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ABSTRACT Influenza A viruses (IAV) are significant pathogens able to repeatedly switch hosts to infect multiple avian and mam-
malian species, including humans. The unpredictability of IAV evolution and interspecies movement creates continual public
health challenges, such as the emergence of the 2009 pandemic HIN1 virus from swine, as well as pandemic threats from the on-
going H5N1 and the recent H7N9 epizootics. In the last decade there has been increased concern about the “dual use” nature of
microbiology, and a set of guidelines covering “dual use research of concern” includes seven categories of potentially problem-
atic scientific experiments. In this Perspective, we consider how in nature IAV continually undergo “dual use experiments” as a
matter of evolution and selection, and we conclude that studying these properties of IAV is critical for mitigating and preventing

future epidemics and pandemics.

nfluenza A viruses (IAV) are important pathogens of humans

and animals that cause continually recurring epizootics, annual
epidemics, and periodic pandemics. As single-stranded seg-
mented RNA viruses of the family Orthomyxoviridae, IAV show
antigenic diversity that reflects 17 different hemagglutinin (HA)
and ten neuraminidase (NA) surface protein subtypes. Multiple
HA-NA subtype combinations and genotypes are generated
through mixed infection and reassortment, and an error-prone
RNA-dependent RNA polymerase generates complex viral quasi-
species, from which variants can be rapidly selected under such
evolutionary pressures as exposure to new host species, host im-
munity, and antiviral drugs. IAV host barriers are relatively weak,
allowing viruses to repeatedly switch hosts to infect multiple avian
and mammalian species. The unpredictability of IAV evolution
and interspecies movement creates continual public health chal-
lenges (1, 2).

All avian and mammalian TAV are believed to have descended
from avian influenza viruses resident in an enormous global avian
virus gene pool. These viruses infect hundreds of wild bird species
and undergo frequent reassortment (3). Occasionally, viruses
from this avian pool switch hosts to infect either domestic poultry
or mammals. The mechanisms of host switching and stable adap-
tation to new host populations are incompletely understood (4).
In 1997, highly pathogenic avian influenza A viruses (HPAI) of the
H5N1 subtype in Asia escaped the wild avian gene pool and be-
came adapted to domestic poultry. These H5N1 viruses have cir-
culated enzootically in domestic poultry for over 15 years, spread-
ing to the Middle East, Africa, and Europe (5, 6). Spillover from
poultry to humans has caused 630 documented human infections
with 375 fatalities (as of 4 June 2013; WHO) (7), without adapta-
tion to or enhanced transmissibility between humans. (It should
be noted that poultry-adapted IAV rarely infect humans and that
the underlying basis and mechanisms of these rare but severe cases
of human H5N1 infections are unknown). More recently (starting
in February 2013), a novel H7N9 virus, presumably also from a
domestic poultry source, has caused 132 documented human in-
fections with 37 fatalities (as of 7 June 2013) (8). Whether this
virus will adapt to efficient human-to-human transmissibility or
infect other mammals is unknown (9-11).

Over the last decade, there has been increased concern about
the “dual use” nature of microbiology, including concerns about
misapplication of scientific investigation for bioterrorism or bio-
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weapons development and concerns about accidental release of
consequential pathogens from laboratories in which they are be-
ing studied or stored. Recent experiments with strains of HPAI
H5N1 engineered to enhance ferret and guinea pig transmissibil-
ity have raised additional biosafety concerns (12—17). As a result,
in 2012, the U.S. government established policies for the oversight
of “dual use research of concern” (DURC) relating to fifteen
“high-consequence” pathogens and toxins, two of which are IAV:
HPAIH5N1 and the reconstructed 1918 pandemic influenza virus
(18). DURC was defined as “life sciences research that, based on
current understanding, can be reasonably anticipated to provide
knowledge, information, products, or technologies that could be
directly misapplied to pose a significant threat with broad poten-
tial consequences to public health and safety, agricultural crops
and other plants, animals, the environment, materiel, or national
security” (18). DURC policy (here referred to as “dual use” policy)
is defined as including seven categories of potentially problematic
scientific experiments as follows:

(i) enhancing the harmful consequences of an agent or toxin

(ii) disrupting immunity or the effectiveness of an immuniza-
tion against an agent or toxin without clinical or agricultural
justification

