organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[4-Chloro-2-(2-chlorobenzoyl)phenyl]acetamide

F. Nawaz Khan,^a S. Mohana Roopan,^a N. Malathi,^a Venkatesha R. Hathwar^b and Mehmet Akkurt^c*

^aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ^cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 6 May 2010; accepted 19 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.048; wR factor = 0.107; data-to-parameter ratio = 14.5.

In the title compound, $C_{15}H_{11}Cl_2NO_2$, the dihedral angle between the two benzene rings is 74.83 (5)°. The N-bound and terminal benzene rings are inclined at dihedral angles of 4.09 (10) and 78.38 (9)°, respectively, to the mean plane through the acetamide group. Intramolecular $C-H\cdots O$ and $N-H \cdots O$ hydrogen bonds both generate S(6) rings.

Related literature

For the acetylation reaction, see: Greene et al. (1999); Gupta et al. (2008). For solvent-free synthesis, see: Roopan et al. (2008, 2009). For reactions of acetic anhydride and acetyl chloride, see: Orita et al. (2000); Procopiou et al. (1998). For hydrogenbond motifs, see: Bernstein et al. (1995).

 $= 1419.1 (3) Å^{3}$

Experimental

Crystal data	
$C_{15}H_{11}Cl_2NO_2$	b = 5.0661 (6) Å
$M_r = 308.15$	c = 25.594 (3) Å
Monoclinic, $P2_1/c$	$\beta = 100.672 \ (9)^{\circ}$
a = 11.1371 (11) Å	V = 1419.1 (3) Å

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.46 \text{ mm}^{-1}$

Data collection

1

Oxford Xcalibur Eos (Nova) CCD	2633 independent reflections
detector diffractometer	1537 reflections with $I > 2\sigma(I)$
14628 measured reflections	$R_{int} = 0.080$
Refinement	

T = 293 K

 $0.28 \times 0.24 \times 0.18 \; \mathrm{mm}$

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 182 parameters $wR(F^2) = 0.107$ H-atom parameters constrained S = 0.98 $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$ 2633 reflections

Table 1 Hydrogen-bond geometry (Å, °).

	ли	Н 4	D 4	
$D = \Pi \cdots A$	<i>D</i> -п	$\Pi \cdots A$	$D \cdots A$	$D - \Pi \cdots A$
$N1 - H1 \cdots O1$	0.86	1.96	2.660 (3)	138
C5−H5···O2	0.93	2.22	2.839 (4)	124

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA-DST program at IISc, Bangalore. We also thank Professor T. N. Guru Row, IISc, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2672).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Greene, T. W. & Wuts, P. G. M. (1999). Protective Groups in Organic Synthesis, 3rd ed. New York: Wiley & Sons.
- Gupta, R., Kumar, V., Gupta, M., Paul, S. & Gupta, R. (2008). Indian J. Chem. Sect. B, 47, 1739-1743.
- Orita, A., Tanahashi, C., Kakuda, A. & Otera, J. (2000). Angew. Chem. Int. Ed. 39 2877-2879
- Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd. Yarnton, England.
- Procopiou, P. A., Baugh, S. P. D., Flack, S. S. & Inglis, G. G. A. (1998). J. Org. Chem. 63, 2342-2347.
- Roopan, S. M. & Khan, F. N. (2009). Arkivoc, xiii, 161-169.
- Roopan, S. M., Maiyalagan, T. & Khan, F. N. (2008). Can. J. Chem. 86, 1019-1025
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2010). E66, o1434 [doi:10.1107/S1600536810018696]

N-[4-Chloro-2-(2-chlorobenzoyl)phenyl]acetamide

F. N. Khan, S. M. Roopan, N. Malathi, V. R. Hathwar and M. Akkurt

Comment

The acetylation of phenol, alcohol and amine are important chemical reactions in organic synthesis (Greene *et al.*, 1999, Gupta *et al.*, 2008). Mainly, acylation of amines is used for the protection of an amino functionality in a multi-step synthetic process. Acetic anhydride and acetyl chloride are generally used in the presence of acidic or basic catalysts in an organic medium (Orita *et al.*, 2000; Procopiou *et al.*, 1998). One of the major factors for a green chemical processes are solvent-free reactions. In continuation of our our interest in this area (Roopan *et al.*, 2008, 2009), we herein report the solvent-free acetylation of an amine, leading to the title compound, (I).

