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Plant breeding is a decision-making discipline based on understanding project
objectives. Genetic improvement projects can have two competing objectives: maximize
the rate of genetic improvement and minimize the loss of useful genetic variance. For
commercial plant breeders, competition in the marketplace forces greater emphasis on
maximizing immediate genetic improvements. In contrast, public plant breeders have
an opportunity, perhaps an obligation, to place greater emphasis on minimizing the loss
of useful genetic variance while realizing genetic improvements. Considerable research
indicates that short-term genetic gains from genomic selection are much greater than
phenotypic selection, while phenotypic selection provides better long-term genetic
gains because it retains useful genetic diversity during the early cycles of selection.
With limited resources, must a soybean breeder choose between the two extreme
responses provided by genomic selection or phenotypic selection? Or is it possible to
develop novel breeding strategies that will provide a desirable compromise between
the competing objectives? To address these questions, we decomposed breeding
strategies into decisions about selection methods, mating designs, and whether the
breeding population should be organized as family islands. For breeding populations
organized into islands, decisions about possible migration rules among family islands
were included. From among 60 possible strategies, genetic improvement is maximized
for the first five to 10 cycles using genomic selection and a hub network mating
design, where the hub parents with the largest selection metric make large parental
contributions. It also requires that the breeding populations be organized as fully
connected family islands, where every island is connected to every other island, and
migration rules allow the exchange of two lines among islands every other cycle of
selection. If the objectives are to maximize both short-term and long-term gains, then
the best compromise strategy is similar except that the mating design could be hub
network, chain rule, or a multi-objective optimization method-based mating design.
Weighted genomic selection applied to centralized populations also resulted in the
realization of the greatest proportion of the genetic potential of the founders but required
more cycles than the best compromise strategy.

Keywords: island model selection, recurrent selection, tradeoffs, optimization, genetic algorithms, genetic
response, genomic selection, recurrence models
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BACKGROUND

Responses to the selection of commodity crops have been enabled
by decreasing the number of years per cycle of recurrent selection,
by increasing the number of replicable genotypes (selection
intensity), and by increasing the number of replicated field trials
(heritability on an entry mean basis). In other words, genotypic
improvements from responses to selection in commodity crops
over the last 50 years (Specht et al., 2014) required monetary
investments that became part of increased seed costs during the
same time (Byrum et al., 2017; USDA-ERS, 2020). Since the
emergence and adoption of Genomic Selection (GS), it has been
possible to increase the numbers of genotypes that are evaluated,
i.e., selection intensity, without significant increases in numbers
of field plots (Bernardo and Yu, 2007; Bernardo, 2008; Asoro
et al., 2011; Heslot et al., 2012; Nakaya and Isobe, 2012; Combs
and Bernado, 2013; Crossa et al., 2014; Beyene et al., 2015; Bassi
et al., 2016; Marulanda et al., 2016; Jonas and de Koning, 2016;
Hickey et al., 2017; Goiffon et al., 2017).

While the initial interest in GS has been to increase genetic
gains, plant breeders are aware that increased selection intensities
are associated with faster losses of genetic potential in the
founder populations (Robertson, 1960; Hill and Robertson, 2008;
Bulmer, 1971).

Between the two limiting cases of no response to selection
and the infeasible ideal response of realizing maximum genotypic
potential among founders in a single cycle of selection, there are
many possible recurrent selection response curves, two of which
are illustrated in Figure 1. One of the curves depicts high rates
of gain in the early cycles, which is favored for immediate short-
term gains. However, the maximum average genotypic value
approaches a limit that is less than 40% of the genotypic potential
of the founders. The other curve depicts a response with slower
rates than the previous one in early cycles, but with greater
genotypic values before approaching a limit due to loss of genetic
potential from selection. This response pattern is desirable for
maximizing gains while preserving genetic variability. For a fixed
set of evaluation resources, the differences between the two
response curves could be due to differences in selection intensities
or selection methods or both. For example, simulation studies of
recurrent GS methods indicate that GS provides faster genetic
gains than phenotypic selection (PS) for five to 10 cycles of
recurrent selection; PS provides continued genetic gains after
response to GS becomes limited (Goddard, 2009; Jannink, 2010;
Liu et al., 2015). A question for the breeder is which possible curve
most accurately represents the relative importance of short-term
gains versus retention of valuable alleles for future generations
of plant breeders. For commercial plant breeders, competition
in the marketplace forces greater emphasis on maximizing
immediate genetic gains. In contrast public plant breeders have
an opportunity, perhaps an obligation, to place greater emphasis

Abbreviations: SM, Selection Method; MD, Mating Design; MP, Migration policy;
PS, Phenotypic selection; HN, Hub Network; BI, Best Island; GS, Genomic
selection; CR, Chain Rule; RB, Random Best; WGS, Weighted Genomic Selection;
RM, Random Mating; FC, Fully Connected; IM, Island Model; GM, Genomic
Mating; GA, Genetic Algorithm.

on minimizing the loss of useful genetic alleles while realizing
genetic gains that are close to the maximum.

In spite of these general statements about the relative
importance for commercial and public genetic improvement
projects, each genetic improvement project has unique objectives
and constraints. Previously, we (Ramasubramanian and
Beavis, 2020) reported responses for combinations of selection
intensity, GS methods, and training sets applied recurrently
to populations composed of 2000 F5-derived lines from
contemporary soybean germplasm belonging to maturity
groups II and III. The combinatorial set of factors consisted
of Phenotypic Selection (PS) and four commonly used GS
methods, training sets, selection intensity, number of QTL
(nQTL), and broad sense heritability (H) on an entry
mean basis. While interactions among all factors affected
all response metrics, only the impacts of GS methods,
selection intensity, and training sets are factors that plant
breeders can control.

All GS methods provided greater responses than PS for at
least five cycles, but PS provided better responses to selection
as response from GS methods reached a limit. These results
are consistent with reports by Goddard (2009); Jannink (2010),
and Liu et al. (2015) that demonstrated that the full genotypic
potential of the founders is eliminated more quickly with GS
than PS. In terms of factors that a soybean breeder can control,
a selection intensity of 1.75 and Ridge Regression Genomic
Prediction (RRGP) models provided rapid response in the early
cycles of selection. It also allowed the retention of genetic
diversity for continued response to selection in later cycles,
when the models are updated with training data from previous
cycles. We also suggested that further improvements might
be made if the populations were organized into families or
islands and mating designs that optimize parental contributions
to retain greater genetic potential in the populations are used
(Ramasubramanian and Beavis, 2020). Herein, we investigate
strategies that soybean breeders can employ to find optimal
trade-offs between maximizing genetic gain from selection and
retaining useful genetic diversity.

Given that there are constraints on the size of the breeding
program, including the number of lines to evaluate and the
number of field plots, it is important to reveal as many
response curves as possible for possible breeding strategies. While
breeders can observe these curves and identify one that most
closely reflects the relative importance of the two objectives,
we conjectured that it should be possible to design additional
breeding strategies that are better, in the sense of minimizing
the trade-offs, than those we previously investigated. One of the
approaches is to use a trade-offs table to identify the best strategy
for a given set of relative weights for the short-term and long-term
objectives of the program.

The challenge of realizing genetic gains from selection and
retaining useful genetic diversity in closed populations has been
of interest since it was demonstrated that there are theoretical
limits for response to selection in closed populations (Hill and
Robertson, 2008; Bulmer, 1971). Trade-offs among objectives
don’t prohibit finding optima as long as optimality is defined as
a compromise among competing objective functions (Deb, 2003;
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FIGURE 1 | Illustration of possible responses to recurrent selection. Average genotypic value is plotted on y-axis and cycle number is plotted on x-axis. (i) The purple
line depicts a response pattern with no genetic gain, which is possible when there is no selection in a population with a large effective population. (ii) The red line
depicts a hypothetical ideal response curve when the maximum genotypic potential among founders is realized in one cycle of selection. The ideal is not feasible
using selection if the alleles responsible for the maximum are distributed among more than two founders. (iii) The black line depicts a response pattern with high rates
of gain in the early cycles, but the maximum average genotypic value approaches a limit that is less than 40% of the genotypic potential among the founders. The
dashed black line represents the corresponding rapid drop in genotypic potential among the founders. (iv) The blue line depicts a response pattern with slightly
slower rates of gain in early cycles relative to the black line, but achieves greater genotypic values before approaching a limit. This is due to conservation of genetic
variability as represented by the dashed blue line with slower rate of decrease in genotypic potential of the population. Note that there are potentially an infinite
number of unique response curves that fall between no response and an ideal response.

Konak et al., 2006; Shoval et al., 2012; Sheftel et al., 2013; Saeki
et al., 2014).

Before the development of GS, quantitative geneticists
working on domestic animal systems utilized mathematical
programming modeling and operations research approaches to
find near-optimal solutions to the challenge of assuring genetic
gain and minimizing inbreeding per cycle of selection (Wray and
Goddard, 1994). The first publication using operations research
approaches to address multiple objectives in plant breeding
was applied to the selection of multiple traits (Johnson et al.,
1988). Generally, operations research approaches involve three
activities: (1) define objectives using measurable metrics; (2)
translate the objectives into a model consisting of objective
functions, decision variables, and constraints; and (3) find an
algorithm that will provide values for the decision variables
resulting in optimal solutions to the model (Rardin, 2017).

If a genetic improvement project wants to assure genetic
gain and retain useful genetic diversity, then there are two
competing objectives for which a trade-off needs to be optimized.
This represents an example of a multi-objective optimization

problem (Deb, 2003, 2011; Rardin, 2017). After translating
each of the objectives into an objective function, there are
several strategies for finding the optimal solution (Deb, 2003).
The two most commonly used strategies are known as ε-
constraint and the weighted sum. The ε-constraint method
consists of identifying one of the objectives, e.g., maximize
genetic gain, and translate other objectives, such as minimize
inbreeding, into decision variables that can be constrained
in a linear, integer, or quadratic mathematical programming
model (Haimes et al., 1971); in other words, translate the
multi-objective optimization mathematical model into a single
objective optimization model for which there exist computational
algorithms capable of finding the optimum solution (Frank and
Wolfe, 1956; McCarl et al., 1977; Lazimy, 1982). Framing the
ε-constraint method requires definition of metrics for genetic
diversity or inbreeding. In animal breeding, this method became
known as Optimum Contribution Selection (Wray and Goddard,
1994; Brisbane and Gibson, 1995; Meuwissen, 1997; Grundy et al.,
1998; Meuwissen et al., 2001). Subsequent to the development
of GS, Optimum Contribution Selection was modified to
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maximize Genomic Estimated Breeding Values (GEBVs), and the
realized relationship matrix was used to constrain inbreeding
in what became known as Genomic Optimum Contribution
Selection (Sonesson et al., 2010; Schierenbeck et al., 2011;
Woolliams et al., 2015).

The second well-established approach to a challenge is known
as the weighted sum method. The weighted sum method assigns
weights, ωi∈ [0, 1] and

∑
ωi = 1, to each of the “i” objective

functions, and an algorithm is employed to find the values
for the decision variables that minimize all objective functions
simultaneously (Zadeh, 1963). The weighted sum method is
equivalent to the concept of selection index familiar to breeders.
In this case, the selection index is composed of weighted
parameters for genetic gain and inbreeding or, equivalently,
genetic diversity. If genomic information is available, GEBVs can
be used to maximize genetic gain and the realized relationship
matrix can be used to minimize inbreeding resulting in a
genomic selection index that can be calculated for all genotypes
(Carvalheiro et al., 2010; Clark et al., 2013).

Both ε-constraint and weighted sum methods are referred
to as preference methods (Deb, 2003) where the constraints
or relative weights have been predetermined. For defined
preferences, there exist exact optimization algorithms if Karush-
Kuhn-Tucker (KKT) conditions are met (Karush, 1939; Kuhn
and Tucker, 1951). An exact optimization solution guarantees
that no other feasible solution will be a better solution for
the specified set of constraints or weights. Unfortunately, it
is difficult to predetermine these values because they require
forecasting the relative economic values of genetic gains and
retention of useful genetic diversity in terms of immediate returns
and future benefits. For commercial plant breeding projects,
competition in the marketplace will force much greater emphasis
on maximizing genetic gains than retaining genetic diversity to
maximize immediate return on investment. In contrast, public
soybean breeders have an opportunity, perhaps an obligation, to
retain useful genetic diversity while realizing genetic gains for
quantitative traits of agronomic importance. Since each plant
breeding project has unique relative trade-offs, evolutionary
algorithms have been adopted to provide multiple solutions on
an efficient (Pareto) frontier of solutions to competing objectives
(Deb, 2003, 2011; Konak et al., 2006). Decision makers then
decide which of the solutions have the appropriate relative
emphasis on the competing objectives.

Genetic improvement can be viewed as single or multiple
connected search strategies in genotypic space (Podlich and
Cooper, 1999; Cooper et al., 2002, 2014). The single search
strategy, a.k.a. global, corresponds to the selection of lines
in centralized populations, where genotypes from all the sub-
populations are treated as one population (Technow et al., 2021).
The multiple connected search strategy, a.k.a. local, occasional
and corresponds to selection of lines in multiple domains with
infrequent exchange of lines. Search strategies in genotypic
space inspired the development of a class of evolutionary
algorithms known as genetic algorithms (GAs). GAs are based
on recurrent selection of breeding populations and are often used
to find computational solutions to large combinatorial problems
(Goldberg, 1989; Luque, 2011).

