF

PUFA-CoA Testis, adipose, 
 liver, kidney

— ( 20, 122, 124 )

LPCAT1  a  AGPAT9, Aytl2 LPC, lyso-PAF, 
 LPE

Saturated 
  species, 

acetyl-CoA

ATII cells in 
 lung, retina

Reduction of DPPC 
  in pulmonary 

surfactant, retinal 
degeneration

( 32, 42–44, 46, 125, 126 )

LPCAT2  a  AGPAT11, Aytl1 LPC, LPS, LPE PUFA-CoA, 
 acetyl-CoA

Spleen, 
  macrophage, 

neutrophil

— ( 16, 125 )

LPCAT3  b  MBOAT5 LPC, LPE PUFA-CoA Testis, liver, 
 kidney

Hepatic infl ammation 
 in ob/ob mouse

( 17, 18, 26, 29, 127 )

LPCAT4  b  MBOAT2 LPE, LPS Oleoyl-CoA Testis, 
  epididymis, 

ovary, brain

— ( 17, 26 )

LPEAT1  b  MBOAT1 LPE Oleoyl-CoA Testis, 
  epididymis, 

ovary, brain

Brachydactyly-syndactyly 
 syndrome

( 17, 26 )

LPEAT2  a  AGPAT7, Aytl3, LPCAT4 LPI — Brain — ( 128 )
LPIAT1  b  MBOAT7, MBOA7 LPI PUFA-CoA Ubiquitous Postnatal lethal, atrophy 

  of the cerebral cortex 
and hippocampus, 
altered fatty acid 
composition of PI 
and PIPs

( 19, 20, 63, 65 )

LPGAT1  a  LPG — Liver, heart, 
  small intestine, 

kidney

— ( 45 )

LCLAT1  a  AGPAT8, ALCAT1, 
 LYCAT1

LCL, LPG, LPA, 
 LPI (2-acyl 
 and 1-acyl)

— Liver, heart, 
  pancreas, 

kidney

Protected from obesity 
  and insulin resistance, 

prevent of T4-induced 
cardiomyopathy, 
altered fatty acid 
composition of PI 
and PIPs

( 5, 103–109 )

TAZ  a  G4.5 LCL Transacylation Heart, skeletal 
 muscle

Barth syndrome, 
  accumulation of 

MLCL and altered 
CL composition, 
cardiac abnormalities, 
impaired oxygen 
consumption rates 
during an exercise

( 94, 101, 102, 129–133 )

Gene names, families, substrates preferences, mRNA expression patterns, and in vivo functions of LPLATs are summarized. Please note that 
there are several inconsistent reports about the enzymatic substrates in vitro.

  a   AGPAT family member.
  b   MBOAT family member.
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Because acyltransferase activities for lyso-PIPs are very low, 
the enrichment of arachidonic acid in PI and PIPs seems 
to be controlled in the PI remodeling pathway ( 19, 26 ). 
Recently, the phenotype of LPIAT1 KO mice was reported 
by two different groups ( 63, 65 ). LPIAT1 KO mice were 
postnatal lethal and showed atrophy of the cerebral cortex 
and hippocampus. LPIAT1 defi ciency caused abnormal 
cortical lamination and delayed neuronal migration in the 
cortex at embryonic day 18.5 ( 65 ). Fatty acid compositions 
and the cellular amounts of PI and PIPs were also changed 
in LPIAT1 KO mice ( 63, 65 ). Further studies are needed 
to clarify whether the reduction or the altered fatty acid 
compositions of PI and PIPs contributed to the pheno-
types of LPIAT1 KO mice. LPIAT1 KO mice showed an al-
most complete loss of LPIAT activity with arachidonoyl-CoA 
in brain, liver, kidney, and testis ( 65 ). In the brains of 
LPIAT1 KO mice, 65% of the normal level of arachidonic 
acid-containing PI was present ( 63, 65 ). Thus, de novo syn-
thesis also seems to be important for the incorporation of 
arachidonic acid into PI. On the other hand, it is reported 
that exogenously supplied palmitoleate (16:1) was prefer-
entially incorporated into PI and induced cell prolifera-
tion ( 66 ). In addition, a difference between the fatty acid 
composition of PIPs of whole cell membrane fractions and 
that of nuclear membrane fractions has also been re-
ported, indicating that the acyl chains of PI and PIPs may 
have some specifi c functions ( 67 ). Furthermore, it has 
been reported that LPIAT1 mainly localizes at mitochon-
dria-associated membranes (MAMs), where acyl-CoA syn-
thetase long-chain 4 is expressed, and interacts with the 
small subunit of serine palmitoyl-transferase a   ( 68 ). This 
report suggests that the specifi c localization of LPLATs 
through interactions with other related proteins may also 
be important for substrate recognition. Although LPAAT3 
also has LPIAT activity with PUFA-CoA in vitro, little infor-
mation concerning its biological roles is available ( 20 ). 