Compound (I), Fig. 1, has two chloro-phenyl groups (Cl2/C1–C6 and Cl1/C8–C13) which make a dihedral angle of 74.83 (5)° with each other. The chloro-phenyl groups are inclined at dihedral angles of 4.09 (10) and 78.38 (9) °, respectively, with the mean plane through the acetamide group (N1/O2/C14/C15). The torsion angles O1–C7–C8–C9, O1–C7–C8–C13, C2–C3–C7–O1 and C4–C3–C7–O1 are 109.0 (3), -68.5 (4), 172.8 (3) and -5.8 (4)°, respectively.

Two intramolecular, i.e. N1—H1···O1 and C5—H5···O2, hydrogen bonds form six-membered rings, producing *S*(6) ring motifs (Table 1, Fig. 1, Bernstein *et al.*, 1995). In the crystal structure, there are no classical intermolecular hydrogen bonds.

Experimental

2-Amino-5-chloro-phenyl(2-chloro-phenyl)methanone (1 mmol) was stirred with acetyl-chloride (1 mmol) at room temperature for 1 h. The reaction was monitored by TLC. After the completion of the reaction, the contents were cooled and poured onto cold water with stirring. The solid which separated was separated by filtration and dried in air. The dried compound was dissolved in dichloromethane and subjected to slow evaporation to yield single crystals.

Refinement

All the H atoms were discernible in the difference Fourier maps. However, H atoms were located geometrically with N—H = 0.86 and C—H = 0.93-0.96 Å and refined in the riding model approximation, with $U_{iso}(H) = 1.2$ or $1.5U_{ea}(C, N)$.

Figures

Fig. 1. The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

N-[4-Chloro-2-(2-chlorobenzoyl)phenyl]acetamide

Crystal data

$C_{15}H_{11}Cl_2NO_2$	F(000) = 632
$M_r = 308.15$	$D_{\rm x} = 1.442 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1298 reflections
a = 11.1371 (11) Å	$\theta = 2.0 - 20.9^{\circ}$
b = 5.0661 (6) Å	$\mu = 0.46 \text{ mm}^{-1}$
c = 25.594 (3) Å	<i>T</i> = 293 K
$\beta = 100.672 \ (9)^{\circ}$	Block, colourless
V = 1419.1 (3) Å ³	$0.28 \times 0.24 \times 0.18 \text{ mm}$
Z = 4	

Data collection

1537 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.080$
$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
$h = -13 \rightarrow 13$
$k = -6 \rightarrow 6$
$l = -30 \rightarrow 30$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.107$	H-atom parameters constrained
<i>S</i> = 0.98	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0469P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2633 reflections	$(\Delta/\sigma)_{max} < 0.001$
182 parameters	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The

observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	1.01228 (8)	0.21348 (16)	0.05190 (3)	0.0676 (3)
Cl2	0.68968 (8)	0.97146 (17)	0.00452 (3)	0.0706 (3)
O1	0.94298 (18)	0.2513 (5)	0.19297 (8)	0.0777 (9)
O2	0.5030 (2)	0.0779 (5)	0.17216 (10)	0.0936 (11)
N1	0.7034 (2)	0.1634 (5)	0.17250 (9)	0.0533 (9)
C1	0.6927 (2)	0.7372 (6)	0.05413 (10)	0.0477 (10)
C2	0.8029 (2)	0.6603 (5)	0.08384 (10)	0.0429 (9)
C3	0.8082 (2)	0.4689 (5)	0.12330 (10)	0.0396 (9)
C4	0.6978 (2)	0.3551 (5)	0.13289 (10)	0.0431 (10)
C5	0.5876 (3)	0.4396 (6)	0.10239 (12)	0.0580 (11)
C6	0.5855 (3)	0.6267 (6)	0.06384 (12)	0.0566 (11)
C7	0.9300 (2)	0.3982 (6)	0.15419 (11)	0.0459 (10)
C8	1.0428 (2)	0.5175 (5)	0.13994 (10)	0.0399 (9)
C9	1.0892 (2)	0.4451 (5)	0.09588 (10)	0.0435 (10)
C10	1.1978 (3)	0.5487 (6)	0.08559 (12)	0.0565 (11)
C11	1.2597 (3)	0.7314 (7)	0.11949 (14)	0.0661 (13)
C12	1.2151 (3)	0.8101 (7)	0.16279 (13)	0.0686 (12)
C13	1.1075 (3)	0.7045 (6)	0.17374 (11)	0.0586 (11)
C14	0.6092 (3)	0.0330 (6)	0.18928 (13)	0.0607 (12)
C15	0.6499 (3)	-0.1678 (7)	0.23219 (13)	0.0775 (16)
H1	0.77560	0.12130	0.18860	0.0640*
H2	0.87480	0.73680	0.07750	0.0510*
H5	0.51450	0.36760	0.10840	0.0700*
H6	0.51110	0.68050	0.04390	0.0680*
H10	1.22820	0.49410	0.05590	0.0680*
H11	1.33250	0.80190	0.11290	0.0790*
H12	1.25710	0.93660	0.18540	0.0820*
H13	1.07860	0.75900	0.20380	0.0700*
H15A	0.63180	-0.10450	0.26520	0.1160*
H15B	0.73630	-0.19610	0.23590	0.1160*
H15C	0.60750	-0.33100	0.22290	0.1160*

				• 7	,
Fractional atomic coordinates an	d isotropic or	equivalent isotropic	displacement	parameters (A ²)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0736 (6)	0.0686 (6)	0.0632 (5)	-0.0187 (5)	0.0197 (4)	-0.0213 (4)
Cl2	0.0681 (6)	0.0796 (6)	0.0622 (5)	0.0248 (5)	0.0069 (4)	0.0221 (5)
01	0.0495 (13)	0.117 (2)	0.0670 (14)	0.0078 (13)	0.0115 (11)	0.0456 (14)
O2	0.0531 (15)	0.121 (2)	0.109 (2)	-0.0246 (16)	0.0209 (14)	0.0138 (17)
N1	0.0417 (14)	0.0620 (17)	0.0590 (16)	-0.0031 (13)	0.0164 (12)	0.0079 (14)
C1	0.0450 (18)	0.054 (2)	0.0428 (16)	0.0096 (15)	0.0050 (14)	-0.0018 (14)

supplementary materials

C2	0.0343 (15)	0.0506 (18)	0.0446 (16)	0.0030 (13)	0.0098 (13)	-0.0003 (15)
C3	0.0334 (15)	0.0486 (18)	0.0367 (15)	0.0029 (13)	0.0061 (12)	0.0003 (14)
C4	0.0394 (16)	0.0466 (18)	0.0446 (16)	0.0048 (14)	0.0110 (13)	-0.0019 (15)
C5	0.0325 (16)	0.077 (2)	0.064 (2)	0.0005 (16)	0.0074 (15)	-0.0017 (19)
C6	0.0357 (17)	0.075 (2)	0.0552 (19)	0.0166 (16)	-0.0017 (14)	-0.0033 (18)
C7	0.0460 (17)	0.056 (2)	0.0368 (16)	0.0067 (15)	0.0108 (13)	0.0062 (15)
C8	0.0304 (14)	0.0515 (19)	0.0357 (15)	0.0058 (14)	0.0004 (12)	0.0049 (14)
C9	0.0392 (16)	0.0481 (18)	0.0427 (16)	-0.0041 (14)	0.0066 (13)	-0.0055 (14)
C10	0.0502 (19)	0.064 (2)	0.060 (2)	-0.0023 (17)	0.0223 (16)	-0.0031 (17)
C11	0.0431 (18)	0.081 (3)	0.072 (2)	-0.0194 (19)	0.0052 (17)	0.001 (2)
C12	0.066 (2)	0.071 (2)	0.061 (2)	-0.022 (2)	-0.0085 (18)	-0.0118 (19)
C13	0.060(2)	0.071 (2)	0.0425 (17)	-0.0004 (18)	0.0032 (15)	-0.0111 (17)
C14	0.062 (2)	0.066 (2)	0.059 (2)	-0.0170 (19)	0.0242 (18)	-0.0106 (18)
C15	0.098 (3)	0.071 (3)	0.071 (2)	-0.026 (2)	0.035 (2)	0.003 (2)