In a canonical GA, selected solutions are pooled together
into a set of solutions. Subsequently the individual solutions
are randomly sampled for pairwise “matings” to create a new
set of solutions for evaluation and selection. Computational
analogs of mutation or recombination referred to as mutation
and recombination operators, are utilized to move the population
of solutions into new domains in the solution space towards
global optima. The algorithm is iterated until there are no
improvements in the sets of solutions. Inspired by Wright’s
shifting balance theory of evolution, researchers developed a
subclass of GAs, known as parallel Gas, that maintain structure
among subsets of individual solutions and enable the subsets
to independently find different solutions for different domains
(Wright, 1967; Wright, 1988; Cantú-Paz, 2000; Luque, 2011; Yabe
et al., 2016). The parallel GA is analogous to the concept of island
model selection in genetic subpopulations. The term island refers
to distinct sub-populations, where genotypes from any of the sub-
populations cannot randomly mate with lines from other sub-
populations due to restrictive rules for mating. However, Island
Model/Parallel GAs allow for an exchange of solutions among
subpopulations that are evolving in parallel. Island model GAs are
also distinct from canonical GAs in terms of properties because
evolution happens locally, within island, as well as globally,
among islands. Island model parameters consist of number of
islands, island size, selection pressure within each of the islands,
numbers of migrants, migration frequency, connectedness or
topology of islands, and emigration and immigration policies
among islands (Whitley et al., 1999; Skolicki, 2007; Skolicki and
Jong, 2007).

Rather than investigate the trade-off between objective
functions, Jannink (2010) demonstrated that it is possible to
retain useful genetic diversity in GS by weighting low-frequency
alleles with favorable estimated genetic effects. Simulations
with Weighted Genomic Selection (WGS) resulted in greater
responses across 24 selection cycles of recurrent selection than
unweighted GS, using RRBLUP estimated breeding values, for
both low and high heritability traits. However, the initial rates
of response using WGS were less than responses from the
application of PS and less than GS. The response using WGS
was better than the response from PS after 20 cycles of selection,
but the responses relative to GS depended on the number of
simulated QTL and heritability. Decay of linkage disequilibrium
(LD) between marker and QTL is one of the factors that can slow
responses using GS relative to PS (Hickey et al., 2014; Xavier et al.,
2016), although decay of LD did not contribute to responses in
the initial cycles using WGS. The rate of inbreeding per cycle
is also greater with GS than with PS, whereas it is similar to PS
when WGS is applied. The rate of fixation of favorable alleles is
lower for WGS than GS resulting in larger numbers of cycles of
genetic improvement before response to selection reaches a limit
(Jannink, 2010). Efforts to balance the response in early cycles
and later cycles have included addition of parameters to WGS
(Sun and VanRaden, 2014) and dynamic weighting of rare alleles
depending on the time horizon for the breeding program (Liu
et al., 2015). Low-frequency favorable alleles are given greater
weights, drawn from a beta distribution, in initial cycles, and the
weights tend toward unity as the number of cycles of selection
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approaches a predefined time horizon. This shifts the balance
towards retaining greater genetic variance in earlier cycles.

Investigations of GS, WGS, genomic optimum contribution
selection, and genomic selection index assume that selected
individuals will be randomly mated. Typically, plant breeders do
not randomly mate selected genotypes, rather, most use selected
genotypes that exhibit the most desirable selection metrics,
e.g., GEBVs, to serve as “hub” parents in networked crossing
designs (Guo et al., 2013, 2014). Because the metaphor of hubs
with spokes represents the preference for crossing most selected
lines to a few “hub” lines, we refer to this mating design as
a Hub Network (HN), and this is the mating design used in
our previous investigation (Ramasubramanian and Beavis, 2020).
A Hub Network (HN) mating design applies greater weights to
genetic contributions from hub genotypes resulting in amplified
loss of genetic diversity relative to Random Mating (RM) by
reducing the effective population size.

As soybean breeders have become aware of the potential
impacts due to loss of genetic diversity from use of GS, they
have used various ad hoc methods to avoid crosses between
related genotypes (Diers, Graef, Lorenz, Cianzio, Singh, Byrum,
Xu personal communications). After quantitative geneticists
working on animal breeding systems demonstrated that it
is possible to use the genomic selection index strategy with
an evolutionary algorithm to identify optimal pairs of mates
(Kinghorn, 2011; Pryce et al., 2012; Woolliams et al., 2015),
plant quantitative geneticists developed and investigated various
versions of genomic selection index and genomic optimum
contribution selection for plant breeding (Akdemir and Sánchez,
2016; De Beukelaer et al., 2017; Cowling et al., 2017; Lin et al.,
2017; Gorjanc et al., 2018; Allier et al., 2019a,b). Notice that
the computational demand to find the optimum on the non-
decreasing efficiency frontier created by all possible constraint
values or relative weights in all N choose 2 (NC2) mating pairs
is particularly well suited for application of GAs. Also, it should
be noted that Akdemir and Sánchez (2016) referred to their
implementation of genomic optimum contribution selection
as efficient GS. In addition to evaluating traditional PS, GS,
and genomic optimum contribution selection, Akdemir and
Sánchez (2016) proposed and evaluated a novel mathematical
programming model, referred to as genomic mating (GM).
They formulated the problem as minimizing a linear function
of inbreeding plus a negative risk function for the realized
relationship matrix of Np possible parents. Inbreeding is a
function of the expected genetic diversity among Nc progeny
from the Np parents and is weighted by a parameter that controls
allelic diversity among all Np parents. Risk is determined for each
cross as the sum of the expected breeding values of the progeny
plus the expected standard deviations of marker loci weighted
by a parameter that controls the allelic heterozygosity of the
relative contributions of the marker loci to the GEBVs. Thus, risk
is similar to the usefulness criterion, defined by Schnell (1983)
(as cited in Melchinger et al., 1988), of a selected proportion
of the population and the weighting parameter reflects the
breeders’ emphasis of its importance. They demonstrated that
their GM formulation is equivalent to an optimization problem
of minimizing inbreeding subject to defined level of risk, denoted

ρ. The solution needs to calculate risk and inbreeding for the
range of acceptable ρ values for Nc progeny from Np parents,
i.e. (Akdemir and Sánchez, 2016) developed a Tabu-search GA
to determine the efficiency frontier between inbreeding and risk.
In an updated version, Akdemir et al. (2018) used a GA to find
the complete set of non-dominated solutions (Deb, 2003, 2011)
that comprise the efficiency frontier for the three criteria of Gain
(G), Inbreeding (I), and Usefulness (U) values in the objective
function. This allows the selection of a subset of solutions for
evaluation, obviating the need for conducting a grid search across
all possible values. More details on the GM method are provided
in Supplementary File 1.

Akdemir and Sánchez (2016) demonstrated the utility of
their genomic mating approach using simulations of recurrent
selection beginning with two founders for a trait composed
of simple additive genetic architecture. The QTL were evenly
distributed across a simulated genome consisting of three diploid
linkage groups. Their results indicated that the efficiency frontier
produced responses across 20 cycles that were better than
PS and as good as GS and genomic optimum contribution
selection for the first five to seven cycles and better than PS,
GS, and genomic optimum contribution selection thereafter
(Akdemir and Sánchez, 2016). They did not include WGS for
comparison in their study.

Recognizing that Island Model/Parallel GAs are very efficient
at finding global optima, Yabe et al. (2016) suggested that
computational island models could be used to create efficient
and effective breeding plans for plant breeders. Even though
computational parallel GAs allow the software developer to
change mutation and recombination rates, which are not under
the control of plant breeders, structures of breeding populations
based on island models could offset the loss of useful genetic
variability through regulation of exchange of genotypes among
sub-populations. It is not unusual for plant breeders of crops
that are easily self-pollinated to routinely evaluate, select, and
recurrently cross lines derived from one or two specific bi-
parental crosses. In the vernacular of soybean and maize breeders,
this is known as “working a population.” Yabe et al. (2016)
demonstrated that GS on populations organized as islands
provided greater response to selection than GS on a single
population comprising all the islands, after the 12th of 20 cycles
of recurrent GS. Their founder population consisted of lines
derived from in silico crosses of six homozygous rice lines with
an elite rice variety, i.e., a hub network. They isolated the
six families of Recombinant Inbred Lines (RILs) for recurrent
selection using GS with no or occasional exchange of selected
lines among the family islands. While their results appeared to
be similar to WGS, they did not compare their results with
WGS. They also suggested that the trade-off between genetic gain
and retention of useful genetic variance could be improved by
adjusting the number and frequencies of migrants among sub-
populations. We hypothesize that a breeding strategy consisting
of breeding populations organized as family islands and in which
crossing decisions are based on genomic mating will provide
small soybean genetic improvement projects with the ability to
minimize the trade-offs between maximizing genetic gain and
minimizing the loss of useful genetic variability.
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Within the populations organized as islands, we evaluated
four migration policies, three selection methods, and four mating
designs. Given that each of the factors show characteristic
average response patterns with widely different rates and limits
of responses, we also hypothesize that the combinations of
all these factors will further increase the number of possible
response curves due to the interaction among these factors.
To evaluate the potential of these combinations of methods to
realize genetic gains while retaining useful genetic diversity, we
compare outcomes from simulated recurrent selection applied to
contemporary soybean germplasm adapted to Maturity Group
(MG) II and III using a set of metrics (Ramasubramanian and
Beavis, 2020), which includes the standardized genotypic value
(Rs), the most positive genotypic value (Mgv) among F5-derived
lines selected in cycle c, the standardized genotypic variance
(Sgv), the average expected heterozygosity (Hs), and the lost
genetic potential of populations based on the number of favorable
alleles that are lost.

METHODS

Simulations
Initial sets of soybean lines were generated by simulating crosses
of 20 contemporary homozygous lines representing the diversity
of soybean germplasm adapted to MGs II and III with IA3023,
a former widely grown variety adapted to MG III, to generate
in silico F1 progeny (Ramasubramanian and Beavis, 2020).
Individual F1s from each of the 20 crosses were self-pollinated
in silico for four generations to generate 100 lines per family
forming 2000 lines organized into 20 families with genotypic
information at 4289 genetic loci (Song et al., 2017). Thus, the
genetic structure of the initial simulated populations is similar to
that used in the experimental SoyNAM investigation (Guo et al.,
2010; Takuno et al., 2012; Song et al., 2015, 2017; Xavier et al.,
2017; Diers et al., 2018).

As reported previously (Ramasubramanian and Beavis, 2020),
there were 3818 polymorphic loci in the combined population
consisting of 20 families with an average of 773 polymorphic loci
within each of the families for the initial founding sets of lines.
The variance of the number of polymorphic loci among families
was ∼34, which indicates that the number of polymorphic loci
is roughly similar among all families. Across the 20 families
of Cycle 0 (C0) lines, average expected heterozygosity was 0.09
with an estimated variance of 4.4∗10−7 among families. The
average estimated Gst value across the genome for the initial
founding set of F5-derived lines was 0.32, as determined by
the “diff_stats” function in the mmod R package (Jombart,
2008; Ryman and Leimar, 2009; Jombart and Ahmed, 2011;
Ramasubramanian and Beavis, 2020). Average pairwise “Fst”
estimated using “pairwise.fst” in “hierfstat” R package (Goudet,
2005) among the 20 families in simulated data is 0.20. Pairwise
“Fst” is a measure of population differentiation among pairs of
populations based on Nei’s genetic distance, which is estimated
as the ratio of difference between the weighted average of the
expected heterozygosity of pairs of families and total expected
heterozygosity of the pooled populations to total expected

heterozygosity of the pooled populations. For two populations
“A” and “B” of size nA and nB, expected heterozygosity (averaged
over loci) is denoted as Hs(A) and Hs(B), respectively. Let Ht
denote the expected heterozygosity of a pooled population
of “A” and “B.” Then, the pairwise Fst between “A” and

“B” is computed as: Fst(A, B) =
Ht −

(
nAHs(A) +nBHs(B)

(nA+nB)

)
Ht

(Goudet, 2005). For comparison, the average Fst using genotypic
data from the SoyNAM project among 40 families is 0.09 with
a maximum pairwise Fst of 0.15 and a minimum Fst of 0.007
(Ramasubramanian and Beavis, 2020), whereas the average Fst
among the clusters in the USDA soybean germplasm collection is
0.23 (Song et al., 2015; Xavier et al., 2018).

Combinations of Factors
We evaluated 60 combinations of factors (Table 1) that could
influence responses to recurrently selected populations derived
from a set of founder genomes representing the diversity of
contemporary soybean germplasm adapted to MG II and III in
North America (Mikel et al., 2010; Diers et al., 2018). The factors
included structure of breeding populations, selection method,
and mating design. The structure of the breeding populations,
which refers to the presence of distinct sub-populations,
included retaining the structure of the original 20 founder
families through restrictive breeding rules, referred to as family
islands, and dissolving family structures after the initial founder
population was created, referred to as centralized populations.
For comparison with previous studies, the centralized population
structure corresponds to the bulked population in Yabe et al.
(2016) and the centralized policy in Technow et al. (2021). The
family island structure with migration of lines among islands is
also called as distributed policy in Technow et al. (2021), whereas
islands that are not connected to each other are called as isolated
in Technow et al. (2021) and is the policy termed as discrete
selection in Yabe et al. (2016).