 PS is highly enriched in the inner leafl et of the plasma 
membrane and in intracellular organelles such as recy-
cling endosomes, and acts as a tag for the recognition of 
apoptotic cells, coagulation, and vesicle traffi cking by PS-
binding proteins ( 59 ). It is known that PS in the plasma 
membrane is exposed to the outer leafl et during platelet 
activation and apoptosis by the action of Ca 2+ -dependent 
phospholipid scramblases   ( 69 ). A recent study identifi ed 
TMEM16F and Xkr8 as the key molecules for PS exposure 
in this process ( 70–72 ). Furthermore, binding of evectin-2 
to PS in the recycling endosomes is essential for retrograde 
membrane traffi cking ( 61, 73 ). While the mechanisms un-
derlying the transport of PS from the ER to the specifi c 
organelle are unknown, yeast oxysterol-binding homology 
(Osh)6, Osh7, human oxysterol-binding protein related 
protein (ORP)5, and ORP10 have been reported to bind 
and transport a single PS molecule between membranes 
( 74 ). Because the acyl-chain composition of PS purifi ed 
with Osh6 is limited when compared with yeast PS, the 
acyl-chain composition of PS may also be important for li-
gand recognition by PS transporters ( 74, 75 ). This fi nding 
suggests that not only polar heads, but also fatty acid com-
positions contribute to PS transport. LPCAT3 and lyso-PE 

highly expressed in ATII cells, shows a preference for 
palmitoyl-CoA as an acyl donor ( 42, 43 ). Recently, LPCAT1 
gene-trapped mice were reported to have reduced LPCAT 
activity, disaturated PC content in the lung, and a low sur-
vival rate ( 44 ). Pulmonary surfactant collected from dead 
LPCAT1 gene-trapped mice was less able to reduce surface 
tension than that of wild-type mice. This report indicated 
that LPCAT1 was important for pulmonary surfactant 
phospholipid production in vivo ( 44 ). PG is a second-
order glycerophospholipid ( � 10% of surfactant phospho-
lipid) in pulmonary surfactant. In the remodeling pathway, 
both lyso-PG (LPG) acyltransferase (LPGAT)1 and LP-
CAT1 are reported to have LPGAT activities in vitro ( 42, 
45 ). Further studies are needed to clarify the mechanisms 
underlying high-level PG production in the lung. 

 Linkage analysis in mice has shown that LPCAT1 is mu-
tated in rd11 (one nucleotide insertion) and B6-JR2845 
(seven nucleotide deletion) mice, which exhibit retinal 
degeneration ( 46 ). Because disaturated PC is abundant in 
disk membranes of rod outer segments ( 47 ), LPCAT1 may 
have important roles for function of the disk membrane. 

 Membrane fatty acid saturation of glycerophospholipids 
by stearoyl-CoA desaturase 1 knockdown and palmitic acid 
treatment were reported to induce the ER stress ( 48–51 ). 
Although it is unclear whether glycerophospholipid re-
modeling is involved in this cellular response, LPCAT1 
may also contribute to regulate the level of saturated fatty 
acid in glycerophospholipids. 

 Moreover, recent studies suggest a correlation between 
LPCAT1 expression and cancer progression ( 52–54 ). Be-
cause LPCAT1 has both LPLAT and lysoPAFAT activities, 
further studies are needed to determine which LPCAT1 
products, disaturated glycerophospholipids or PAF, are in-
volved in cancer progression. 