Geometric parameters (Å, °)

Cl1—C9	1.738 (3)	C8—C9	1.374 (3)
Cl2—C1	1.734 (3)	C9—C10	1.388 (4)
O1—C7	1.228 (4)	C10-C11	1.365 (5)
O2—C14	1.205 (4)	C11—C12	1.356 (5)
N1—C4	1.397 (3)	C12—C13	1.388 (5)
N1—C14	1.374 (4)	C14—C15	1.504 (5)
N1—H1	0.8600	С2—Н2	0.9300
C1—C6	1.382 (4)	С5—Н5	0.9300
C1—C2	1.375 (3)	С6—Н6	0.9300
С2—С3	1.393 (4)	C10—H10	0.9300
C3—C4	1.420 (3)	C11—H11	0.9300
С3—С7	1.482 (3)	C12—H12	0.9300
C4—C5	1.394 (4)	C13—H13	0.9300
C5—C6	1.365 (4)	C15—H15A	0.9600
С7—С8	1.499 (3)	C15—H15B	0.9600
C8—C13	1.391 (4)	C15—H15C	0.9600
Cl1…C2	3.455 (3)	C13…O1 ^x	3.407 (4)
Cl1…C2 Cl1…C3	3.455 (3) 3.423 (3)	C13…O1 ^x C7…H1	3.407 (4) 2.5000
Cl1···C2 Cl1···C3 Cl1···Cl1 ⁱ	3.455 (3) 3.423 (3) 3.3974 (12)	C13···O1 ^x C7···H1 C8···H2	3.407 (4) 2.5000 2.4900
Cl1···C2 Cl1···C3 Cl1···Cl1 ^{i} Cl2···Cl1 ^{ii}	3.455 (3) 3.423 (3) 3.3974 (12) 3.650 (4)	C13…O1 ^x C7…H1 C8…H2 C9…H2	3.407 (4) 2.5000 2.4900 2.7700
Cl1…C2 Cl1…C3 Cl1…Cl1 ⁱ Cl2…Cl1 ⁱⁱ Cl1…H2 ⁱⁱⁱ	3.455 (3) 3.423 (3) 3.3974 (12) 3.650 (4) 3.0000	C13…O1 ^x C7…H1 C8…H2 C9…H2 C12…H15A ^{xi}	3.407 (4) 2.5000 2.4900 2.7700 3.0900
Cl1···C2 Cl1···C3 Cl1···C11 ⁱ Cl2···C11 ⁱⁱ Cl1···H2 ⁱⁱⁱ Cl2···H6 ^{iv}	3.455 (3) 3.423 (3) 3.3974 (12) 3.650 (4) 3.0000 2.9400	C13…O1 ^x C7…H1 C8…H2 C9…H2 C12…H15A ^{xi} C14…H5	3.407 (4) 2.5000 2.4900 2.7700 3.0900 2.7300
Cl1···C2 Cl1···C3 Cl1···Cl1 ⁱ Cl2···Cl1 ⁱⁱ Cl1···H2 ⁱⁱⁱ Cl2···H6 ^{iv} Cl2···H0 ^v	3.455 (3) 3.423 (3) 3.3974 (12) 3.650 (4) 3.0000 2.9400 3.0500	C13…O1 ^x C7…H1 C8…H2 C9…H2 C12…H15A ^{xi} C14…H5 C15…H12 ^{xii}	3.407 (4) 2.5000 2.4900 2.7700 3.0900 2.7300 2.9500
Cl1···C2 Cl1···C3 Cl1···Cl1 ⁱ Cl2···Cl1 ⁱⁱ Cl1···H2 ⁱⁱⁱ Cl2···H6 ^{iv} Cl2···H10 ^v Ol···N1	3.455 (3) 3.423 (3) 3.3974 (12) 3.650 (4) 3.0000 2.9400 3.0500 2.660 (3)	C13O1 ^x C7H1 C8H2 C9H2 C12H15 A^{xi} C14H5 C15H12 ^{xii} H1O1	3.407 (4) 2.5000 2.4900 2.7700 3.0900 2.7300 2.9500 1.9600
