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Background: The epidermal growth factor receptor (EGFR)-targeted therapies have been tested in the clinic as treatments for
head and neck squamous cell carcinoma (HNSCC). Owing to intrinsic or acquired resistance, EGFR-targeted therapies often lead
to a low response rate and treatment failure. Interferon-alpha (IFNa) is a chemosensitising agent and multi-functional cytokine with
a tumour inhibitory effect. However, the synergic effect of IFNa and EGFR-targeted therapies (erlotinib and nimotuzumab) and
their mechanisms in HNSCC remain unclear.

Methods: The interactions between IFNa, erlotinib, and nimotuzumab were evaluated in vitro in HNSCC cells. The synergistic
effect of IFNa (20 000 IU per day, s.c.), erlotinib (50 mg kg� 1 per day, i.g.) and nimotuzumab (10 mg kg� 1 per day, i.p.) was further
confirmed in vivo using HNSCC xenografts in nude mice. The upregulation of retinoic-acid inducible gene I (RIG-I) induced by
IFNa and EGFR-targeted therapies and its mechanism were detected in vitro and in vivo.

Results: IFNa enhances the antitumour effects of erlotinib and nimotuzumab on HNSCC cells both in vitro and in vivo.
Importantly, both IFNa and EGFR-targeted therapies promote the expression of RIG-I by activating signal transducers and
activators of transcription 1 (STAT1) in HNSCC cells. RIG-I knockdown reduced the sensitivity of HN4 and HN30 cells to IFNa,
erlotinib, and nimotuzumab. Moreover, IFNa transcriptionally induced RIG-I expression in HNSCC cells through STAT1.

Conclusions: IFNa enhances the effect of EGFR-targeted therapies by upregulating RIG-I, and its expression may represent a
predictor of the effectiveness of a combination treatment including IFNa in HNSCC.

Epidermal growth factor receptor (EGFR) is overexpressed and
structurally altered in head and neck squamous cell carcinomas
(HNSCC) and is believed to have an important role in promoting
the malignant progression of tumours, providing a strong rationale

for the development and implementation of EGFR-targeted
therapies for HNSCC (Sharafinski et al., 2010; Braig et al., 2017).
Most EGFR inhibitors are classified into one of two categories:
monoclonal antibodies (mAbs) (e.g., cetuximab, nimotuzumab,
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and panitumumab) that bind the extracellular domain of EGFR
and tyrosine kinase inhibitors (TKIs) (e.g., erlotinib and gefitinib)
that competitively bind the intracellular ATP-binding pocket of
EGFR, disrupting the kinase function (Imai and Takaoka (2006);
Agulnik, 2012). However, EGFR inhibitors, including mAbs and
TKIs, have only achieved modest success in treating recurrent and/
or metastatic HNSCC (Sacco, Cohen (2015)). The addition of
panitumumab to chemotherapy did not improve overall survival in
an unselected population of patients with recurrent or metastatic
HNSCC (Vermorken et al., 2013). Multiple therapies targeting
EGFR have been tested in patients with HNSCC, but the low
response rates and intrinsic or acquired resistance usually lead to
treatment failure (Vermorken et al., 2008; Martinez-Useros and
Garcia-Foncillas (2015); Wen, Grandis (2015)). Studies aiming to
identify methods to enhance the antitumour activity of EGFR
inhibitors as treatments for HNSCC are particularly important and
urgent.

Interferon-alpha (IFNa) has been approved as a treatment for
several tumours, such as malignant melanoma, hairy leukaemia,
non-Hodgkin lymphoma, Kaposi’s sarcoma, and renal cell
carcinoma (Parker et al., 2016). However, it is not approved for
most solid tumours. IFNa produced by tumour cells and immune
cells activates anticancer immunity by promoting the activity of T
cells, natural killer (NK) cells, and dendritic cells (DC), as well as
inhibiting the activity of immunosuppressive cells (Joffre et al.,
2012; Bacher et al., 2013; Srivastava et al., 2014; Parker et al., 2016).
IFNa has been shown to enhance the erlotinib-induced inhibition
of proliferation in human bladder cancer and colon cancer (Yang
et al., 2005; 2007) and to increase the sensitivity of human lung
cancer to nimotuzumab (Diaz et al., 2009). IFNa induces apoptosis
and potentiates EGFR expression in human epidermoid carcinoma
KB cells (Caraglia et al., 1999). The synergistic antitumour activity
of gefitinib (a TKI of EGFR) and IFNa has been observed in
HNSCC (Bruzzese et al., 2006). Obviously, nimotuzumab and
erlotinib utilise different mechanisms to block EGFR activation.
Researchers have not yet clearly determined whether the
combination of IFNa and EGFR-targeted therapies, including
both nimotuzumab and erlotinib, exerts a synergistic effect on
HNSCC. The retinoic-acid inducible gene I (RIG-I)-like receptors
(RLRs) are a family of cytosolic pattern recognition receptors that
are essential for detecting viral RNA and initiating the innate
immune response (Weber-Gerlach, Weber (2016)). RIG-I is one of
the most important RLPs. As shown in our previous study, high
levels of activated RIG-I induce apoptosis and IFNa production in
HNSCC (Hu et al., 2013). Therefore, we speculated that RIG-I may
be involved in the mechanism underlying the effects of a
combination treatment of IFNa and EGFR-targeted therapies.
Further investigations are required to determine whether RIG-I is
involved in the mechanism of the IFNa combination treatment and
predicts the sensitivity of HNSCC to IFNa and EGFR-targeted
therapies.