 GLYCEROPHOSPHOLIPIDS AS SIGNALING 
MOLECULES 

 Of the cellular membrane glycerophospholipids, PS 
and PI phosphates (PIPs) act as signaling molecules via 
interactions with specifi c proteins ( 55, 56 ). Thus, although 
their percentage of total cellular glycerophospholipids is 
low, PS and PIPs play important roles in various cellular 
functions. PIPs can be recognized by various binding do-
mains, such as the pleckstrin homology, Fab1/YOTB/
Vac1/EEA1, phox homology, and epsin  N -terminal homol-
ogy domains ( 56–58 ). On the other hand,  � -carboxyglutamic 
acid, protein kinase C C2, discoidin C2, and kinase associ-
ated-1 are reported to be PS-recognizing domains ( 57, 59, 
60 ). Exceptionally, the pleckstrin homology domain of 
evectin-2 is reported to bind PS but not PIPs ( 61 ). 

 PIPs are biosynthesized by the reversible phosphoryla-
tion of three of the fi ve hydroxyl groups on the inositol 
head group of PI ( 56 ). Arachidonic acid is the most pre-
dominant acyl chain found in the  sn -2 position of PI and 
PIPs ( 62, 63 ). LPIAT1 prefers arachidonoyl-CoA as an 
acyl donor and generates arachidonic acid-containing PI. 
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protein complexes and metabolite carriers ( 85, 86 ). CL is 
a unique dimeric glycerophospholipid possessing two PAs, 
bridged by a glycerol, and four fatty acyl chains. Although 
the molecular mechanism of CL synthesis is not completely 
understood, recent studies have identifi ed new molecules 
related to the process, such as a protein that transports 
PA from the outer membrane to the inner membrane ( 87, 
88 ), a mitochondrial-type CDP-DAG synthase ( 89 ), and a 
mammalian phosphatidylglycerolphosphate synthase 
( 90–92 ). The acyl chains of CL are highly enriched with 
linoleic acid in the remodeling pathway ( 93 ). Tafazzin 
(TAZ) and lyso-CL (LCL) acyltransferase 1 (LCLAT1; also 
known as acyl-CoA:LCLAT1) were reported to remodel 
the acyl chains of CL by transacylation of CL and acylation 
of LCL, respectively ( 94–97 ). 

 Abnormal CL remodeling is observed in many patho-
logical situations, such as aging, heart failure, and Barth 
syndrome ( 98 ). Mitochondria from patients with Barth syn-
drome exhibited lower CL content and abnormal acyl-chain 
compositions ( 99 ). TAZ gene mutations are responsible for 
Barth syndrome ( 100, 101 ). Indeed, cardiac muscle from 
TAZ gene knockdown mice showed an accumulation of 
mono-LCL and decreased tetralinoleoyl-CL ( 102 ). These 
observations indicate that CL acyl-chain remodeling by 
TAZ may be critical for CL maturation and mitochondrial 
functions. 

 In addition to TAZ, LCLAT1 is also reported to be in-
volved in CL acyl-chain remodeling ( 96, 97 ). Whereas 
TAZ is localized to mitochondria, LCLAT1 is localized to 
the ER and MAM ( 97, 103 ). A recent study showed that 
insulin resistance induced by a high fat diet in LCLAT1 
KO mice was improved ( 103 ). Furthermore, LCLAT1 
overexpression in C2C12 cells leads to a reduction in the 
levels of linoleic and oleic acids and a slight increase in 
the levels of arachidonic acid and DHA in CL ( 103 ). 
Based on these results, it was suggested that the activa-
tion of LCLAT1 may be involved in the oxidative stress-
induced inhibition of mitochondrial function through 
PUFA incorporation in CL. However, the acyltransferase 
activities of LCLAT1 for other lysophospholipids, such as 
LPA ( 104 ), LPI, LPG ( 105 ), bis(monoacylglycero)phos-
phate ( 106 ), and 2-acyl-LPI ( 5, 107–109 ) have also been 
reported. Indeed, LCLAT1 KO mice showed decreased 
acyltransferase activities for 2-acyl-LPI and altered com-
position of PI without obvious changes in other glycero-
phospholipid acyl species ( 109 ). Thus, more information 
is needed to determine the biochemical and physiologi-
cal properties of LCLAT1. 