(iii) conferring to an agent or toxin resistance to clinically or
agriculturally useful prophylactic or therapeutic interven-
tions against the agent or toxin, or facilitating its ability to
evade detection methodologies

(iv) increasing the stability or transmissibility of or the ability to
disseminate an agent or toxin

(v) altering the host range or tropism of an agent or toxin

(vi)

enhancing the susceptibility of a host population to an agent
or toxin

Published 16 July 2013

Citation Taubenberger JK, Morens DM. 2013. Influenza viruses: breaking all the rules.
mBio 4(4):e00365-13. doi:10.1128/mBi0.00365-13.

Copyright © 2013 Taubenberger and Morens. This is an open-access article distributed
under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0
Unported license, which permits unrestricted noncommercial use, distribution, and
reproduction in any medium, provided the original author and source are credited.

Address correspondence to Jeffery K. Taubenberger, taubenbergerj@niaid.nih.gov.

mBio mbio.asm.org 1


http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
mbio.asm.org

Perspective

(vil) generating or reconstituting an eradicated or extinct agent
or toxin

In this Perspective, we consider how in nature IAV continually
undergo such “dual use experiments” as a matter of evolution and
selection and how such viral evolution determines the consequent
capacity of IAV to cause harm. These considerations lead us to
conclude that scientifically studying such fundamental evolution-
ary properties of IAV is critical for mitigating and preventing the
devastation these viruses cause. We do not imply that all IAV
evolution in nature should be considered dual use but rather hope
that consideration of the dynamic nature of IAV biology will in-
form policy decisions.

Naturally occurring IAV routinely break the enumerated
dual use rules. (i) Enhancing the harmful consequences of an
agent. The ability of different strains of IAV to cause disease varies
widely between viruses and infected hosts. Numerous examples
exist in which IAV strains emerge in nature with enhanced patho-
genicity, transmissibility, or other altered phenotypic properties.

The emergence of HPAI strains in domestic poultry is one such
example. These viruses share a class of mutation, independently
arising on numerous occasions, creating an insertional element in
the HA cleavage site of avian H5 or H7 subtype IAV which codes
for multiple basic amino acids (19) and which allows these viruses
to be activated by ubiquitous furin-like proteases. Such insertions
create strains capable of causing systemic viral replication associ-
ated with severe and fatal disease in infected poultry (i.e., HPAI
strains) but generally not in humans or other mammals, in which
HPALI viruses as a group are unable to cause disease. In the case of
HPAI H5N1, epizootic poultry disease also forms a bridge of viral
access to poultry-exposed humans.

Other noteworthy examples of IAV breaking this first dual use
rule include the emergence of pandemic IAV and the continual
evolution of seasonal IAV strains. IAV pandemics have occurred
sporadically since at least 1510 (20) and four times in the last
100 years—1918 HIN1, 1957 H2N2, 1968 H3N2, and 2009 HIN1
(21). Each pandemic emergence has featured an antigenically
novel HA associated with enhanced morbidity and mortality (22),
including those in younger age groups (23). The epidemiological
impact of seasonal influenza varies from year to year (24), with
morbidity and mortality being in some years on par with those
of pandemic years (21). For example, the moderately severe
A/Fujian/411/2002-like epidemic of the 2003-t0-2004 season (25)
was caused by an intrasubtypic reassortment between different
clades of human H3N2 viruses (26, 27). It is sobering to realize
that virtually all known deaths from influenza—23,000 to 36,000
deaths in the United States in a typical year and as many as 50
million deaths globally during a pandemic—result from the nat-
ural ability of IAV to break this first dual use rule by undergoing
genetic alterations in nature that enable efficient infection, severe
disease, and sometimes death.