In the present study, we examined the synergistic effects of
IFNa, erlotinib, and nimotuzumab on HNSCC in vivo and in vitro.
The upregulation of RIG-I was described as a novel mechanism for
the effects of the IFNa combination treatment on HNSCC.
Moreover, RIG-I expression may help guide the clinical application
of the IFNa combination treatment of HNSCC in the future.

MATERIALS AND METHODS

Cell culture. The cell lines used in this study were HN4 and
HN30. HN4 cells originated from human tongue squamous
carcinoma, whereas HN30 cells originated from human pharyngeal
squamous cell carcinoma. Both the HN lines were kindly provided
by Professor Mao Li, Department of Oncology and Diagnostic

Sciences, University of Maryland School of Dentistry, University of
Maryland and verified by STR genotyping. Cal27, a tongue
squamous cell carcinoma cell line, was purchased from ATCC
(Manassas, VA, USA). The EGFR inhibitors-resistant cell lines
were constructed by gradually selection with targeted drugs using
Cal27 cell line. In brief, the cells were first exposed to 0.5mM

erlotinib or 50 mg ml� 1 nimotuzumab for 72 h. The surviving cells
were then split and exposed to higher doses of drugs for 2–3 days
per week for B4 weeks. The resistant cells were named Cal27/
erlotinib and Cal27/nimotuzumab, and maintained in normal
culture medium containing 5mM erlotinib or 200 mg ml� 1

nimotuzumab. The cell lines were cultured in Dulbecco’s Modified
Eagle’s Medium (Gibco, Grand Island, NY, USA) supplemented
with 10% foetal bovine serum, 1% glutamine, and 1% penicillin–
streptomycin. Cells were cultured in a humidified atmosphere of
5% CO2 at 37 1C.

Transfection. Cells were transiently transfected with siRNAs or
plasmids using Lipofectamine 3000 (Invitrogen, Carlsbad, CA,
USA), according to the manufacturer’s instructions. Treatments
were administered 24 h after transfection. The sequences of the
RIG-I siRNA were: #1, 50-CCCAACCGAUAUCAUUUCUdTdT-30

and #2, 50-CAGCUGACGUAAGAGUGAUdTdT-30. The sequence
of the scrambled control was: 50-UUCUCCGAACGUGUCAC-
GUdTdT-30.

Plasmids construction. The wild-type expressing plasmid of
human DDX58 (NM_014314) and mutant plasmid were con-
structed (Genomeditech, Shanghai, China). The RIG-I siRNA#2
combining sequence (50-CAGCTGACGTAAGAGTGAT-30) in
wild-type RIG-I was under synonymous mutant (50-cACCGCG-
GATGTCAGGGTTat-30) to generate mutant RIG-I. Both wild-
type RIG-I and mutant RIG-I can encode the same RIG-I protein,
however, siRNA#2 cannot combine with the RIG-I mRNA to
degrade the RIG-I mRNA.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assays. HN4 and HN30 cells were seeded in 96-well plates
at a density of 3� 103 cells per well. Human IFNa (PeproTech,
Rocky Hill, NJ, USA), erlotinib (Selleck, Houston, TX, USA),
nimotuzumab (Biotech Pharma, Beijing, China) and fludarabine
(Selleck) were administrated at the indicated concentrations after
cells had adhered. After a 72 h incubation, 20ml of MTT were
added to every well and incubated for 4 h. Then, 200 ml of DMSO
were added to dissolve the formazan crystals in each well. The
optical density (OD) was measured at 490 nm within 10 min.