Cl1···C2 Cl1···C3 Cl1···Cl1 ⁱ Cl2···C11 ⁱⁱ Cl1···H2 ⁱⁱⁱ Cl2···H6 ^{iv} Cl2···H10 ^v O1···N1 O1···C13 ⁱⁱⁱ	3.455 (3) 3.423 (3) 3.3974 (12) 3.650 (4) 3.0000 2.9400 3.0500 2.660 (3) 3.407 (4)	C13O1 ^x C7H1 C8H2 C9H2 C12H15 A^{xi} C14H5 C15H12 ^{xii} H1O1 H1C7	3.407 (4) 2.5000 2.4900 2.7700 3.0900 2.7300 2.9500 1.9600 2.5000
Cl1···C2 Cl1···C3 Cl1···Cl1 ⁱ Cl2···Cl1 ⁱⁱ Cl2···H2 ⁱⁱⁱ Cl2···H6 ^{iv} Cl2···H0 ^v O1···N1 O1···Cl3 ⁱⁱⁱ O2···C5	3.455 (3) 3.423 (3) 3.3974 (12) 3.650 (4) 3.0000 2.9400 3.0500 2.660 (3) 3.407 (4) 2.839 (4)	C13…O1 ^x C7…H1 C8…H2 C9…H2 C12…H15A ^{xi} C14…H5 C15…H12 ^{xii} H1…O1 H1…C7 H1…H15B	3.407 (4) 2.5000 2.4900 2.7700 3.0900 2.7300 2.9500 1.9600 2.5000 2.1100
Cl1···C2 Cl1···C3 Cl1···Cl1 ⁱ Cl2···C11 ⁱⁱ Cl1···H2 ⁱⁱⁱ Cl2···H6 ^{iv} Cl2···H10 ^v O1···N1 O1···C13 ⁱⁱⁱ O2···C5 O2···C11 ^{vi}	3.455 (3) 3.423 (3) 3.3974 (12) 3.650 (4) 3.0000 2.9400 3.0500 2.660 (3) 3.407 (4) 2.839 (4) 3.300 (4)	C13O1 ^x C7H1 C8H2 C9H2 C12H15 A^{xi} C14H5 C15H12 ^{xii} H1O1 H1C7 H1H15B H2Cl1 ^x	3.407 (4) 2.5000 2.4900 2.7700 3.0900 2.7300 2.9500 1.9600 2.5000 2.1100 3.0000
Cl1···C2 Cl1···C3 Cl1···Cl1 ⁱ Cl2···Cl1 ⁱⁱ Cl2···H2 ⁱⁱⁱ Cl2···H6 ^{iv} Cl2···H0 ^v O1···N1 O1···Cl3 ⁱⁱⁱ O2···C5 O2···C11 ^{vi} O1···H13 ^{viii}	3.455 (3) 3.423 (3) 3.3974 (12) 3.650 (4) 3.0000 2.9400 3.0500 2.660 (3) 3.407 (4) 2.839 (4) 3.300 (4) 2.7000	C13O1 ^x C7H1 C8H2 C9H2 C12H15 A^{xi} C14H5 C15H12 ^{xii} H1O1 H1C7 H1H15B H2C11 ^x H2C8	3.407 (4) 2.5000 2.4900 2.7700 3.0900 2.7300 2.9500 1.9600 2.5000 2.1100 3.0000 2.4900
Cl1···C2 Cl1···C3 Cl1···Cl1 ⁱ Cl2···Cl1 ⁱⁱ Cl2···H2 ⁱⁱⁱ Cl2···H6 ^{iv} Cl2···H10 ^v Ol···N1 Ol···Cl3 ⁱⁱⁱ O2···C5 O2···C11 ^{vi} O1···H13 ^{viii}	3.455 (3) 3.423 (3) 3.3974 (12) 3.650 (4) 3.0000 2.9400 3.0500 2.660 (3) 3.407 (4) 2.839 (4) 3.300 (4) 2.7000 1.9600	C13O1 ^x C7H1 C8H2 C9H2 C12H15 A^{xi} C14H5 C15H12 ^{xii} H1O1 H1C7 H1H15B H2C11 ^x H2C8 H2C9	3.407 (4) 2.5000 2.4900 2.7700 3.0900 2.7300 2.9500 1.9600 2.5000 2.1100 3.0000 2.4900 2.7700