(ii) Disrupting immunity or the effectiveness of an immuni-
zation. Like other RNA viruses, [AV disrupt host immunity by a
variety of mechanisms, including down-regulating host type I in-
terferon (IFN) responses (28). One key component of this is the
TAV nonstructural protein NS1, which acts pleiotropically to at-
tenuate the host interferon responses. Sequence variations, muta-
tions, and in-frame deletions within this gene among different
AV strains may account for altered pathogenicity (29). For exam-
ple, the NS1 protein from the 1918 influenza virus is a very potent
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inhibitor of antiviral and type I IFN responses in cultured human
lung cells (30). Other NS1 mutations have been correlated with
enhanced pathogenicity of HPAI H5N1 viruses (31-33). The al-
ternatively spliced PB1-F2 may independently alter host IFN sig-
naling via a mitochondrial component of the pathway (34), and
mutations in the PB1-F2 protein of the 1918 virus and some HPAI
H5N1 viruses have been linked to enhanced pathogenicity (35)
and enhanced risk of secondary bacterial coinfections (36, 37).
The newly described frameshifted PA-X protein may also play a
role in host response modulation: reduced PA-X expression aug-
ments the pathogenicity of the 1918 influenza virus in mice (38).

One of the greatest hurdles to mitigating the public health im-
pact of influenza is the rapid and constant evolution of seasonal
IAV (39), necessitating the annual production of vaccines con-
taining new strains that keep pace with the antigenic drift of cir-
culating strains (40). Regular emergence of antigenic escape mu-
tants in the HA and also in the neuraminidase (NA) genes is a
defining feature of IAV biology in humans (41, 42) and an impor-
tant example of dual use rule-breaking in nature. Antigenic escape
occurs through acquisition of point mutations in the HA and NA
genes, by intrasubtypic reassortment, or, dramatically, by the de
novo emergence of pandemic virus strains with novel HA sub-
types. If human IAV were unable to undergo continual and suc-
cessful antigenic drift, growing population immunity would soon
drive them to complete extinction. Breaking the second dual use
rule is thus a fundamental mechanism of human influenza disease
pathogenesis.

(iii) Conferring resistance to prophylactic or therapeutic in-
terventions. Four approved antiviral drugs in two categories—the
adamantane ion channel blockers and the neuraminidase inhibi-
tors—are available for IAV treatment. Unfortunately, human and
animal origin IAV often develop mutations conferring resistance
to each of these drugs (43). Circulating human seasonal H3N2
viruses developed adamantane resistance after 2004 (44), severely
limiting drug utility in prevention and treatment. Similarly, cir-
culating human seasonal HIN1 viruses developed resistance to
the most commonly used neuraminidase inhibitor, oseltamivir
(45, 46). Upon its introduction in humans, 2009 pandemic HIN1
(H1N1pdm) viruses were already resistant to the adamantanes by
virtue of a mutation in the matrix M2 gene derived from one of the
parental swine IAV (47) involved in the reassortment event that
generated it (48). Isolates with resistance to oseltamivir were also
commonly observed (49). Resistance to other neuraminidase in-
hibitors, including zanamavir and the newer peramivir, has also
been described with different subtypes of human IAV (50-53),
and oseltamivir resistance has been described after treatment of
patients infected with HPAI H5N1 viruses (54, 55). The recent
H7N9 viruses possess an M2 mutation conferring adamantine re-
sistance (56), and one of the human isolates has an NA mutation
that likely confers reduced sensitivity to oseltamivir (57). Nature
therefore easily and repeatedly breaks the third dual use rule by
creating drug-resistant mutant viruses, reducing IAV treatment
options.

(iv) Increasing the transmissibility of the agent. Pandemic
TAV strains are zoonotically derived, either through reassortment
with human- or mammal-adapted influenza virus or through de
novo adaptation. The 2009 pandemic HIN1 virus was derived by
reassortment of two preexisting swine IAV (48), which had both
circulated in pigs and had caused only limited dead-end infections
in humans (58). Why then did the 2009 pandemic reassortant
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virus transmit between humans? Recent studies have shown cor-
relations between transmission in ferrets and the unique constel-
lation of genes associated with the 2009 pandemic virus (the Eur-
asian avian-like swine HIN1 IAV parental virus contributed its
NA and matrix segments), in which both NA activity and viral
morphology played a role in enhanced respiratory droplet trans-
mission (59) as well as HA-NA functional balance (60). Since all
known pandemic influenza viruses have been derived from pre-
cursor zoonotic IAVs or their gene segments and yet are necessar-
ily highly transmissible between humans, new pandemic viruses
must acquire genetic changes that break the fourth dual use rule of
enhancing transmissibility; moreover, because pandemic viruses
give rise to subsequent seasonal IAV, all human IAV result directly
from the continual breaking of this rule.