Drug combination studies. In vitro drug combination studies
were based on dose–effect curves generated by plotting the number
of surviving cells in the MTT assay versus the dose after 72 h of
treatment. For each cell line, the molar ratio of equipotent doses of
the two agents (at the ratio of their IC50 values) was applied. The
combination index (CI) was used to analyse the synergistic
inhibitory effects of drug combinations using CompuSyn software
according to the previously published Chou–Talalay
equation (Chou, 2006). The general Equation for CI is given by

Dð Þ1= Dxð Þ1þ Dð Þ2= Dxð Þ2 ¼¼ CI

In the denominators, (Dx)1 is the dose of drug 1 alone that inhibits
x%. Likewise, (Dx)2 is the dose of drug 2 alone that inhibits x%. In
the numerators, (D)1 is the proportion of drug 1 in the
combination (D)1þ (D)2 that also inhibits x%. Likewise, (D)2 is
the proportion of drug 2 in the combination (D)1þ (D)2 that also
inhibits x%. Thus, (D)1þ (D)2 also inhibit x%. CIo1, CI¼ 1, and
CI41 indicate synergism, an additive effect, and antagonism,
respectively; r represents the correlation coefficient determined
from the median-effect plot (a value 40.95 indicates goodness of
fit). Fa represents the fraction of the population affected by the
specified dose of the treatment. In our study, the Fa–CI plot
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showed both actual data points and a simulated curve with a
constant ratio.

The dose-reduction index (DRI) represents the order of
magnitude (fold) of dose reduction obtained for the ED50 effect
in a combination treatment compared with each drug alone. From
the series of equations, the DRI value for the x% inhibition is
calculated as: (Dx)n/(D)n¼ (DRI)n.

Flow cytometry. Flow cytometry was performed using a pre-
viously described method (Fang et al., 2016). In brief, HN4 and
HN30 cells were incubated with the indicated treatment for 48 h.
Cells were suspended in 400 ml 1� binding buffer, then added 5ml
Annexin V-FITC ( BD Biosciences, Franklin Lake, NJ, USA) to the
cell suspension, and incubated on ice for 30 mins. Then 5ml
propidium iodide (PI) was added and incubated on ice for 5 mis.
All the procedure should protect from prolonged exposure to light.
After PBS wash, cells were resuspended in 100 ml of binding buffer
and analysed on a BD FORTASA flow cytometer. The final results
were analysed with FlowJo software. For the cell cycle analysis, cells
that had been exposed to the indicated treatment were fixed with
70% ethanol overnight. Cells were then washed and incubated with
a PI/RNase staining kit (BD). For the Dc and natural killer cell
analysis, peripheral blood monocytes (PBMC) were extracted from
nude mice and analysed with the following antibodies and Fixable
Viability Dye (eBioscience, San Diego, CA, USA), a FITC-I-A/I-E
antibody, APC-CD11c antibody, and PE-CD49b antibody (all
purchased from BD Biosciences). The subsequent steps performed
as described above.

Immunoprecipitation and western blot assay. Western blot
assays were performed using previously described methods (Jin
et al., 2015). The antibodies used in this study were: Stat1, p-Stat1
(Tyr701), Akt, p-Akt (Ser473), ERK1/2, p-ERK1/2 (Thr202/
Tyr204), PARP, cleaved PARP, p-Rb (Ser807/811), p53, cyclin
D1, ubiquitin, and cleaved caspases 1, 3, 8, and 9 from Cell
Signaling Technology (CST, Danvers, MA, USA). The RIG-I
antibody was purchased from Abcam (Cambridge, MA, USA).
GAPDH, a-tubulin, and b-actin antibodies (all purchased from
Proteintech, Rocky Hill, NJ, USA) were used as an internal control.
Immunoreactive bands were scanned and analysed using an
Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln,
NE, USA).