Previously, we demonstrated that the development of
homozygous lines for phenotypic evaluation would limit the
numbers of segregating linkage blocks with effective QTL effects.
Our evaluations of responses with 40, 400, and 4289 QTL showed
that responses for 400 QTL followed a pattern that facilitated
the study of the impact of factors on short-term and long-term
responses, as the responses realized limits around 15–20 cycles,
whereas for 40 and 4289 QTL, the responses reached limits within
10 cycles and around 30 cycles, respectively (Ramasubramanian
and Beavis, 2020). Consequently, we chose to designate only
400 polymorphic marker loci as simulated QTL. The QTL were
distributed uniformly among the SNP loci and each contributed
equal additive effects of ± 0.5 units to the total genotypic value
of a line. Thus, cycle C0 lines derived from the founders had
an average genotypic value of zero and the potential to create
genotypic values ranging from −200 to +200. Phenotypic values
were simulated by adding non-genetic values sampled from N
(0, σe

2) distribution to the simulated genotypic values, where σe
2

that corresponds to non-genotypic variance was determined by
the heritability (σe

2 = ((1−H)/H)∗ σg
2), where σg

2 corresponds to
genotypic variance and H corresponds to broad sense heritability.
Herein we report only simulated broad sense heritability values
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TABLE 1 | Treatment design representing the factors that impact responses and limits of responses that were investigated.

Factors Levels Values for levels

Population type 2 Centralized and Island populations

Island model selection

Migration
frequency

1 Migration frequency of 2 corresponds to migration of lines every other cycle of
selection

Migration size 1 Migration of 2 lines per migration event (20%)

Migration policy 4 (i) Isolated selection (IS) (For IS, migration frequency, size and direction are set
to “0”)
(ii) Best island
(iii) Random best
(iv) Fully connected

Migration
direction

1 (i) Bi-directional

Factors common to Non-island and Island populations

Selection method 3 (i) Phenotypic selection,
(ii) Genomic selection,
(iii) Weighted genomic selection

Mating design 4 (i) Hub network
(ii) Chain rule
(iii) Random mating
(iv) Genomic mating

Genetic model
parameters

1 400 QTL and 0.7 H

Total number of
combinations of
treatment factors

60

Total number of
simulations

5 (replicates/combination of factors) 300

on an entry mean basis of 0.7. The non-genetic variance was held
constant across subsequent cycles of selection. Thus, heritability
is expected to decline with every cycle of selection due to
loss of additive genetic variance relative to a constant non-
genetic variance.

Phenotypic selection (PS), genomic selection (GS), and
weighted genomic selection (WGS) were applied recurrently to
both population structures. Recurrent selection applied to the
centralized populations consisted of ranking all lines in a given
cycle (Figure 2) according to the selection metric and retaining
10% for crossing to create the next cycle of lines. In terms of
standardized selection differential, this corresponds to selection
intensity, ι= 1.75. For selection of lines organized into family
islands, 10% of the lines are selected within islands (Figure 3).
Subsequently, 20% of lines might be migrants from other family
islands depending on migration rules (Table 1). Metrics used for
selection include simulated phenotypic values for PS, genome
estimated breeding values (GEBVs) for GS, and weighted genome
estimated breeding values for WGS. We used the weighting
function used by Jannink (2010) for estimating weighted genome
estimated breeding values (Supplementary Table 1). A previous
study indicated that among GS methods, Ridge Regression (RR)
provided the best compromise between short-term and long-
term responses (Ramasubramanian and Beavis, 2020); thus, we
only used RR to train GP models for GS. RR was implemented

with a method that employs Expectation Maximization to obtain
Restricted Maximum Likelihood Estimates of marker effects
(Xavier, 2019).

For both GS and WGS, the training models were updated
every cycle of selection with data sets from all prior cycles.
Since average within-family prediction accuracies are less than
prediction accuracies from combined training sets comprising
F5-derived lines from across all the families (Ramasubramanian
and Beavis, 2020), we used a training set comprising F5-derived
lines from all the families. Training sets for each cycle were
obtained by randomly sampling 1600 lines from the set of
2000 lines in each cycle. The most accurate predictions and
maximum genetic responses were obtained with training data
that are cumulatively added every cycle. For purposes of this
manuscript, model updating refers to retraining the model with
data from the current cycle as well as all prior cycles that were
cumulatively added.

Subsequent to selection, four mating designs were applied to
create the next cycle of lines (Table 1). To simulate theoretical
truncation selection, selected lines were randomly mated (RM).
The chain rule (CR), a.k.a., a single round-robin mating design
(Yabe et al., 2016), is an alternative to RM that assures all
selected lines contribute to the subsequent cycle of evaluation
and selection. In contrast to the attempt to assure equal
representation of selected lines through RM and CR, most
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FIGURE 2 | Schematic representing simulated recurrent selection in centralized populations comprising 20 families. The schematic depicts the in silico steps used to
generate the base population of 2000 F5 derived lines derived from 20 founder lines crossed to IA3023. The depiction includes the model training step and the
recurrent steps of prediction, sorting, truncation selection, crossing, and generation of 2000 F5-derived lines for each cycle as well as the decision steps to check if
the training set should be updated and if the recurrent process should be continued for another cycle.

soybean breeders use a mating design that assures most progeny
will be derived from crosses of a few lines that exhibit the
most desirable performance (Guo et al., 2013, 2014). In the
hub network (HN) mating design, the hub parents with the
largest selection metrics make the largest parental contributions
(Ramasubramanian and Beavis, 2020). The fourth mating design,
genomic mating (GM), uses mathematical objective functions
to assure that defined breeding objectives are used to identify
pairs of crosses from among the selected lines. GM method was
implemented using the “Genomic Mating” R package (Akdemir
et al., 2018). As originally described, GM combines selection and
mating in a single step, but we decomposed the steps to provide
comparable outcomes from all other combinations of selection
methods, mating designs, and organized populations.

Genomic Mating in Centralized Families
In a selected set of 200 lines, there are 200C2 (19900)
combinations of parental pairs. To solve the objective
function w.r.t., an initial population of parental pairs, 250
initial populations of 200 combinations of parental pairs, is
sampled from 19900 combinations (19900C200) for the genetic
algorithm to solve.

Genomic Mating in Populations Organized as Family
Islands

In island selection, ten lines are selected from each of the 20
family islands. Within each island, 45 (10C2) combinations of
parental pairs are possible (Supplementary Figure 1). To solve
the objective function w.r.t., an initial population of parental
pairs, 250 initial populations of 10 combinations of parental
pairs, is sampled with replacement to keep the population size
equal to the centralized populations for the GA. For each of
the 20 families, the GA is applied to the initial subset of 250
out of all possible combinations (45C10). The other parameters
for the GA are the same for both centralized and family
island populations. The genetic algorithm selects non-dominated
elite solutions (Deb, 2003, 2011) and crosses non-dominated
elite solutions for 50 iterations with a mutation probability of
0.8 (Supplementary Figure 1). Examples of pseudocode are
provided in Akdemir and Sánchez (2016) and the “Genomic
Mating”. It is important to note that the parameter values
in the genetic algorithm can be optimized, and the set of
solutions in the pareto-front can be explored for better fsolutions
using other methods such as NSGA-II, NSGA-III, SPEA-1,
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FIGURE 3 | Schematic representing simulated recurrent selection of family island populations where each of the 20 families from the founders is considered an
island population. The schematic depicts the in silico steps used to generate the base population of 2000 F5 derived lines derived from 20 founder lines crossed to
IA3023; 100 F5-derived lines generated from each of the crosses form a distinct island. The depiction includes the model training step and the recurrent steps of
prediction, sorting, truncation selection within islands, migration, crossing, and generation of 100 F5-derived lines per island for each cycle as well as the decision
steps to check if the training set should be updated and if the recurrent process should be continued for another cycle. The blue shaded circles represent lines that
are descendants of the founder populations in the islands and red shaded circles represent lines that are replaced by immigrants from the island with the largest
genotypic value for the “Best Island” policy.

SPEA-2 and other recent improved versions of GAs for better
convergence rate and quality of solutions, determined by the
proximity to global optimum (Deb, 2011; Seada and Deb, 2018;
Supplementary Figure 1).

Migration Rules Among Family Islands
In addition to applying selection methods and mating designs
to both population structures, there are many possible rules
that affect migration among islands. Migration rules that
were implemented in a preliminary investigation included: (1)
frequency of migration—never, once every two cycles, and every
cycle of recurrent selection; (2) the proportion (10% and 20%)
of immigrants that will be included in crosses responsible for
creating the next cycle of lines; (3) migration can be either in
one direction or it can be reciprocal among family islands. Based
on the preliminary investigation (results available on request),
we decided to set the migration rule as bi-directional migration
between both immigrant and emigrant islands of two lines once
every other cycle of selection.

Migration Policies Among Family Islands
Migration policy (MP) refers to the nature of island topology
specifying connections between emigrant and immigrant islands.
The four levels for migration policy included “Isolated” (IS),
“Best Island” (BI), “Random Best” (RB), and “Fully Connected”
(FC). For the BI policy, emigrant lines are selected from
the island with most desirable average genotypic value in the
islands, and selected lines can migrate to no more than 10
islands. Given a bi-directional migration rule, the emigrant
island also receives two immigrants from the islands that
received the emigrants. For an RB policy, an emigrant island
is selected randomly from a set of 10 islands with high
average genotypic values, while the migration pattern itself
is similar to BI policy. For the FC policy, every island is
connected to every other island, and lines migrate from emigrant
islands with high values to randomly selected immigrant islands
(Supplementary Figure 2).

Note that migration factors are irrelevant for populations that
did not maintain the structure of family islands, and they are
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irrelevant for isolated family islands where there is no migration.
Thus, the treatment design is not a complete factorial, rather,
the complete set is comprised of responses for 60 combinations
of factors with five independent replicates per combination
of factors. The parameter values for levels of island selection
specific factors were selected based on limits of responses
from a larger set of simulations (2664 combinations of factors
with 10 replicates per combination of factor) performed for a
preliminary study. The migration rules investigated included
migration of one or two lines every cycle, or every other cycle
or once in three cycles in one or both directions. Mating
designs included (HN, CR, and RM) for 40, 400 and 4289
QTL with 0.7 and 0.3 H (response patterns for this set are
available on request).

Modeled Response to Recurrent
Selection
The averaged genotypic value for each cycle, c, of recurrent
selection was modeled with a linear first-order recurrence
equation:

f 0(c)y(c+1) + f1(c)y(c) = g(c) (1)

where c is a sequence of integers from 0 to 39 representing each
cycle of recurrent selection from cycle 1 to 40 and f 0, f 1, and g
are constant functions of c. By rearranging the equation, we note
that the response in cycle c+1 can be represented as

y(c+1) = −
f1(c)
f0(c)

y(c)+
g(c)
f0(c)

(2)

Since the ratios f 1(c)/f 0(c) and g(c)/f 0(c) are constants, we can
represent the response in cycle c+1 as

y(c+1) = αy(c)+β (3)

If y0 specifies the average genotypic value of the first cycle
of F5 lines derived from crosses involving IA3023 and the
other founders, then (3) has a unique solution (Goldberg, 1958;
Ramasubramanian and Beavis, 2020):

yc = αcy0+β 1−αc

1−α
if α 6= 1

yc = αcy0+ βc if α = 1
(4)

An alternative representation of (eqn 4) for the situation of α

6= 1 is
yc = αc(y0−y′)+ y′

with y′ = β
1−α

(5)

where α is less than 1 for genotypic response to recurrent
selection and y′ represents the asymptotic limit to selection
(Goldberg, 1958; Ramasubramanian and Beavis, 2020).
An illustration of the values of the sequence of c = 0–
39 for a range of α and β values can be found in our
previous study (Ramasubramanian and Beavis, 2020). The
model-derived curves can be interpreted as response to
selection as a function of the frequencies of alleles with
additive selective advantage, selection intensity, time, and
effective population size (Robertson, 1960). The parameters,

α, and β were estimated with a non-linear mixed effects
method implemented in the “nlme” and “nlshelper”
packages (Pinheiro and Bates, 2000; Baty et al., 2015;
Pinheiro et al., 2021).

Since the limits of responses are approached asymptotically,
the number of cycles required to reach half of the limits before
there is no longer response to selection is referred to as the half-
life of the recurrent selection process (Robertson, 1960; Dempfle,
1974; Cockerham and Burrows, 1980; Kang and Namkoong,
1980; Kang, 1983; Kang and Nienstaedt, 1987). From the first-
order recurrence equation (5), the half-life is estimated as

t1/2 = ln(0.5) / ln(α) (6)

when y0 is “0” and the asymptotic limit is estimated as y′
(Ramasubramanian and Beavis, 2020).

Analyses of Variance (ANOVA) of
Modeled Response to Recurrent
Selection
Analyses of variance is used to evaluate the impact of factors
and their interactions on the modeled responses to global
and island recurrent selection. The analyses of variance used
single-level nlme models with modeled (Eqn 5) responses
grouped by combinations of treatment factors. We analyzed
the variance among modeled responses using AIC, BIC, and
Likelihood metrics that were grouped based on combinations
of treatment variables consisting of population type, selection
method, mating design, and migration policy for migration
frequency, migration size, and migration direction for one
genetic model consisting of 400 simulated QTL responsible for
0.7 H with equal additive effects (Table 1). For a discussion
of the analyses of variance using non-linear mixed effects
models refer to (Pinheiro and Bates, 2000; Zuur et al., 2009;
Baty et al., 2015; Pinheiro et al., 2021; Oddi et al., 2019;
Ramasubramanian and Beavis, 2020).

In the first phase of model fitting, we fit a random intercept
model for estimating both α and β in the recurrence equation
using the “nlme” R package. Estimates of modeled parameters
from nlsList models were retained as starting values for fixed
effects. Multiple ANOVA of “nlme” objects representing the
models were used to identify combinations of factors with
significant impacts on the non-linear response. The model with
the lowest AIC score was selected as the best model. The best
random intercept model in the first phase of model fitting process
M15 and models with combinations of three factors (M11-
M14) showed evidence of auto-correlation among residuals.
Since auto-correlation violates the independence assumption,
the correlation among residuals was modeled using AR-1
correlation structure. Since the genotypic values across cycles
in recurrent selection are correlated, fitting AR-1 correlation
does not remove the correlation unless cycles are used as
co-variates. However, using cycles as a co-variate makes the
model fitting process very time-consuming and often has
larger AIC scores than models without cycles as covariates.
The Model M15 with AR-1 correlation structure was further
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refined by modeling variance components using “varIdent”
structure in “nlme.” The process for fitting, selecting, and
refining mixed-effects models is similar to our previous study
(Ramasubramanian and Beavis, 2020) and is described in
Supplementary File 2.