(v) Altering the host range of the agent. One of the most im-
portant features of IAV ecobiology is the ability to undergo stable
host switching, including bird-to-mammal switches (2, 61). The
host range of IAV is very broad, including many species of wild
birds, domestic anseriform and gallinaceous poultry, humans,
swine, horses, dogs, cats, seals, and other mammals (2). All pan-
demic IAV infections are likely zoonotic, involving adaptations to
humans of zoonotically derived viruses either in toto (e.g., 2009
pHIN1 [48] and possibly 1918 HIN1 [62]) or by reassortment
that incorporates avian influenza virus gene segments into an ex-
isting human-adapted virus (e.g., 1957 H2N2 and 1968 H3N2 [63,
64]). Numerous other alterations of host range have been docu-
mented, some of which are noted here.

In 1979, an avian HIN1 virus adapted in foto to northern Eu-
ropean swine (65, 66), creating a new swine lineage genetically and
antigenically distinct from the North American classical swine
HINT1 lineage thought to be derived from the 1918 pandemic in-
fluenza virus (67, 68). This new HINI lineage then replaced clas-
sical swine HIN1 viruses in Europe (69). Other avian IAV have
also infected swine, including an independently emerging avian
HINI1 virus in China (70). H4N6, H3N3, HIN1, and H2N3 avian
viruses have all caused swine epizootics in North America (71—
73).

Reassortment between swine IAV strains resulted in the 2009
pandemic HIN1 emergence, a particularly unfortunate example
of many such swine host-switching events that have been occur-
ring with increasing frequency (74). One of the parental viruses of
the 2009 pandemic was derived from a North American lineage of
swine-adapted TAYV, itself a product of complex reassortment
events between swine, human, and avian IAV (75). These triple-
reassortant swine viruses, containing an epizootically active
“triple-reassortant internal gene,” or TRIG, cassette, have been
evolving dynamically at the swine-human interface (76-78), and
human infections with a novel variant H3N2 swine IAV have re-
cently been noted as well (79, 80). The recent development of
complex global hyperevolution of IAV within swine is an ominous
occurrence that may greatly increase the risk of future pandemics.

Equine influenza has been recognized clinically for centuries
(81) and since the 1950s has been linked separately to H7N7 and
H3NB8 viruses. In 1989, an independent avian H3N8 host-switch
event caused a serious new equine epizootic in China (82). Inter-
estingly, equine H3N8 viruses have undergone further host-
switching events to become stably adapted to and transmitted
between dogs (83). Clinically documented for centuries, canine
influenza has long been considered a dead-end infection acquired
from horses which never led to stable canine adaptation. Yet an
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avian H3N2 virus recently jumped into dog populations in North
Korea and China, creating a second new stably adapted canine
virus (84). Curiously, these two canine-adapted IAV strains, as
well as a group of new swine H3N?2 viruses with the TRIG cassette
and the related 2009 pandemic HINT1 virus, all have the same
peculiar genetic marker in the PA-X open reading frame that may
indicate an unappreciated property of host switching or new-host
adaptation (85). Thus, IAV exist in a large complex ecosystem that
includes not only hundreds of species of wild birds but also poul-
try and numerous mammals and is characterized by numerous
naturally occurring host-switching events that break the fifth dual
use rule. Understanding how these host switches occur is an im-
portant and growing area of research likely to have a bearing on
understanding and controlling pandemic emergence.

(vi) Enhancing the susceptibility of a host population. En-
hancing the susceptibility of a host population can theoretically
occur via a number of different mechanisms, including several of
those already discussed, such as disrupting immunity or eluding
immune response to immunizations, conferring resistance to pro-
phylactic agents, improving transmissibility, and altering host
range. In addition, influenza viruses may break the susceptibility
rule by enhancing susceptibility to copathogenic infectious dis-
eases. It is clearly established that secondary bacterial pneumonias
following primary influenza virus infection play a key role in en-
hanced IAV morbidity and mortality (86, 87). Nasopharyngeal
carriage of potential respiratory bacterial pathogens is common
(88-91) and may predispose to coinfection (86). The pathogenetic
mechanisms by which influenza virus and bacterial coinfection
induce more-severe disease are complex and multifactorial (86,
92, 93) and include not only poorly understood viral properties
but also respiratory epithelial dysfunction, impaired mucociliary
clearance, enhanced bacterial adhesion, epithelial cell death, and
apoptosis. Some IAV (e.g., the 1918 pandemic virus) are more
capable of enhancing susceptibility to secondary bacterial pneu-
monia, albeit by mechanisms not fully understood. That nature
alters the susceptibility of humans to severe and fatal pneumonias
caused by viruses that interact with other microorganisms in the
production of copathogenetic disease is another cogent example
of breaking this sixth dual use rule.