O2…H5	2.2200	H5…C14	2.7300
O2…H11 ^{vi}	2.6100	H6…Cl2 ^{iv}	2.9400
O2…H12 ^{vi}	2.9100	H10…Cl2 ^v	3.0500
O2…H15A ^{viii}	2.8800	H11····O2 ^{ix}	2.6100
N101	2.660 (3)	$H12O2^{ix}$	2.9100
C2…Cl1	3.455 (3)	H12···C15 ^{xiii}	2.9500
C2C9	3 330 (3)	H1201 ^x	2 9000
C3C11	3 423 (3)		2.7000
c5 02	3.423(3)		2.7000
	2.839 (4)		2.8800
	3.330 (3)	H15A…C12 ^{vii}	3.0900
$C11\cdots O2^{1X}$	3.300 (4)	H15B…H1	2.1100
C11···Cl2 ⁱⁱ	3.650 (4)		
C4—N1—C14	128.8 (2)	C11—C12—C13	120.8 (3)
C14—N1—H1	116.00	C8—C13—C12	120.3 (3)
C4—N1—H1	116.00	N1-C14-C15	114.2 (3)
Cl2—C1—C6	120.6 (2)	O2-C14-N1	123.4 (3)
C2—C1—C6	119.9 (3)	O2-C14-C15	122.4 (3)
Cl2—C1—C2	119.55 (19)	C1—C2—H2	120.00
C1—C2—C3	120.8 (2)	С3—С2—Н2	120.00
C2—C3—C7	117.8 (2)	С4—С5—Н5	120.00
C2—C3—C4	119.1 (2)	С6—С5—Н5	120.00
C4—C3—C7	123.1 (2)	С1—С6—Н6	120.00
N1—C4—C5	122.4 (2)	С5—С6—Н6	120.00
C3—C4—C5	118.6 (2)	С9—С10—Н10	120.00
N1 - C4 - C3	119.0 (2)	C11—C10—H10	120.00
C4-C5-C6	120.9(3)	C10-C11-H11	120.00
C1 - C6 - C5	120.8 (3)	C12—C11—H11	120.00
01 - 07 - 03	120.0(3) 122.5(2)	C11 - C12 - H12	120.00
C_{3}^{-}	1122.3(2) 1199(2)	C13 - C12 - H12	120.00
01 - 07 - 08	117.6 (2)	C8-C13-H13	120.00
C7 - C8 - C13	117.0(2) 119.0(2)	C12-C13-H13	120.00
$C_{9} = C_{8} = C_{13}$	117.5(2)	$C_{12} = C_{15} = H_{15}$	109.00
C7 - C8 - C9	117.5(2)	C14— $C15$ — $H15B$	110.00
$C_{1}^{2} = C_{2}^{2} = C_{1}^{2}$	123.3(2) 121.9(2)	$C_{14} - C_{15} - H_{15}C_{15}$	100.00
C_{11} C_{20} C_{10}	121.9(2) 110.76(18)	H15A C15 H15B	109.00
$C_1 = C_2 = C_3$	119.70(10) 118.4(2)	H15A C15 H15C	109.00
$C_{1} = C_{1} = C_{1}$	110.4(2)	H15A-C15-H15C	109.00
$C_{10} = C_{11} = C_{12}$	119.4(3)	III3B—e15—III3e	110.00
	120.0 (3)		150 5 (2)
C14—N1—C4—C3	1/8.3 (3)	NI	-179.7 (3)
C14—N1—C4—C5	-1.6 (4)	C3—C4—C5—C6	0.4 (4)
C4—N1—C14—O2	-3.1 (5)	C4—C5—C6—C1	-0.1 (5)
C4—N1—C14—C15	178.4 (3)	01—C7—C8—C9	109.0 (3)
Cl2—C1—C2—C3	-178.8 (2)	O1—C7—C8—C13	-68.5 (4)
C6—C1—C2—C3	0.9 (4)	C3—C7—C8—C9	-73.8 (4)
Cl2—C1—C6—C5	179.1 (2)	C3—C7—C8—C13	108.7 (3)
C2—C1—C6—C5	-0.6 (4)	C7—C8—C9—Cl1	2.8 (4)