Evaluations of Responses to Recurrent
Selection
Evaluations of responses to recurrent selection were conducted
on both modeled and genotypic values using a set of metrics
described in Ramasubramanian and Beavis (2020) and defined
below. The estimated population half-life and asymptotic limits
used the estimated parameters α and β of the first-order
recurrence model. The average genotypic values were used to
estimate the standardized genotypic value (Rs) and maximal
genotypic value (Mgv). Maximum possible genotypic potential
of the founders provided a reference for number of favorable
alleles retained in the population. The loss of genotypic potential
is characterized by reduction in the standardized variance of
genotypic values (Sgv) and estimated heterozygosity (Hs). In
addition, efficiency of conversion of loss in genotypic variance
into genetic gain (Rs_var) provides a way to assess gain in
genotypic value and loss of genetic variance simultaneously.
For selection using island models, the different impacts of
selection strategies on the genotypic variance at individual
island or global levels are assessed using intra-island Sgv, inter-
island, and global variance of genotypic values. A schematic
diagram of the processes, factors, and evaluation metrics used
to characterize the responses to recurrent selection is provided
in Figure 4.

Evaluation Metrics
The standardized genotypic value, Rs was estimated in every
cycle of selection as the proportion of maximum genotypic
potential (200 units) relative to the average genotypic value
of 2000 lines in C0 (Eqn 7). Values range from 0 to 1
with the value of 1 corresponding to the maximum possible
genotypic value with the genetic model and 0 corresponding
to the average genotypic value of C0 (Meuwissen et al.,
2001; Liu et al., 2015; Ramasubramanian and Beavis, 2020).

Rs =
Rc

(Rm − R0)
(7)

Rs - Standardized genotypic value
R0 - Average genotypic value of F5 derived lines produced by

founders
Rc - Average genotypic value in cycle ‘c’ – R0
Rm - Maximum possible genotypic value (200)
Since we previously evaluated the genetic improvement of

soybean using PS and the HN mating design in centralized
populations, we used PS with a selection intensity of 1.75 for
the centralized population and HN mating design (designated
as CE-PS-HN) as a reference for comparing novel combinations
of selection and mating designs proposed in the study.
A standardized relative genotypic response, 1Rsc, is calculated
in equation (8) as the percentage of the difference in standardized

genotypic values, Rsc, in each cycle c.

Percent Gain in Rsc (Design−x)=
Rsc (Design−x) − Rsc(CE−PS−HN)

Rsc(CE−PS−HN)
∗100 (8)

Rsc(Design−X) - standardized response for Design-x in cycle ‘c’
Rsc(CE−PS−HN) - standardized ersponse for CE-PS-HN design

in cycle ‘c’
The standardized genotypic variance (Sgv), defined as the

change in estimated genotypic variance from the estimated
genotypic variance of the initial population of lines from C0,
was used to evaluate the changes in estimated genotypic variance
across cycles of recurrent selection. Note that values for Sgv range
from zero to one as it is standardized to the maximum genotypic
variance among founders.

Efficiency of genetic improvement is a metric used to evaluate
the proportion of genetic improvement that was obtained
through loss of genetic diversity from recurrent selection
(Gorjanc et al., 2018). Efficiency is estimated as the slope in
linear regression in linear regions of response curves. However,
responses to recurrent selection in the absence of mutation
are inherently non-linear (Robertson, 1960; Bulmer, 1971; Hill
and Robertson, 2008; Ramasubramanian and Beavis, 2020). For
purposes of evaluating the relative contribution of lost genetic
variance to genetic response in both linear and non-linear
segments of the response curve, we introduce the standardized
genotypic variance of the response, Rs_Var, calculated with
Equation (9).

Rs_var =
Gc − G0

SdG0−SdGc
(9)

Gc -average genotypic value of the set of F5 derived lines
evaluated in cycle ‘c’

G0 -average genotypic value of the founding set of F5
derived lines

SdG0 - estimated standard deviation of genotypic values
of founding set of F5 derived lines

SdGc - estimated standard deviation of genotypic values of
F5 derived lines in cycle ‘c’
The numerator term represents the difference in average
genotypic values of a population in cycle “c” from cycle “0”
normalized to standard deviation of genotypic values in cycle
“0.” The denominator represents the difference of standard
deviation of genotypic values between cycles “0” and “c”
normalized to the standard deviation of genotypic values in cycle
“0” (Ramasubramanian and Beavis, 2020). For the centralized
populations, Rs_Var was estimated by calculating the variance
of simulated genotypic values. Standardizing the estimated
genotypic variance with respect to the maximum genotypic
values in the initial population results in values that range from
0 to 1. For the family island populations, the genotypic variances
can be split into within- and between-island genotypic variance.
The three measures we used to estimate the global diversity of
populations, inter-island diversity, and within-island diversity are
provided in the documentation of the R package.
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FIGURE 4 | Overview of the recurrent selection process. Representation of entities such as genomes, associated F5-derived lines and processes such as the
estimation of marker effects, selection, migration and crossing. Levels correspond to layers of information with level 1 comprising genomic information, level 2
comprising phenotypes of lines within and across family islands, and level 3 comprising higher-level information including responses across cycles of selection. The
factors include nQTL and H at the genome level, selection method (SM) including phenotypic selection (PS), genomic selection (GS), and weighted genomic
selection (WGS). The factors at level 2 include selection intensity (SI - top 10% selected fraction); Mating Design (MD), which includes Hub Network, Chain Rule,
Random Mating, and Genomic Mating; Migration Policy (MP), which includes: “Isolated Selection,” “Best Island,” “Random Best,” and “Fully Connected” policies.
Among the MD levels, GM method involves application of evolutionary multi-objective optimization to minimize inbreeding and maximize gain and usefulness. Level 3
is characterized using evaluation metrics such as half-life and asymptotic limits derived from recurrence equation models and metrics such as Standardized
Responses (Rs), Standardized genotypic variance (Sgv), Maximal genotypic values (Mgv), and efficiency of converting loss in genetic variance into gain (RsVar)
derived from simulated outcomes. Other metrics include prediction accuracy and MSE for GP models (RR-REML) and expected heterozygosity (Hs).

RESULTS

Analysis of Variance of Modeled
Genotypic Values
There is strong evidence from the analyses of variance
(Supplementary File 4) that the modeled genotypic values

across cycles of selection depend on interactions among
selection method, mating design, and migration policy. The
most parsimonious model included all combinations of factors
indicating that interactions among all factors have statistically
significant influences on recurrent responses to selection and
requires unique estimates of α, and β in (3) for each of the
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combinations of factors (M15 in Supplementary File 4). For
all combinations of factors, we report only migration involving
bi-directional migration of two migrants every other cycle.
Among the factors that affect only family island populations
with migration, migration frequency had significant effects on
rate and the asymptotic limits for response to selection, whereas
migration direction and size had relatively small effects on
rates and no significant effect on the asymptotic limits for
response to selection. Rates and genotypic values at the limits of
response for a given selection method and mating design also
depend on genetic architecture and heritability (data available
on request). Rather than belabor the specific outcomes from
all possible combinations of factors that affected the modeled
responses, the remainder of the reported results are restricted to
results from simulations with 400 QTL responsible for 70% of
phenotypic variability.

Rates and Limits of Responses to
Recurrent Selection
Factors common to centralized and family island populations
such as mating design and selection method as well as factors
specific to isolated and island model selection had significant
effect on estimated population half-lives and asymptotic limits.
Half-lives for selection methods on centralized populations
ranged from 3.83 to 16.10 cycles with a mean of 9.62 cycles, and
asymptotic limits ranged from 71.64 to 160.76 with a mean of
115.97 (58% of the maximum possible potential in the founders).
Compared to centralized populations, half-lives for selection on
isolated family islands were very low ranging from 1.97 to 2.89
cycles with a mean of 2.43 cycles, and asymptotic limits ranged
from 28.42 to 38.30 and a mean of 33.12 (16.5% of the maximum
possible potential in the founders) (Supplementary File 5;
Supplementary Figure 3). Estimated half-lives for island model
selection methods were on the average greater than selection
methods applied to centralized populations ranging from 4.24
to 32.04 cycles with a mean of 13.45 cycles. Asymptotic limits
ranged from 47.54 to 198.82 with a mean of 116.8 (58.5% of the
maximum possible potential in the founders) (Supplementary
File 5; Supplementary Figure 3).

Responses to Recurrent Selection of
Non-island Lines
There were 12 combinations of selection methods and mating
designs that were applied to lines in centralized populations. The
greatest genotypic values (Rs) were attained with WGS (Figure 5
and Supplementary Table 2). Genomic selection using RRBLUP
estimated phenotypic values resulted in greater responses than
PS in early cycles while WGS produced greater responses than
PS in later cycles (Figure 5; Supplementary Table 2). Weighted
genomic selection followed by the CR mating design resulted
in the greatest realization of genetic potential before reaching a
limit. Genomic selection using RRBLUP estimated phenotypic
values followed by an HN mating design resulted in the greatest
rates of response in the first ten cycles and, if followed by RM,
provided the greatest responses in the first 20 cycles. When the
GM design is applied to selected lines to obtain specified crosses

according to optimization criteria, the responses in the first 15
cycles were larger than obtained with RM, whereas responses
after the 20th cycle were less than responses for other mating
designs (Figure 5 and Supplementary Table 2).

The responses measured as maximum genotypic values
(Mgvs) produced response patterns similar to Rs. Use of WGS
followed by the CR mating design resulted in an average Mgv
of 125 (62.5% of the maximum potential in the founders)
followed by PS and GS using RRBLUP estimated phenotypic
values in the 40th cycle. Genomic selection followed by the
HN mating design (CE-GS-HN) realized greater Mgvs relative
to other combinations of factors only in the early cycles
(Supplementary Figure 4).

The rates at which standardized genotypic variance (Sgv)
and expected heterozygosity (Hs) decreased depended on the
mating designs (Figure 6 and Supplementary Figure 5). The
application of RM and CR mating designs after selection helped
maintain genotypic variance and heterozygosity for use in later
cycles of recurrent selection. The HN mating design resulted in
the fastest loss of Sgv and Hs (heterozygosity), while the GM
design demonstrated losses of Sgv and heterozygosity that were
intermediate between HN and RM/CR designs.

The rate at which maximum genotypic potential decreased
across cycles of selection was reflected in the estimated number
of lost favorable alleles. Among the selection methods, GS using
RRBLUP-estimated phenotypic values lost genetic potential faster
than PS and WGS (Figure 7). Among the mating designs, HN
resulted in the fastest loss of genetic potential while RM lost
genetic potential slower than any of the other mating designs.
With the GM method, genetic potential was lost at a rate that
was intermediate between RM and HN mating designs. The CR
design lost favorable alleles at rates that were similar to GM with
GS, whereas after applying CR with PS and WGS, the loss of
alleles was similar to RM (Figure 7).

Rates of inbreeding are larger for GS compared to PS and
WGS in the first 10–15 cycles. The RM and CR mating designs
demonstrated the slowest rates of inbreeding, whereas rates
of inbreeding with the GM and HN mating had high rates
of inbreeding before responses to selection became limited
(Supplementary Figures 6, 7). The estimates of genotypic
responses, standardized to genotypic variance (Rs_Var), were the
greatest in the first 20–30 cycles with CR, RM, and GM mating
designs, while the HN mating design lost the greatest amount of
Rs_Var with GS, PS, and WGS (Supplementary Figures 8, 9).