In vivo study. SPF BALB/c nude mice (nu/nu, aged 4 weeks, and
weighing B20 g) were purchased from the Shanghai Laboratory
Animal Center (Shanghai, China) and were housed in SPF facilities
at Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine. The Laboratory Animal Care and
Use Committees of the hospital approved all experimental
procedures. The nude mouse tumour xenograft model was
established with Cal27 cells, an HNSCC cell line exhibiting strong
tumourigenicity in vivo. In brief, 1� 106 cells were subcutaneously
injected into the right flank of the nude mice. After the xenograft
reached a mean diameter of 5 mm, the animals received various
treatment regimes: (a) control (0.9% saline, i.p.); (b) IFNa
(20 000 IU per day, s.c.); (c) erlotinib (50 mg kg� 1 per day, i.g.);
(d) nimotuzumab (10 mg kg� 1 per day, i.p.); (e) IFNaþ erlotinib;
and (f) IFNaþ nimotuzumab. Tumour sizes and animal weights
were monitored every 3 days. Tumour volumes were calculated
using the formula: (length�width2/2). Mice were killed and
tumour tissues were excised after 4 weeks. Peripheral blood was
collected from nude mice in the control and IFNa groups. DCs and
NK cells were analysed using PBMCs. Portions of tumour tissues
and organs were fixed and embedded in the paraffin. Tissue
sections (4mm) were stained with haematoxylin and eosin. The
terminal deoxynucleotidyl transferase dUTP nick end labelling
(TUNEL) assay was used to detect apoptotic cells. A lentivirus
vector containing human the DDX58 gene and a recombinant

lentivirus harbouring siRNA#2 targeting DDX58 were constructed
and confirmed (Genomeditech). The Cal27 cell line was transfected
with lentiviral vectors and treated with puromycin for 1 week to
induce stable expression. Cells (1� 106) stably transfected with the
lentivirus were inoculated into the right flank of nude mice.
Tumour sizes and animal weights were monitored weekly. Mice
were killed and tumour tissues were excised after 5 weeks. The
tumour tissues were preserved and detected by immunohisto-
chemistry and PCR. This study was approved by Ethics Committee
of Ninth People’s Hospital, Shanghai Jiao Tong University School
of Medicine (Shanghai, China).

Immunohistochemistry. Immunohistochemistry was operated
according our previous study (Ma et al., 2017b). In brief, the
sections were heated by water bath at 100 with EDTA buffer (PH
10.0) for 20 min to retrieve antigen. The primary antibodies were
rabbit monoclonal anti- RIG-I antibody (Abcam) and rabbit
monoclonal anti-MX1 antibody (Proteintech). Immunohistochem-
istry and image analysis were performed to measure and analyse
the mean optical density for MX1 and RIG-I in the animal
experiments.

Real-time PCR. Real-time PCR was operated according to the
manufacturer’s instructions as previous described. The sequence of
primers were as follows: human IFNA1, 50-CCTGATGAATGCG-
GACTCCA-30 (forward), 50-TAGCAGGGGTGAGAGTCTTTG-30

(reverse) and GAPDH: 50-CCTCTGACTTCAACAGCGAC-30

(forward) and 50-TCCTCTTGTGCTCTTGCTGG-30 (reverse).

Chromatin immunoprecipitation. Chromatin immunoprecipita-
tion (ChIP) was strictly performed according the protocol of the
SimpleChIP Enzymatic Chromatin IP kit (CST) and our previous
study (Ma et al., 2017a). In brief, after treatment with 100 ng ml� 1

IFNa for 48 h, HN4 and HN30 cells were fixed with 1%
formaldehyde for 10 min. Five microliters of the p-Stat1 (Tyr701)
antibody or normal rabbit IgG were added to the corresponding
samples. 30 ml of ChIP-grade Protein G Magnetic beads were added
to the mixture and incubated for 2 h at 4 1C with rotation. A
quantitative polymerase chain reaction analysis of the purified
ChIP DNA (ChIP-qPCR) was performed to calculate the percent
enrichment of the promoter region using the 2�DDCT formula. The
primers for the DDX58 promoter were: Forward: 50-GATGTCACT
TCTCCCCAAGTTT-30 and Reverse: 50-GAGACAAGGTCTCAC
TCTGTCTCC-30.

Luciferase reporter assay. Luciferase assays were used to confirm
the transcriptional activation of DDX58 by IFNa. Cells were seeded
in 12-well plates (1� 105 cells per well) and grown to 40–50%
confluence. Each DDX58 promoter-luciferase construct was co-
transfected into cells with pRL-TK (TK promoter Renilla luciferase
construct as internal control). HN4 and HN30 cells were
transiently transfected using the Lipofectamine 3000 transfection
reagent (Invitrogen). Then, the indicated concentrations of IFNa
were added 24 h after transfection. Luciferase activity was
determined 24 h after stimulation using a dual-luciferase reporter
assay system (Beyotime, Shanghai, China). In brief, cell lysates
(200 ml per well) were used to measure the relative luciferase units
in a luminometer by first mixing the cell lysates (20 ml) with 100 ml
of luciferase assay reagent to measure firefly luciferase activity and
subsequently adding 100 ml of Renilla luciferase reagent to measure
Renilla luciferase activity. Data were normalised to Renilla
luciferase activity (internal control) and presented as arbitrary
units. All experiments were performed in triplicate.