supplementary materials

C1—C2—C3—C4	-0.6 (4)	C7—C8—C9—C10	-176.2 (3)	
C1—C2—C3—C7	-179.3 (2)	C13—C8—C9—Cl1	-179.7 (2)	
C2-C3-C4-N1	-180.0 (2)	C13—C8—C9—C10	1.4 (4)	
C2—C3—C4—C5	-0.1 (4)	C7—C8—C13—C12	177.2 (3)	
C7—C3—C4—N1	-1.3 (4)	C9—C8—C13—C12	-0.4 (4)	
C7—C3—C4—C5	178.5 (3)	Cl1—C9—C10—C11	179.8 (2)	
C2—C3—C7—O1	172.8 (3)	C8—C9—C10—C11	-1.2 (4)	
С2—С3—С7—С8	-4.3 (4)	C9-C10-C11-C12	0.0 (5)	
C4—C3—C7—O1	-5.8 (4)	C10-C11-C12-C13	0.9 (5)	
C4—C3—C7—C8	177.1 (2)	C11—C12—C13—C8	-0.7 (5)	

Symmetry codes: (i) -*x*+2, -*y*, -*z*; (ii) -*x*+2, -*y*+2, -*z*; (iii) *x*, *y*-1, *z*; (iv) -*x*+1, -*y*+2, -*z*; (v) -*x*+2, -*y*+1, -*z*; (vi) *x*-1, *y*-1, *z*; (vii) -*x*+2, *y*-1/2, -*z*+1/2; (viii) -*x*+1, *y*+1/2, -*z*+1/2; (ix) *x*+1, *y*+1, *z*; (x) *x*, *y*+1, *z*; (xi) -*x*+2, *y*+1/2, -*z*+1/2; (xii) -*x*+2, *y*-3/2, -*z*+1/2; (xiii) -*x*+2, *y*+3/2, -*z*+1/2; (xiv) -*x*+1, *y*-1/2, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O1	0.86	1.96	2.660 (3)	138
С5—Н5…О2	0.93	2.22	2.839 (4)	124