Responses to Recurrent Selection of
Lines Organized as Family Islands
The genotypic values when the isolated family island populations
reached the limits were as much as 67% less than the values when
limits were reached in the centralized counterpart populations
(Supplementary Figure 10). Among the isolated selection
methods, GS and WGS with GM design (designated IS-GS-
GM and IS-WGS-GM) provided the greatest genotypic values
at the response limits. Between 10% and 15% of the maximum
potential in the founder populations was realized within the first
10 to 15 cycles, when there was no migration among islands
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FIGURE 5 | Standardized genotypic responses (Rs) across 40 cycles of recurrent selection on centralized (A,C,E) and family island (B,D,F) populations, using
Phenotypic Selection (PS) (A,B), Genomic Selection (GS) (C,D) and Weighted Genomic Selection (WGS) for the four mating designs (MD): Hub Network (HN), Chain
Rule (CR), Random Mating (RM), and Genomic Mating (GM). Standardized genotypic responses are represented from a simulated genetic architecture consisting of
400 additive QTL uniformly distributed throughout the genome and responsible for 70% of phenotypic variability. Ten percent of lines are selected to be used in
crosses in HN, CR, RM, and GM designs. Migration policies (MP) included the Best Island (BI), Random Best (RB), and Fully Connected (FC) with bi-directional
migrations of two migrants every other cycle. GP models are updated every cycle in GS and WGS using training sets with data from all prior cycles of selection.
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FIGURE 6 | Standardized genotypic variance across 40 cycles of recurrent selection on centralized (A,C,E) and family island (B,D,F) populations, using Phenotypic
Selection (PS) (A,B), Genomic Selection (GS) (C,D), and Weighted Genomic Selection (WGS) (E,F) for the four mating designs (MD): Hub Network (HN), Chain Rule
(CR), Random Mating (RM), and Genomic Mating (GM). Ten percent of lines are selected for crossing. The genetic architecture in the initial simulated founder lines
consisted of 400 additive QTL uniformly distributed throughout the genome and expressed broad sense heritability on an entry mean basis of 0.7. Genetic variance
is standardized to the average genotypic variance in founder populations in cycle “0.” Average island genetic variance refers to genetic variance within families
averaged across 20 families. Migration policy in the island models included “Best Island” (BI), “Random Best” (RB), and “Fully Connected” (FC) with bidirectional
exchange of two immigrants and emigrants every other cycle of selection. GP models are updated every cycle in GS and WGS using training sets with data from all
prior cycles of selection.
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FIGURE 7 | Lost genotypic potential and average genotypic values across 40 cycles of recurrent selection on centralized (A,C,E) and family island (B,D,F)
populations, using Phenotypic Selection (PS) (A,B), Genomic Selection (GS) (C,D) and Weighted Genomic Selection (WGS) (E,F) and four mating designs (MD): Hub
Network (HN), Chain Rule (CR), Random Mating (RM), and Genomic Mating (GM). Ten percent of lines are selected for crosses using HN, CR, RM, and GM mating
designs. The genetic architecture in the initial simulated founder lines consisted of 400 additive QTL uniformly distributed throughout the genome and expressed
broad sense heritability on an entry mean basis of 0.7. The dotted lines represent maximum genetic potential estimated from favorable alleles that are lost from the
population, and solid lines represent increase in average genotypic value of populations due to recurrent selection. Migration policies (MP) in the island models
included “Best Island” (BI), “Random Best” (RB), and “Fully Connected” (FC) with bidirectional exchange of two immigrants and emigrants every other cycle of
selection. GP models are updated every cycle in GS and WGS using training sets with data from all prior cycles of selection.
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(Supplementary Figure 10). Maximal genotypic values (Mgvs)
followed a pattern similar to Rs, and Sgvs mirrored the response
pattern in IS (Supplementary Figure 10).

In contrast to selection on isolated family islands, genotypic
values at the limits were larger using BI, RB, and FC migration
policies among islands, where there is exchange of lines. Among
the selection methods applied to the family island populations,
GS and WGS realized the greatest genetic potential before
reaching limits of responses (Figures 5, 7). The impacts of mating
designs on the responses to selection applied to family island
populations are distinct from those on centralized populations. In
the centralized populations, RM and CR mating designs provided
the greatest genotypic values before response to selection became
limited, whereas in the family island populations, GM provided
the greatest genotypic values when coupled with BI and RB
migration policies. The FC migration policy with the largest
migration rates produced responses that were similar among the
HN, CR, RM, and GM designs (Figures 5, 7).

As noted above, the best responses to selection in the first
10 to 20 cycles on centralized populations were obtained using
GS followed with an HN or GM mating design (respectively
designated CE-GS-HN and CE-GS-GM in Figure 5). The greatest
short-term responses to selection in family island populations
were obtained using either GS or WGS followed by the HN
mating design coupled to a FC migration policy (IM-GS-HN-FC
and IM-WGS-HN-FC in Figure 5 and Supplementary Table 2).
The gains in the first 10–20 cycles that were obtained using GS
and WGS followed by the GM design coupled to a FC migration
policy were comparable and showed little difference.

Given the FC migration policy, the largest standardized
genotypic responses at the limits to response (0.59–0.61) were
obtained using GS or WGS with HN, CR, RM, and GM designs,
whereas with RB migration policy, GS and WGS followed by the
GM design produced the greatest realization of genetic potential
before the 40th cycle (0.59–0.6) compared to (0.3–0.4) with HN,
CR, and RM designs (Figure 5 and Supplementary Table 2). The
BI policy showed a pattern similar to that of RB, but at a slower
rate of response (Figure 5 and Supplementary Table 2).

Maximum genotypic values followed a pattern similar to
Rs for most of the island selection methods. In contrast to
selection in centralized populations where PS and WGS resulted
in the greatest Mgvs in 20–40 cycles, GS in family island
populations resulted in larger Mgvs (124.6) than island PS (119.9)
by the 40th cycle.

Rates of decrease in maximum available potential are
influenced by factors such as selection intensity, selection
method, and mating design. Relative to centralized populations,
island selection retains allelic diversity in the combined
population as selection depletes variance only within islands and
not across islands (Figure 7). Such loss in maximum potential
is not always reflected in rates of responses. Relaxed selection
intensity will result in retention of genetic variance with no
significant increase in response as it is observed with BI and
RB migration policies when combined with RM designs for
PS, GS, and WGS.

Island selection with GM design and FC migration policy
showed the least rate of decrease of Hs values for PS,

GS, and WGS reflecting a greater potential retained in the
population followed by island selection with GM design and
RB migration policy (IM-GM-RB) as well as island selection
with GM design and BI migration policy (IM-GM-BI). Island
selection with HN design and BI policy (IM-HN-BI) as well
as RB policy (IM-HN-RB) showed the most rapid decrease
in Hs across 40 cycles of selection, whereas CR and RM
designs with the same RB and BI migration policies showed
intermediate rates of decrease in Hs. There is an oscillatory
pattern in the decrease of Hs, where Hs increased with
every migration event in early cycles. In late cycles, the
magnitude of increase in Hs due to a migration event
decreased and the oscillatory pattern dampened to a continuous
decrease as the populations approached the limits of responses
(Supplementary Figure 5).

Island PS demonstrated lesser rates of inbreeding compared
to island GS and WGS. RM design showed the least rates of
inbreeding among the four mating designs for BI, RB, and FC
migration policies (Supplementary Figures 6, 7). CR design
followed a pattern similar to HN or GM depending on the
selection method. Among migration policies, the FC policy
demonstrated lesser rates of inbreeding compared to BI and
RB policies, whereas the BI policy demonstrated the largest
rates of inbreeding. The GM design demonstrated rates of
inbreeding that were intermediate between RM and HN/CR
designs (Supplementary Figure 7).

Rs_Var for island selection with FC migration policies
was larger than that observed with centralized populations,
demonstrating larger efficiency of converting loss of genetic
variance into gain. However, with FC policy, all mating designs
showed a similar pattern (Supplementary Figure 8), whereas
Rs_Var for island selection with BI and RB policies was
comparable to that of centralized PS and GS, except for GM
design, which showed larger Rs_Var after 10–20 cycles of
selection (Supplementary Figure 9).

Diversity Within and Among Islands
The average within-island genotypic variance decreased towards
zero through 40 cycles of selection, whereas global and inter-
island genotypic variance increased before becoming limited. The
rates of decrease in average within-island genotypic variance were
influenced by the selection method, mating design, and migration
policy. Both GS and WGS demonstrated similar patterns of loss
of genotypic variance within islands, and rates of loss with both
the selection methods were faster than PS (Figure 6). The HN
mating design demonstrated the fastest loss of within-island
genotypic variance followed by RM, CR, and GM designs. The
FC migration policy provided the slowest loss of within-island
genotypic variance followed by RB and BI migration policies
(Figure 6). Notice, however, an oscillatory pattern in which
within-island genotypic variance increased with every migration
event and decreased because of selection in cycles when there
were no migrants. For both the within-island genotypic variance
and the expected heterozygosity, the magnitudes of oscillations
dampened towards zero after 20–30 cycles of selection except
for the GM mating designs coupled with BI and RB migration
policies (designated IM-GM-BI and IM-GM-RB, respectively, in
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Figure 6). The amplitude of increased genetic variance due to
migration was greater for RB and BI migration policies with large
spikes after 25–30 cycles of selection, while the amplitudes were
smaller with the FC migration policies (Figure 6).

The largest values for inter-island genotypic variance were
obtained with the RM design combined with BI and RB migration
policies followed by CR and HN designs with BI and RB
migration policies (Figure 8). Whereas, the FC migration policies
demonstrated the smallest increases in inter-island genotypic
variance through 40 cycles of selection (Figure 8). Recall that the
FC migration policies provide the greatest migration rates among
islands. Global genotypic variance in family island populations
increased due to increase in inter-island genotypic variance. The
BI migration policies demonstrated the largest global genetic
variance for RM, HN, and CR mating designs followed by
the RB migration policies. The GM design with BI and RB
migration policies provided intermediate rates of increase in
global genotypic variance while the FC migration policy showed
the least increase in global genotypic variance when coupled with
the HN, CR, RM, and GM mating designs (Figure 8).

Within the classes of migration policies, the migration
frequency had significant influence on rates and limits of
responses across most combinations of selection methods,
mating designs, and migration policies, while numbers of
migrants significantly affected responses only for a few
combinations of factors. Both rates and limits of response
decreased with fewer migrants for the HN mating design. For
the RM design, exchange of migrants among family islands once
in every three cycles provided the greatest genotypic values at
the limits compared to responses with more frequent exchange.
Migration size and migration direction had no significant effect
on limits of selection responses (data available on request).

Trade-Offs Between Short-Term and
Long-Term Gains From Recurrent
Selection
There were 12 combinations of selection methods and mating
designs applied to centralized populations and 48 combinations
of selection methods, mating designs, and migration policies
applied to family island populations. From among the 60
methods, GS using a ridge regression model followed by a hub
network mating design in centralized populations and WGS
followed by crosses using the CR in the centralized populations
respectively (designated CE-GS-HN and CE-WGS-CR in Table 2
and Figure 4) demonstrated the greatest responses in the first
20 and last 20 cycles, respectively. However, if the objective for
genetic improvement is to maximize gain in the first 5, 10, 30, or
40 cycles, other combinations of the factors are needed to achieve
the objective. If the breeding objective is to maximize rates of
genetic improvement in five to 10 cycles of recurrent selection
then there are two best options: 1. Genomic selection using
RRBLUP estimated phenotypic values followed by an HN mating
design in family island populations with FC migration policies,
or 2. Genomic selection using RRBLUP estimated phenotypic
values followed by a GM design in family island populations with
FC migration policies (respectively designated as IM-GS-HN-FC

and IM-GS-GM-FC in Table 2). If the objectives are to maximize
both short-term and long-term gains then the best solution
was obtained by selecting with RRBLUP estimated phenotypic
values followed by an HN/CR/GM in family island populations
and applying an FC migration policy (designated IM-GS-HN-
FC/ IM-GS-CR-FC/ IM-GS-GM-FC in Table 2). Among the
combinations applied on centralized populations, WGS followed
by the CR mating design or RM resulted in largest long-term
gains, while selection using RRBLUP estimated phenotypic values
followed by an HN mating design provided the greatest short-
term gains. It is important to note that the relative ranking
of methods will change with the weights for short-term and
long-term objectives.

DISCUSSION

Significance
The challenge of finding optimal trade-offs among competing
genetic improvement objectives has usually been approached
by combining selection and crossing in a single step without
consideration of population structure (Akdemir and Sánchez,
2016; De Beukelaer et al., 2017; Akdemir et al., 2019; Allier
et al., 2019a,b, 2020; Ramasubramanian and Beavis, 2020).
Akdemir and Sánchez (2016) combined selection and mating in
their GM method. De Beukelaer et al. (2017) used weighted
selection indices to maximize gain while retaining a threshold
level of diversity. Among the three diversity measures they tested,
indices that incorporate diversity measures to minimize loss
of rare favorable alleles and minimize heterozygosity resulted
in responses that were greater than WGS with truncation
selection. Including diversity measures in a set offered advantage
over truncation selection, as selected mate pairs retained rare
favorable alleles better than WGS coupled with RM design. Allier
et al., 2019a,b included the impact of within-family selection to
maximize genetic gain while minimizing loss of genetic variance,
but they did not consider migration among families.

Ramasubramanian and Beavis (2020) investigated GS
methods for the genetic improvement of soybean, but only
considered the HN mating design applied among F5-derived
lines regardless of their family affiliation. Herein, we approached
the challenge by disentangling breeding decisions into four
distinct groups: (1) organization of the breeding population,
(2) selection methods, (3) mating designs, and (4) migration
policies. Each of these were divided into possible alternatives
within each group and treated as independent factors in
orthogonal treatment combinations.

As with our previous investigation, we found that the fastest
rates of genetic improvement resulted when GS followed by
the HN mating design is applied to the centralized populations
(Ramasubramanian and Beavis, 2020). When combined, these
three decisions have reinforcing effects on responses to selection.
At the other extreme, when WGS is applied to populations
organized as family islands followed by either CR or RM, the
tendency of all three to retain genetic diversity reinforce each
other resulting in the largest genotypic values, but only after many
cycles of selection. Because the slopes of the curves resulting
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FIGURE 8 | Global and inter-island genotypic variance in island selection. (i) Global genotypic variance (A,C,E) and (ii) Inter-island genetic variance (B,D,F) for
Phenotypic Selection (PS) (A,B), Genomic Selection (GS) (C,D), and Weighted Genomic Selection (WGS) (E,F) for the four mating designs including Hub Network
(HN), Chain Rule (CR), Random Mating (RM), and Genomic Mating (GM) methods. Migration policy included “Best Island” (BI), “Random Best” (RB), and “Fully
Connected” (FC) for 400 simulated QTL and 0.7 H. Migration rules included bidirectional exchange of two immigrants and emigrants every other cycle of selection.
Genotypic variance is standardized to the average genotypic variance in founder populations in cycle “0.” GP models are updated every cycle in GS and WGS using
training sets with data from all prior cycles of selection.
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TABLE 2 | Trade-off table for strategies.