(vii) Generating or reconstituting an eradicated or extinct
agent. The 1918 pandemic virus was sequenced and reconstructed
using an archaevirologic approach (94); study of this virus has
yielded many insights into IAV biology (95). Epidemiological
data, however, also support the idea of cyclic reemergence of hu-
man pandemic IAV with antigenically related HAs (i.e., antigenic
recycling), leading to relative protection of persons of certain age
groups in different pandemics (20). For example, elderly popula-
tions in 1918 are thought to have experienced immunoprotection
derived from prior exposure to an antigenically related virus
which may have emerged in the 1830s (20, 96); serologic and ep-
idemiological data from the 1968 pandemic suggest analogous
immunoprotection in persons born before 1893 (97), supporting
the idea that the 1889 pandemic could have been caused by an H3
subtype virus. The 2009 pandemic virus has an H1 HA antigeni-
cally related to, and in fact directly derived from, the 1918 virus via
the classical swine HIN1 viral lineage, explaining why persons
born before 1950 showed evidence of immunoprotection in 2009
(98). Since HA subtypes circulating in the wild bird reservoir un-
dergo little directed antigenic drift (3), independently emerging
pandemic viruses bearing the same HA subtype are likely to be
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antigenically similar. Thus, nature continues to repeatedly break
this final dual use rule by recycling viruses or viral antigens from
the past.

CONCLUSION

Influenza A viruses are important human and animal pathogens
and are among the leading infectious causes of human deaths
globally. Influenza pandemics have been emerging for over a mil-
lennium, and we will undoubtedly see novel IAV continue to
evolve for efficient human adaptation and pandemic spread in the
future. Whether currently circulating avian H5N1, HON2, or the
more recent H7N9 viruses can adapt to efficient transmissibility in
humans remains unknown, but the consequences of such a host
switch event might be devastating (14). It is of vital importance to
continue to study, utilizing appropriate biosafety and biosecurity
oversight, how IAV can switch hosts, develop high transmissibility
in human populations, escape immunity, develop antiviral resis-
tance, and achieve other phenotypic properties that have a bearing
upon their disease-producing and epidemic/pandemic potential.

The DURC framework to guide decisions about the funding of
H5N1 experiments is a significant step in addressing biosafety and
biosecurity concerns (99). But while scientists and policy makers
continue to grapple with safety issues, IAV continue to evolve in
complex and unpredictable ways by breaking, as a matter of their
adaptable ecobiology, all of the very same dual use rules. It is an
irony that influenza viruses have survived to cause millions of
cumulative deaths precisely because they have learned how to
break our self-imposed safety “rules” and that these rules might
someday have the unintended consequence of limiting the very
research that can potentially decipher the most devastating of
IAV’s secrets and that allows us to develop critically needed pre-
ventive and therapeutic modalities.

The issue naturally arises as to whether, in our efforts to save
lives and prevent disease, we are better off avoiding research de-
signed to elucidate the mechanisms of IAV-induced disease and
host switching or whether we should proceed in conducting this
type of research in as safe a manner as is possible. Like so much else
in science and public health, it comes down to weighing the risks
and benefits. In this case, the risks of inaction are predictable:
influenza pandemics, epidemics, and epizootics will continue to
wreak havoc for the foreseeable future at the cost of countless lives.
In considering the relative merits of supporting or thwarting safe
research aimed at better preventing and controlling influenza by
elucidating fundamental viral mechanisms, IAV’s own actions
should surely be borne in mind.

(This Perspective is based on a plenary session talk presented at
the 2013 ASM Biodefense Meeting on 25 February 2013 by coau-
thor J. K. Taubenberger.)
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