 Recently, the involvement of mitochondrial G3P acyl-
transferase (GPAT) in mitochondrial fusion in  Caenorhab-
ditis elegans  and HeLa cells was reported ( 110 ). Because 
LPA supplementation and LPAAT inhibition rescued mi-
tochondrial fragmentation in  GPAT  mutated  C. elegans , ac-
cumulation of LPA in mitochondria seems to be important 
for mitochondrial fusion ( 110 ). Moreover, LCLAT1 is also 
reported to have a role in mitochondrial fusion ( 111 ). 
These results suggest that the glycerophospholipid com-
position of mitochondria is important for protein complex 
formation as well as for fusion. 

(LPE) acyltransferase (LPEAT)1 have been reported to 
possess lyso-PS (LPS) acyltransferase (LPSAT) activities 
with arachidonoyl-CoA and oleoyl-CoA, respectively ( 17, 
18 ). Further studies are required to elucidate the roles of 
PS fatty acid composition in intracellular transport and 
other cellular functions. 

 CONE-SHAPED GLYCEROPHOSPHOLIPIDS AND 
MEMBRANE CURVATURE SENSORS 

 Cone-shaped glycerophospholipids with small polar 
heads (PE, PA, and CL) and/or bulky acyl chains (mono-
unsaturated fatty acid-containing glycerophospholipids) 
are known to have important roles in membrane fusion 
and fi ssion steps during endocytosis, exocytosis, cytokine-
sis, and vesicle traffi cking ( 76–78 ). In the curved mem-
brane, cone-shaped glycerophospholipids provide loosely 
packed regions, termed lipid-packing defects, which are 
recognized by membrane curvature sensors possessing 
amphipathic lipid-packing sensor motifs. They consist of 
an  � -helix of 20 to 40 amino acids with a serine- or threo-
nine-rich polar face ( 79 ). Membrane curvature sensors 
containing amphipathic lipid-packing sensor motifs are im-
portant for vesicle and lipid traffi cking ( 80 ). Recently, we 
reported that the Sec14 domain of Sec14-like 3 also senses 
lipid-packing defects in liposomes ( 81 ). These reports sug-
gest that cone-shaped glycerophospholipids are important 
for various cellular functions, such as lipid transport. 

 LPEAT1 and LPCAT4 are reported to prefer LPE and 
oleoyl-CoA as substrates ( 17 ) and produce cone-shaped 
glycerophospholipids. Although the cellular functions of 
these enzymes are unclear, regulation of cone-shaped glyc-
erophospholipid biosynthesis by LPEAT1 and/or LPCAT4 
may affect vesicle traffi cking, membrane fusion, and endo-
cytosis/exocytosis by providing the appropriate lipid-pack-
ing defects on curved membranes. Several reports showed 
that inhibition of LPCAT and LPEAT activities by a broad 
LPLAT inhibitor, CI-976 (2,2-methyl- N -(2,4,6,-trimethoxy-
phenyl)dodecanamide) enhanced Golgi tubulation and 
membrane traffi cking ( 82 ). Several types of PLAs were 
also reported to be important in intracellular membrane 
traffi cking and fusion events ( 83 ). The regulation of mem-
brane glycerophospholipid composition in the remodel-
ing pathway affects the cellular membrane functions. 

 Disruption of the LPEAT1 gene was reported in a 
patient with a brachydactyly-syndactyly syndrome ( 84 ). Thus, 
the cone-shaped glycerophospholipids produced by LPEAT1 
may be important for normal organogenesis. 

 GLYCEROPHOSPHOLIPID METABOLISM AND 
FUNCTION IN MITOCHONDRIA 

 Mitochondria are dynamic organelles involved in cru-
cial cellular processes, such as cell respiration and en-
ergy production. CL is a major glycerophospholipid in 
mitochondria, especially in the inner membrane, which 
affects the stability and activity of various membrane 
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