Objectives Objectives weighted equally for
gain across 40 cycles

Method

IM-FC-GS-HN IM-FC-GS-CR IM-FC-WGS-HN IM-FC-GS-GM IM-FC-WGS-GM

Rs in 5 cycles (Rank) 0.2 0.14 (5) 0.13 (13) 0.13 (13) 0.13 (13) 0.13 (13)

Rs in 10 cycles (Rank) 0.2 0.29 (3) 0.28 (7) 0.29 (3) 0.27 (11) 0.26 (12)

Rs in 20 cycles (Rank) 0.2 0.53 (1) 0.51 (4) 0.51 (4) 0.48 (8) 0.49 (7)

Rs in 30 cycles (Rank) 0.2 0.59 (7) 0.59 (7) 0.59 (7) 0.59 (7) 0.59 (7)

Rs in 40 cycles (Rank) 0.2 0.59 (13) 0.6 (8) 0.59 (13) 0.61 (4) 0.61 (4)

Weighted rank 1 2 3 4 4

Objectives Objectives weighted highly for gain
in the first 20 cycles

Method

IM-FC-GS-HN IM-FC-WGS-HN IM-FC-GS-CR CE-GS-CR CE-GS-GM

Rs in 5 cycles (Rank) 0.5 0.14 (5) 0.13 (13) 0.13 (13) 0.14 (5) 0.14 (5)

Rs in 10 cycles (Rank) 0.2 0.29 (3) 0.29 (3) 0.28 (7) 0.28 (7) 0.28 (7)

Rs in 20 cycles (Rank) 0.1 0.53 (1) 0.51 (4) 0.51 (4) 0.44 (18) 0.44 (18)

Rs in 30 cycles (Rank) 0.1 0.59 (7) 0.59 (7) 0.59 (7) 0.47 (22) 0.47 (22)

Rs in 40 cycles (Rank) 0.1 0.59 (13) 0.59 (13) 0.60 (8) 0.47 (26) 0.47 (26)

Weighted rank 1 2 3 4 4

Trade-off table to support the decision for selecting the best strategy to achieve objectives including maximum gain in 5, 10, 20, 30, and 40 cycles of recurrent selection.
The methods are ranked for each of the objectives based on standardized genetic responses. The absolute genotypic response values for each of the methods are
provided along with the ranking of the method for the specific objective in bold numeric in parenthesis. Two sets of objective weights are provided to define the relative
importance of the objectives: (i) the weighted rank of methods are estimated with more emphasis on the first 20 cycles (top), (ii) the weighted rank of methods are
estimated with equal emphasis on the first and last 20 cycles (bottom). The best five methods among the 60 methods for each of the weighted objectives are presented.
The simulations are provided for 400 simulated QTL responsible for 70% of phenotypic variability. Migration policies include “Isolated Selection,” “Best Island,” “Random
Best,” and “Fully Connected.” Other migration factors are set to constant values: migration frequency - 2, migration direction - 2 (bi-directional), and migration size - 2.
Selection methods include PS, Phenotypic Selection; GS, Genomic Selection; and WGS, Weighted Genomic Selection. Mating designs include HN (Hub Network), CR
(Chain rule), RM, Random Mating; and GM, Genomic Mating method.

from WGS and PS at 40 cycles are still positive, it is possible
that both selection methods could continue to produce greater
genetic potential with more cycles of selection. In previous
comparative studies, WGS produced long-term responses that
are similar to methods such as Optimal Contribution Selection
and Expected Maximum – Haploid Value (Daetwyler et al.,
2015; Müller et al., 2018). Herein when we applied WGS to
centralized lines followed by the GM design, the genotypic values
at the limits to response were greater than the genotypic values
obtained with PS or GS followed by GM. This combination also
retained the largest values for heterozygosity and favorable alleles
across more cycles. However, the differences between responses
to GS and WGS followed by GM were not significant when
applied to the populations organized into family islands with
migration among islands.

Between the extreme response curves, it was also possible to
find many response curves with intermediate trade-offs between
the objectives. For example, applying WGS to lines that were
not organized into islands followed by HN provided greater
response rates than other combinations of factors involving
WGS. Selection among lines organized into family islands
resulted in responses that were larger or comparable to responses
from centralized populations for only a limited number of
combinations of mating design (GM) and migration policies (RB
and FC). This may be due to the small numbers of related lines
on each island (20 × smaller than the centralized population).

With such a small number, selection can deplete all the genetic
variance within the first 10–15 cycles as demonstrated in isolated
selection. When there is no migration, which is the major source
of new genetic variability, the populations realized only 10%–
15% of maximum potential in the founder populations even
while optimizing for sustainable gain using the GM method.
A relaxed selection intensity, where the top 20% of the lines in
each island are selected can sustain responses for longer cycles as
demonstrated in centralized and island selection with migration
(Supplementary Table 3).

As expected, even with small numbers of lines per island,
migration had a positive impact on the outcomes. It is known
that intermediate levels of migration rate result in optimal
trade-offs between gain and diversity (Skolicki, 2007; Skolicki
and Jong, 2007: Obolski et al., 2017). However, the range of
intermediate parameter values depend on the specific context. In
our study, responses in family islands were larger than selection
responses in centralized populations only when migration
events happened every cycle or once in two cycles. When
migration happened once in three cycles of selection, the rates
of responses in the early cycles were very low resulting in fewer
cycles of response to selection and lower genotypic values as
the limits to selection were approached. Migration size and
direction did not have any significant impact on response within
the small range of parameter values we tested for migration
size and direction.
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Also, we retained the best line, in terms of the selection metric,
within island during migration events and replaced the second
best line in the ranked list of selected lines with the immigrant
for the BI and RB policies, whereas, for the FC policy, lines that
are ranked from 2–6 are replaced. This replacement policy allows
crossing between lines that are best within islands and immigrant
lines from islands with the highest selection metric resulting in
high rates of response within islands. We hypothesize that other
policies that replace lines with low selection metric value with
high selection metric values from immigrant islands will reduce
genetic diversity within islands and result in different outcomes
compared to the policy we have implemented.

Nonetheless, we found a very good trade-off among the
competing objectives. If GS was applied to lines on FC islands
and the selected lines were mated according to the pareto-optimal
crosses identified using GM, then the combination preserved
genetic variance for long-term gain with little penalty relative to
the realized rates of improvement in early cycles by GS and the
HN mating design. Yabe et al. (2016) have reported outcomes
from recurrent GS in rice populations using the following three
migration policies: centralized populations also referred to as
bulked GS, discrete GS that corresponds to the fully isolated
selection, and island GS which corresponds to the island model
selection. In their study, where they used the CR for crossing, GS
on centralized populations showed larger responses in the seven
to eight cycles compared to isolated and island selection, whereas
island GS demonstrated larger responses than the centralized and
isolated GS after 12 cycles of selection. Similarly, in this study,
GS on centralized populations with CR mating design resulted
in larger long-term responses compared to most of the island
GS except when an FC migration policy was used, where the
responses were roughly similar in the first 10 cycles. Moreover,
the responses were larger in the late cycles with Island GS and
FC policy than in the centralized policy with CR mating design
similar to the outcomes in the Yabe et al. (2016) study.

In another study, Technow et al. (2021) have investigated
the impact of breeding program structure in maize hybrid
development. They observed that a centralized policy provided
the best responses, when the genetic architecture is completely
additive. This roughly corresponds to the results we observed,
where GS in centralized populations showed the largest short-
term responses with the HN mating design, which is similar
to the disproportional contributions in Technow et al. (2021).
They also noted that, as the genetic complexity increased, the
distributed and isolated policies provided larger responses. In
summary, motivated by Akdemir and Sánchez (2016) and Yabe
et al. (2016), we demonstrate that it is possible to design
breeding strategies to produce near maximal rates of genetic
improvement while retaining maximal genetic potential for long-
term genetic improvement.

Future Research
By framing breeding strategies as orthogonal combinations of
population structure, selection methods, mating designs, and
migration policies, we illustrated the potential of the approach for
a small arbitrary soybean genetic improvement project. We did
not consider the relative emphasis of objectives and constraints

for any specific genetic improvement project. Consider first the
structure of breeding populations. We compared a centralized
structure of lines with family islands created by individual crosses
among the founders and then we selected within and among
islands according to the same criteria. This might make sense
within a single soybean genetic improvement project for lines
adapted to MGs II and III. Alternatively, individual breeding
projects might be considered breeding islands.

There are six public soybean genetic improvement projects
adapted to MGs II and III. There are likewise about the same
number of commercial soybean genetic improvement projects
in the same MGs. All of these projects began at different times
and were initiated with unique, albeit overlapping, germplasm
resources (Mikel et al., 2010). While all of the projects select
lines with greater genotypic values for yield, the yield values are
obtained from different, overlapping, environments.

From the perspective of soybean genetic improvement across
regions within MGs II and III, each genetic improvement project
can be represented as an island where genotypes are exchanged
among project islands based on annual evaluations in uniform
regional trials and according to legal licensing rules. In practice,
breeding projects exchange projects only the best performing
lines adapted to similar environmental conditions. Nonetheless,
soybean breeders will maintain useful genetic variability by
exchanging lines among island projects. An advantage is that
diversity among islands increases with selection, even when
within-island diversity decreases. Eventually, beyond 40 cycles
of recurrent selection, genetic variability among islands will
decrease as genetic variability among islands is lost to selection.

Future investigations of breeding strategies to optimize
trade-offs between rates of genetic gains and retention of
useful genetic variance in soybean adapted to MGs II and III
should consider population structures within island projects
that more accurately reflect those that currently exist. Also,
future investigations should simulate genetic architectures with
genotype × environment effects. It is well known that a line
adapted to one environment may not perform well in other
environments, and it is possible to define fitness values so that
they include environmental effects. Third, future investigations
should consider a broader set of migration rules and policies.
The FC migration policy is considered the upper bound of
island models as all islands are connected to every other island
with maximum migration rates among islands. While our results
indicate that this policy provided the best long-term genotypic
values, it remains to be tested whether it will provide the best
results for genetic architectures with genotype by environment
interaction effects.

Fourth, we need to recognize islands in time because every
cycle of selection discards useful genetic variability. A soybean
germplasm resource project was set up (Mikel et al., 2010)
to recover useful genetic variability lost during domestication
of soybean (Nelson, 2011). Rather than trying to build long
bridges to islands located in the distant past, our results
suggest that there should be a large amount of useful genetic
variability that was discarded in the first few cycles of modern
soybean breeding. For that matter, until response to selection
reaches the half-life for the population, large amounts of useful
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genetic variability can probably be recovered from islands
represented by recent cycles of discarded lines. These conjectures
should be preceded by simulations to determine the potential
benefit and costs associated with sampling lines in recently
discarded islands.

Fifth, it should be clear that a predefined mating design
does not take advantage of opportunities created by each cycle
of progeny to optimize outcomes according to most project
objectives. Thus, there continues to be a need for algorithms that
efficiently and effectively identify crosses from among genotypes
produced by each cycle of selection. It is tempting to adopt and
investigate all evolutionary algorithm strategies. However, only
a subset is relevant to the practice of plant breeding (Hagan
et al., 2012). For example, mutation and recombination rates
can be controlled in computational evolutionary algorithms,
whereas plant breeders cannot regulate these with current
practices. Nonetheless there are many opportunities for cross-
disciplinary research between evolutionary computing and
plant breeding. There is a large body of literature concerning
the properties of evolutionary algorithms and factors and
strategies that affect convergence rates and quality of solutions
(Goldberg, 1989; Goldberg and Deb, 1992; Whitley et al.,
1999; Skolicki, 2007; Skolicki and Jong, 2007; Črepinšek et al.,
2013; Obolski et al., 2017), and working with computational
scientists should reveal novel methods to maximize the
genetic potential of a breeding population in a minimum
number of cycles.

Akdemir and Sánchez (2016) proposed only one of many
possible GAs to identify pareto-optimal solution pairs. An
approach introduced by Gaur and Deb (2016) and Mittal
et al. (2020) would use statistical methods such as clustering
and machine learning to unravel relationship among pareto-
optimal solutions. The statistical knowledge can be used to
improve the search for optimal solutions and establish several
cycles of optimization. Conceptually, unveiling any relationship
among pareto-optimal pairs in a genotypic space is likely to
provide new knowledge regarding the characteristics of such
complementary pairs. In addition, modeling responses with a
first-order recurrence equation or a non-linear mixed effects
model to predict the half-life and asymptotic limits of selection
have potential to improve the efficiency of GAs by providing
repair operators to alter the trajectory of population evolution
towards the desired optimal trade-offs.

Lastly, consider the challenge of stating explicit relative
emphasis on objectives and definition of constraints for any
specific genetic improvement project. As noted previously,
this challenge exists because it requires assigning economic
and agronomic value of short-term genetic gains vs. the
forecasted value of useful genetic variants that may be discarded
each cycle of selection. As a thought experiment, note that
the trade-off objectives can be reduced to a single “grand”
objective of creating a genotype (line) with the genotypic
value equal to the full genetic potential of the founders in
a single cycle. For a genetic architecture consisting of two
alleles at a single locus, achieving the single grand objective
is trivial. Also, it is possible to imagine that the grand
objective can be achieved for a complex genetic architecture

with infinite resources. Clearly, given genetic architectures of
complex traits and resource constraints, there are no feasible
solutions to the grand objective, but it is a useful reference to
serve as the goal.

In summary, we have evaluated and suggested several
novel combinations of existing genomic selection methods,
mating designs, and migration rules that resulted in improved
responses. The study has demonstrated the potential of these new
approaches, which integrate the strengths of whole-genome level
information, prediction modeling, and optimization methods to
contribute to the development of decision support systems for
real plant breeding programs.
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Črepinšek, M., Liu, S.-H., and Mernik, M. (2013). Exploration and exploitation
in evolutionary algorithms: a survey. ACM Comput. Surv. 45:35. doi: 10.1145/
2480741.2480752

Crossa, J., Pérez, P., Hickey, J., Burgueño, J., Ornella, L., Cerón-Rojas, J., et al.
(2014). Genomic prediction in CIMMYT maize and wheat breeding programs.
Heredity 112, 48–60. doi: 10.1038/hdy.2013.16

Daetwyler, H. D., Hayden, M. J., Spangenberg, G. C., and Hayes, B. J. (2015).
Selection on optimal haploid value increases genetic gain and preserves more
genetic diversity relative to genomic selection. Genetics 200, 1341–1348. doi:
10.1534/genetics.115.178038

De Beukelaer, H. D., Badke, Y., Fack, V., and Meyer, G. D. (2017). Moving beyond
managing realized genomic relationship in long-term genomic selection.
(Author abstract). Genetics 206, 1127–1138. doi: 10.1534/genetics.116.194449

Deb, K. (2003). Unveiling innovative design principles by means of
multiple conflicting objectives. Eng. Optim. 35, 445–470. doi: 10.1080/
0305215031000151256

Deb, K. (2011). “Multi-objective optimisation using evolutionary algorithms: an
introduction,” in Multi-Objective Evolutionary Optimisation for Product Design
and Manufacturing, eds L. Wang, A. Ng and K. Deb (London: Springer).

Dempfle, L. (1974). A note on increasing the limit of selection through selection
within families. Genet. Res. 24, 127–135. doi: 10.1017/S0016672300015160

Diers, B. W., Specht, J., Rainey, K. M., Cregan, P., Song, Q., Ramasubramanian, V.,
et al. (2018). Genetic architecture of soybean yield and agronomic traits. G3 8,
3367–3375. doi: 10.1534/g3.118.200332

Frank, M., and Wolfe, P. (1956). An algorithm for quadratic programming. Nav.
Res. Logist. Q. 3, 95–110. doi: 10.1002/nav.3800030109

Gaur, A., and Deb, K. (2016). Adaptive use of innovization principles for a faster
convergence of evolutionary multi-objective optimization algorithms. GECCO
75–76.

Goddard, M. (2009). Genomic selection: prediction of accuracy and maximisation
of long term response. Genetica 136, 245–257. doi: 10.1007/s10709-008-9308-0

Goiffon, M., Kusmec, A., Wang, L., Hu, G., and Schnable, P. S. (2017). Improving
response in genomic selection with a population-based selection strategy:
optimal population value selection. Genetics 206, 1675–1682. doi: 10.1534/
genetics.116.197103

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine
learning. Boston, MA: Addison-Wesley Pub. Co.

Goldberg, D. E., and Deb, K. (1992). Massive multimodality, deception, and genetic
algorithms. in Parallel Problem Solving from Nature eds R. Manner and B.
Manderick (Berlin: Springer-Verlag).

Goldberg, S. (1958). Introduction to difference equations, with illustrative examples
from economics, psychology, and sociology. New York: Wiley.

Gorjanc, G., Gaynor, R. C., and Hickey, J. M. (2018). Optimal cross selection
for long-term genetic gain in two-part programs with rapid recurrent

Frontiers in Genetics | www.frontiersin.org 23 September 2021 | Volume 12 | Article 675500

https://www.biorxiv.org/content/10.1101/2021.02.19.431938v1
https://www.biorxiv.org/content/10.1101/2021.02.19.431938v1
https://www.frontiersin.org/articles/10.3389/fgene.2021.675500/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.675500/full#supplementary-material
https://doi.org/10.3389/fgene.2016.00210
https://doi.org/10.1038/s41437-018-0147-1
https://doi.org/10.3389/fgene.2019.01006
https://doi.org/10.3389/fgene.2019.01006
https://doi.org/10.1534/g3.119.400129
https://doi.org/10.1534/g3.119.400129
https://doi.org/10.3835/plantgenome2011.02.0007
https://doi.org/10.3835/plantgenome2011.02.0007
https://doi.org/10.1016/j.plantsci.2015.08.021
https://doi.org/10.18637/jss.v066.i05
https://doi.org/10.2135/cropsci2008.03.0131
https://doi.org/10.2135/cropsci2008.03.0131
https://doi.org/10.2135/cropsci2006.11.0690
https://doi.org/10.2135/cropsci2006.11.0690
https://doi.org/10.2135/cropsci2014.07.0460
https://doi.org/10.2135/cropsci2014.07.0460
https://doi.org/10.1007/BF00222969
https://doi.org/10.1287/inte.2017.0909
https://doi.org/10.1590/S1516-35982010000700005
https://doi.org/10.1590/S1516-35982010000700005
https://doi.org/10.1186/1297-9686-45-44
https://doi.org/10.1186/1297-9686-45-44
https://doi.org/10.1073/pnas.77.1.546
https://doi.org/10.3835/plantgenome2012.11.0030
https://doi.org/10.1071/CP14007
https://doi.org/10.1079/9780851996011.0143
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.1038/hdy.2013.16
https://doi.org/10.1534/genetics.115.178038
https://doi.org/10.1534/genetics.115.178038
https://doi.org/10.1534/genetics.116.194449
https://doi.org/10.1080/0305215031000151256
https://doi.org/10.1080/0305215031000151256
https://doi.org/10.1017/S0016672300015160
https://doi.org/10.1534/g3.118.200332
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1007/s10709-008-9308-0
https://doi.org/10.1534/genetics.116.197103
https://doi.org/10.1534/genetics.116.197103
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-675500 September 20, 2021 Time: 12:59 # 24

Ramasubramanian and Beavis Trade-Offs in Recurrent Selection

genomic selection. Theor. Appl. Genet. 131, 1953–1966. doi: 10.1007/s00122-
018-3125-3

Goudet, J. (2005). HIERFSTAT, a package for R to compute and test hierarchical
F-statistics. Mol. Ecol. Notes 5, 184–186. doi: 10.1111/j.1471-8286.2004.00828.x

Grant, D., Nelson, R. T., Cannon, S. B., and Shoemaker, R. C. (2010). SoyBase,
the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 38,
D843–D846. doi: 10.1093/nar/gkp798

Grundy, B., Villanueva, B., and Woolliams, J. A. (1998). Dynamic selection
procedures for constrained inbreeding and their consequences for pedigree
development. Genet. Res. 72, 159–168. doi: 10.1017/S0016672398003474

Guo, B., Sleper, D. A., and Beavis, W. D. (2010). Nested association mapping
for identification of functional markers. Genetics 186, 373–383. doi: 10.1534/
genetics.110.115782

Guo, B., Wang, D., Guo, Z., and Beavis, W. D. (2013). Family-based association
mapping in crop species. Theor. Appl. Genet. 126, 1419–1430. doi: 10.1007/
s00122-013-2100-2

Guo, Z., Tucker, D. M., Basten, C. J., Gandhi, H., Ersoz, E., Guo, B., et al.
(2014). The impact of population structure on genomic prediction in stratified
populations. Theor. Appl. Genet. 127, 749–762. doi: 10.1007/s00122-013-2255-
x

Hagan, S., Knowles, J., and Kell, D. B. (2012). Exploiting genomic knowledge
in optimising molecular breeding programmes: algorithms from evolutionary
computing. PLoS One 7:e48862. doi: 10.1371/journal.pone.0048862

Haimes, Y. Y., Lasdon, L. and Wismer, D. (1971). On a bicriterion formation of
the problems of integrated system identification and system optimization. IEEE
Trans. Syst. Man Cybern. 1, 296–297.

Heslot, N., Yang, H.-P., Sorrells, M. E., and Jannink, J.-L. (2012). Genomic selection
in plant breeding: a comparison of models. Crop Sci. 52, 146–160. doi: 10.2135/
cropsci2011.06.0297

Hickey, J. M., Chiurugwi, T., Mackay, I., and Powell, W. (2017). Genomic
prediction unifies animal and plant breeding programs to form platforms for
biological discovery. Nat. Genet. 49, 1297–1303. doi: 10.1038/ng.3920

Hickey, J. M., Dreisigacker, S., Crossa, J., Hearne, S., Babu, R., Prasanna, B. M.,
et al. (2014). Evaluation of Genomic Selection Training Population Designs and
Genotyping Strategies in Plant Breeding Programs Using Simulation. Crop Sci.
54, 1476–1488. doi: 10.2135/cropsci2013.03.0195

Hill, W. G., and Robertson, A. (2008). The effect of linkage on limits to artificial
selection. Genet. Res. 89, 311–336. (First published in 1968)

Jannink, J.-L. (2010). Dynamics of long-term genomic selection. Genet. Sel. Evol.
42:35. doi: 10.1186/1297-9686-42-35

Johnson, B., Gardner, C. O., and Wrede, K. C. (1988). Application of an
optimization model to multi-trait selection programs. Crop Sci. 28, 723–728.
doi: 10.2135/cropsci1988.0011183X002800050001x

Jombart, T. (2008). adegenet: a R package for the multivariate analysis of
genetic markers. Bioinformatics 24, 1403–1405. doi: 10.1093/bioinformatics/
btn129

Jombart, T., and Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis
of genome-wide SNP data. Bioinformatics 27, 3070–3071. doi: 10.1093/
bioinformatics/btr521

Jonas, E., and de Koning, D. J. (2016). Goals and hurdles for a successful
implementation of genomic selection in breeding programme for selected
annual and perennial crops. Biotechnol. Genet. Eng. Rev. 32, 18–42. doi: 10.
1080/02648725.2016.1177377

Kang, H. (1983). Limits of artificial selection under balanced mating systems with
family selection. Silvae Genet. 32, 188–195.

Kang, H., and Namkoong, G. (1980). Limits of artificial selection under
unbalanced mating systems. Theor. Appl. Genet. 58, 181–191. doi: 10.1007/
BF00263115

Kang, H., and Nienstaedt, H. (1987). Managing long-term tree breeding stock.
Silvae Genet. 1987, 30–39. doi: 10.1016/j.scitotenv.2020.143695

Karush, W. (1939). Minima of functions of several variables with inequalities as side
constraints. Chicago: Univ of Chicago. M Sc Dissertation.

Kinghorn, B. P. (2011). An algorithm for efficient constrained mate selection.
Genet. Sel. Evol. 43:4. doi: 10.1186/1297-9686-43-4

Konak, A., Coit, D. W., and Smith, A. E. (2006). Multi-objective optimization using
genetic algorithms: a tutorial. Reliab. Eng. Syst. 91, 992–1007. doi: 10.1016/j.
ress.2005.11.018

Kuhn, H., and Tucker, A. (1951). Nonlinear programming In Proceedings of 2nd
Berkeley symposium. Berkeley: University of California Press, 481–492.

Lazimy, R. (1982). Mixed-integer quadratic programming. Math. Program. 22,
332–349. doi: 10.1007/BF01581047

Lin, Z., Shi, F., Hayes, B. J., and Daetwyler, H. D. (2017). Mitigation of inbreeding
while preserving genetic gain in genomic breeding programs for outbred plants.
Theor. Appl. Genet. 130, 969–980. doi: 10.1007/s00122-017-2863-y

Liu, H., Meuwissen, T. H., Sorensen, A. C., and Berg, P. (2015). Upweighting
rare favourable alleles increases long-term genetic gain in genomic selection
programs. Genet. Sel. Evol. 47:19. doi: 10.1186/s12711-015-0101-0

Luque, G. (2011). Parallel Genetic Algorithms: Theory and Real World Applications.
Heidelberg: Springer.

Marulanda, J., Mi, X., Melchinger, A., Xu, J.-L., Würschum, T., and Longin,
C. (2016). Optimum breeding strategies using genomic selection for hybrid
breeding in wheat, maize, rye, barley, rice and triticale. Theor. Appl. Genet. 129,
1901–1913. doi: 10.1007/s00122-016-2748-5

McCarl, B. A., Moskowitz, H., and Furtan, H. (1977). Quadratic programming
applications. Omega 5, 43–55. doi: 10.1016/0305-0483(77)90020-2

Melchinger, A. E., Schmidt, W., and Geiger, H. H. (1988). Comparison of
testcrosses produced from F2 and first backcross populations in maize. Crop
Sci. 28, 743–749. doi: 10.2135/cropsci1988.0011183X002800050004x

Meuwissen, T., Hayes, B. and Goddard, M. (2001). Prediction of total genetic
value using genome-wide dense marker maps. Genetics 157, 1819–1829. doi:
10.1093/genetics/157.4.1819

Meuwissen, T. H. (1997). Maximizing the response of selection with a predefined
rate of inbreeding. J. Anim. Sci. 75, 934–940. doi: 10.2527/1997.754934x

Mikel, M. A., Diers, B. W., Nelson, R. L., and Smith, H. H. (2010). Genetic diversity
and agronomic improvement of North American soybean germplasm. Crop Sci.
50, 1219–1229. doi: 10.2135/cropsci2009.08.0456

Mittal, S., Saxena, D. K., Deb, K., and Goodman, E. (2020). Enhanced innovized
repair operator for evolutionary multi-and many-objective optimization. arXiv
[Preprint]. arXiv:2011.10760

Müller, D., Schopp, P., and Melchinger, A. E. (2018). Selection on expected
maximum haploid breeding values can increase genetic gain in recurrent
genomic selection. G3 8, 1173–1181. doi: 10.1534/g3.118.200091

Nakaya, A., and Isobe, S. N. (2012). Will genomic selection be a practical
method for plant breeding? Ann. Bot. 110, 1303–1316. doi: 10.1093/aob/
mcs109

Nelson, R. L. (2011). Managing self-pollinated germplasm collections
to maximize utilization. Plant Genet. Resour. 9, 123–133. doi:
10.1017/S147926211000047X

Obolski, U., Lewin-Epstein, O., Even-Tov, E., Ram, Y., and Hadany, L. (2017). With
a little help from my friends: cooperation can accelerate the rate of adaptive
valley crossing. BMC Evol. Biol. 17:143. doi: 10.1186/s12862-017-0983-2

Oddi, F. J., Miguez, F. E., Ghermandi, L., Bianchi, L. O., and Garibaldi, L. A.
(2019). A nonlinear mixed-effects modeling approach for ecological data:
using temporal dynamics of vegetation moisture as an example. Ecol. Evol. 9,
10225–10240. doi: 10.1002/ece3.5543

Pinheiro, J. C., and Bates, D. (2000). Mixed-effects models in S and S-PLUS.
New York,NY. Springer. doi: 10.1007/978-1-4419-0318-1

Pinheiro, J. C., Bates, D. J., DebRoy, S., Sarkar, D., and R Core Team (2021). nlme:
Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-152. Available
online at: https://CRAN.R-project.org/package=nlme

Podlich, D. W., and Cooper, M. (1999). Modelling plant breeding programs as
search strategies on a complex response surface. Lect. Notes Comput. Sci. 1585,
171–178. doi: 10.1007/3-540-48873-1_23

Pryce, J. E., Hayes, B. J., and Goddard, M. E. (2012). Novel strategies to minimize
progeny inbreeding while maximizing genetic gain using genomic information.
J. Dairy Sci. 95, 377–388. doi: 10.3168/jds.2011-4254

Ramasubramanian, V., and Beavis, W. D. (2020). Factors affecting response to
recurrent genomic selection in soybeans. bioRxiv [Preprint]. doi: 10.1101/2020.
02.14.949008

Rardin, R. L. (2017). Optimization in Operations Research, 2nd Edn. Boston:
Pearson.

Robertson, A. (1960). A theory of limits in artificial selection. Proc. R. Soc. Lond.
Ser. B Biol. Sci. 153, 234–249.

Ryman, N., and Leimar, O. (2009). GST is still a useful measure of genetic
differentiation — a comment on Jost’s D. Mol. Ecol. 18, 2084–2087. doi: 10.
1111/j.1365-294X.2009.04187.x

Takuno, S., Terauchi, R., and Innan, H. (2012). The power of QTL mapping with
RILs. PLoS One 7:e46545. doi: 10.1371/journal.pone.0046545

Frontiers in Genetics | www.frontiersin.org 24 September 2021 | Volume 12 | Article 675500

https://doi.org/10.1007/s00122-018-3125-3
https://doi.org/10.1007/s00122-018-3125-3
https://doi.org/10.1111/j.1471-8286.2004.00828.x
https://doi.org/10.1093/nar/gkp798
https://doi.org/10.1017/S0016672398003474
https://doi.org/10.1534/genetics.110.115782
https://doi.org/10.1534/genetics.110.115782
https://doi.org/10.1007/s00122-013-2100-2
https://doi.org/10.1007/s00122-013-2100-2
https://doi.org/10.1007/s00122-013-2255-x
https://doi.org/10.1007/s00122-013-2255-x
https://doi.org/10.1371/journal.pone.0048862
https://doi.org/10.2135/cropsci2011.06.0297
https://doi.org/10.2135/cropsci2011.06.0297
https://doi.org/10.1038/ng.3920
https://doi.org/10.2135/cropsci2013.03.0195
https://doi.org/10.1186/1297-9686-42-35
https://doi.org/10.2135/cropsci1988.0011183X002800050001x
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1093/bioinformatics/btr521
https://doi.org/10.1093/bioinformatics/btr521
https://doi.org/10.1080/02648725.2016.1177377
https://doi.org/10.1080/02648725.2016.1177377
https://doi.org/10.1007/BF00263115
https://doi.org/10.1007/BF00263115
https://doi.org/10.1016/j.scitotenv.2020.143695
https://doi.org/10.1186/1297-9686-43-4
https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1007/BF01581047
https://doi.org/10.1007/s00122-017-2863-y
https://doi.org/10.1186/s12711-015-0101-0
https://doi.org/10.1007/s00122-016-2748-5
https://doi.org/10.1016/0305-0483(77)90020-2
https://doi.org/10.2135/cropsci1988.0011183X002800050004x
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.2527/1997.754934x
https://doi.org/10.2135/cropsci2009.08.0456
https://doi.org/10.1534/g3.118.200091
https://doi.org/10.1093/aob/mcs109
https://doi.org/10.1093/aob/mcs109
https://doi.org/10.1017/S147926211000047X
https://doi.org/10.1017/S147926211000047X
https://doi.org/10.1186/s12862-017-0983-2
https://doi.org/10.1002/ece3.5543
https://doi.org/10.1007/978-1-4419-0318-1
https://CRAN.R-project.org/package=nlme
https://doi.org/10.1007/3-540-48873-1_23
https://doi.org/10.3168/jds.2011-4254
https://doi.org/10.1101/2020.02.14.949008
https://doi.org/10.1101/2020.02.14.949008
https://doi.org/10.1111/j.1365-294X.2009.04187.x
https://doi.org/10.1111/j.1365-294X.2009.04187.x
https://doi.org/10.1371/journal.pone.0046545
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-675500 September 20, 2021 Time: 12:59 # 25

Ramasubramanian and Beavis Trade-Offs in Recurrent Selection

Technow, F., Podlich, D., and Cooper, M. (2021). Back to the future: implications
of genetic complexity for the structure of hybrid breeding programs. G3
11:jkab153. doi: 10.1093/g3journal/jkab153

Saeki, Y., Tudari, M., and Crowley, P. H. (2014). Allocation trade-offs and life
histories: a conceptual and graphical framework. OIKOS 123, 786–793. doi:
10.1111/oik.00956

Schierenbeck, S., Pimentel, E. C. G., Tietze, M., Körte, J., Reents, R., Reinhardt, F.,
et al. (2011). Controlling inbreeding and maximizing genetic gain using semi-
definite programming with pedigree-based and genomic relationships. J. Dairy
Sci. 94, 6143–6152. doi: 10.3168/jds.2011-4574

Schnell, F. W. (1983). Problème der Elternwahl-Ein Überblick. Arbeitstagung der
Arbeitsgemeinschaft der Saatzuchleiter. Gumpenstein: Verlag und Druck der
Bundesanstalt für alpenländische Landwirtschaft, 1–1.

Seada, H., and Deb, K. (2018). “Non-dominated sorting based multi/many-
objective optimization: Two decades of research and application,” in Multi-
Objective Optimization, eds J. Mandal, S. Mukhopadhyay, and P. Dutta
(Singapore: Springer), 1–24.

Sheftel, H., Shoval, O., Mayo, A., and Alon, U. (2013). The geometry of the Pareto
front in biological phenotype space. Ecol. Evol. 3, 1471–1483. doi: 10.1002/ece3.
528

Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo, A., et al. (2012).
Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype
space. Science 336, 1157–1160. doi: 10.1126/science.1217405

Skolicki, Z. (2007). An analysis of island models in evolutionary computation.
Fairfax, VA: George Mason University.

Skolicki, Z., and Jong, K. D. (2007). The importance of a two-level perspective
for island model design. IEEE Congr. Evol. Compu. 2007, 4623–4630. doi:
10.1109/CEC.2007.4425078

Sonesson, A., Woolliams, J., and Meuwissen, T. (2010). “Maximising genetic
gain whilst controlling rates of genomic inbreeding using genomic optimum
contribution selection,” in Proceedings of the 9th World Congress on Genetics
Applied to Livestock Production, Germany: German Society for Animal Science.

Song, Q., Hyten, D. L., Jia, G., Quigley, C. V., Fickus, E. W., Nelson, R. L., et al.
(2015). Fingerprinting soybean germplasm and its utility in genomic research.
G3 28, 1999–2006. doi: 10.1534/g3.115.019000

Song, Q., Yan, L., Quigley, C., Jordan, B. D., Fickus, E., Schroeder, S., et al. (2017).
Genetic characterization of the soybean nested association mapping population.
Plant Genome 10. doi: 10.3835/plantgenome2016.10.0109

Specht, J. E., Diers, B. W., Nelson, R. L., de Toledo, J. F. F., Torrion, J. A., and
Grassini, P. (2014). “Soybean,” in Yield gains in major US field crops eds S.
Smith, B. Diers, J. Specht and B. Carver (Madison, WI: American Society of
Agronomy), 311–355. doi: 10.2135/cssaspecpub33.c12

Sun, C., and VanRaden, P. M. (2014). Increasing long-term response by selecting
for favorable minor alleles. PLoS One 9:e88510. doi: 10.1371/journal.pone.
0088510

USDA-ERS. (2020). Commodity Costs and Returns. Available online at:
https://www.ers.usda.gov/data-products/commodity-costs-and-returns/
commodity-costs-and-returns/#Recent%20Cost%20and%20Returns (accessed
November 16, 2020).

Whitley, D., Rana, S., and Heckendorn, R. B. (1999). The island model genetic
algorithm: on separability, population size and convergence. CIT J. Comput. Inf.
Technol. 7, 33–47.

Woolliams, J. A., Berg, P., Dagnachew, B. S., and Meuwissen, T. H. (2015). Genetic
contributions and their optimization. J. Anim. Breed Genet. 132, 89–99. doi:
10.1111/jbg.12148

Wray, N. R. and Goddard, M. E. (1994). Increasing long-term response to
selection. Genet. Sel. Evol. 26, 431–451. doi: 10.1186/1297-9686-26-5-431

Wright, S. (1967). "Surfaces" of selective value. Proc. Natl. Acad. Sci. U.S.A. 58,
165–172. doi: 10.1073/pnas.58.1.165

Wright, S. (1988). Surfaces of selective value revisited. Am. Natur. 131, 115–123.
doi: 10.1086/284777

Xavier, A. (2019). Efficient estimation of marker effects in plant breeding. G3 9,
3855–3866. doi: 10.1534/g3.119.400728

Xavier, A., Jarquin, D., Howard, R., Ramasubramanian, V., Specht, J. E., Graef,
G. L., et al. (2017). Genome-wide analysis of grain yield stability and
environmental interactions in a multiparental soybean population. G3 8, 519–
529. doi: 10.1534/g3.117.300300

Xavier, A., Muir, W. M., and Rainey, K. M. (2016). Assessing predictive properties
of genome-wide selection in soybeans. G3 6, 2611–2616. doi: 10.1534/g3.116.
032268

Xavier, A., Thapa, R., Muir, W., and Rainey, K. (2018). Population and quantitative
genomic properties of the USDA soybean germplasm collection. Plant Genet.
Resour. 16, 513–523. doi: 10.1017/S1479262118000102

Yabe, S., Yamasaki, M., Ebana, K., Hayashi, H, and Iwata, H. (2016). Island-model
genomic selection for long-term genetic improvement of autogamous crops.
PLoS One 11:e0153945. doi: 10.1371/journal.pone.0153945

Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. TAC 8,
59–60. doi: 10.1109/TAC.1963.1105511

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, G. M. (2009).
Mixed Effects Models and Extensions in Ecology with R, 1st Edn. New York, NY:
Springer. doi: 10.1007/978-0-387-87458-6_1

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ramasubramanian and Beavis. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 25 September 2021 | Volume 12 | Article 675500

https://doi.org/10.1093/g3journal/jkab153
https://doi.org/10.1111/oik.00956
https://doi.org/10.1111/oik.00956
https://doi.org/10.3168/jds.2011-4574
https://doi.org/10.1002/ece3.528
https://doi.org/10.1002/ece3.528
https://doi.org/10.1126/science.1217405
https://doi.org/10.1109/CEC.2007.4425078
https://doi.org/10.1109/CEC.2007.4425078
https://doi.org/10.1534/g3.115.019000
https://doi.org/10.3835/plantgenome2016.10.0109
https://doi.org/10.2135/cssaspecpub33.c12
https://doi.org/10.1371/journal.pone.0088510
https://doi.org/10.1371/journal.pone.0088510
https://www.ers.usda.gov/data-products/commodity-costs-and-returns/commodity-costs-and-returns/#Recent%20Cost%20and%20Returns
https://www.ers.usda.gov/data-products/commodity-costs-and-returns/commodity-costs-and-returns/#Recent%20Cost%20and%20Returns
https://doi.org/10.1111/jbg.12148
https://doi.org/10.1111/jbg.12148
https://doi.org/10.1186/1297-9686-26-5-431
https://doi.org/10.1073/pnas.58.1.165
https://doi.org/10.1086/284777
https://doi.org/10.1534/g3.119.400728
https://doi.org/10.1534/g3.117.300300
https://doi.org/10.1534/g3.116.032268
https://doi.org/10.1534/g3.116.032268
https://doi.org/10.1017/S1479262118000102
https://doi.org/10.1371/journal.pone.0153945
https://doi.org/10.1109/TAC.1963.1105511
https://doi.org/10.1007/978-0-387-87458-6_1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Strategies to Assure Optimal Trade-Offs Among Competing Objectives for the Genetic Improvement of Soybean
	Background
	Methods
	Simulations
	Combinations of Factors
	Genomic Mating in Centralized Families
	Genomic Mating in Populations Organized as Family Islands

	Migration Rules Among Family Islands
	Migration Policies Among Family Islands

	Modeled Response to Recurrent Selection
	Analyses of Variance (ANOVA) of Modeled Response to Recurrent Selection
	Evaluations of Responses to Recurrent Selection
	Evaluation Metrics


	Results
	Analysis of Variance of Modeled Genotypic Values
	Rates and Limits of Responses to Recurrent Selection
	Responses to Recurrent Selection of Non-island Lines
	Responses to Recurrent Selection of Lines Organized as Family Islands
	Diversity Within and Among Islands

	Trade-Offs Between Short-Term and Long-Term Gains From Recurrent Selection

	Discussion
	Significance
	Future Research

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