Data mining. We performed data mining using the publicly
available TCGA database (http://www.cbioportal.org/) to explore
the correlation between the signal transducers and activators of
transcription 1 (STAT1) mRNA and DDX58 mRNA in HNSCC
tissues. The STAT1 co-expression data were mined from 279
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HNSCC samples in the TCGA database (Cerami et al., 2012; Gao
et al., 2013). The transcription factor-binding sites in the human
DDX58 gene were predicted using JASPAR (http://jaspar.gener-
eg.net/) (Wasserman and Sandelin (2004)).

Statistics. Statistical analyses were performed with SPSS 13.0
software for Windows (SPSS Inc., Chicago, IL, USA). Excel and
GraphPad Prism version 6 (GraphPad Software, San Diego, CA,
USA) were employed to process the initial data and plot the results.
The CI was calculated with CompuSyn software to analyse the
synergistic inhibitory effect of the drug combinations. Student’s t-
test and one-way analysis of variance were performed to assess the
statistical significance of differences. Po0.05 was considered
statistically significant. * Po0.05 and ** Po0.01. All values are
expressed as means±s.d.

RESULTS

IFNa enhances the antitumour effects of erlotinib and
nimotuzumab on HNSCC cells. We first detected whether IFNa
enhanced the antitumour effects of erlotinib and nimotuzumab on
HNSCC cells. Certain concentrations of IFNa enhanced the
tumour inhibitory effects of erlotinib and nimotuzumab on HN4
and HN30 cells (Figure 1A and B), and the cell viability of the
combination group was significantly less than the groups treated
with erlotinib or nimotuzumab alone (Figure 1C). Conversely, the
apoptotic fraction was significantly increased in the combination
group using flow cytometry (Figure 1D, Supplementary Figure 1).
Consistent with these findings, the levels of the IFNa downstream
effector p-Stat1 (Tyr701) were markedly increased in both HN4
and HN30 cells following exposure to the combination treatment
for up to 72 h compared with erlotinib or nimotuzumab alone
(Figure 1E), suggesting that IFNa enhanced the killing effects of
erlotinib and nimotuzumab in a p-stat1-dependent manner. No
significance differences in p-AKT and p-ERK levels were observed
in response to the IFNa combination treatment. Furthermore, we
observed that IFNa, erlotinib, and nimotuzumab promoted the
arrest of G1 phase (Figure 1F). Mechanically, IFNa promoted the
expression of p53 in HN4 and HN30 cells, whereas erlotinib
decreased the expression of p-Rb. IFNa combination with erlotinib
and nimotuzumab (lane 5 and 6) significantly inhibited the
expression of cyclin D1 than drugs alone, leading to cell cycle arrest
and apoptosis (Supplementary Figure 2). Based on these results, a
combination treatment with IFNa, erlotinib, and nimotuzumab
cooperatively promoted G1 arrest and induced apoptosis in HN4
and HN30 cells. Moreover, we observed that the cell viability was
significantly inhibited in IFNa and cetuximab (another mAb of
EGFR) combined group than each alone (Figure 1G). Furthermore,
we constructed erlotinib-resistant and nimotuzumab-resistant cell
lines (Supplementary Figure 3) and observed that lower dose of
IFNa could notably enhance the effect of EGFR inhibitors in drug-
resistant HNSCC cell lines (Figure 1H). These results confirmed
that IFNa enhanced the antiproliferative effects of erlotinib/
nimotuzumab in HNSCC cells.

IFNa exerts a synergistic antitumour effect with erlotinib and
nimotuzumab on HNSCC cell lines. The combination index were
calculated using the Chou–Talalay method to further explore the
potential synergistic effects of IFNa and EGFR-targeted therapies
on HNSCC cells. Serial dilutions of the three drugs were detected
using equipotent doses of two agents (at the ratio of each IC50
value). Fa–CI curves showing the CI versus affected cells/cells
killed by the drug combination are shown (Figure 2). The
dimensionless value at Fa¼ 0.5 was calculated from Fa–CI curve.
Although CI¼ 1 indicates additive effect in the absence of
synergism or antagonism, CIo1 indicates synergism, and CI¼ 1
indicates antagonism. From the Figure 2, all CI values at Fa¼ 0.5

were below the CI¼ 1 horizontal dotted line. The numerical values
of CI were shown in Table 1 to confirm the synergistic effects of
IFNa, erlotinib, and nimotuzumab in HNSCC cells. An IC50
(r)X0.95 suggested a good fit of the curve. DRI was used to
measure how many folds the dose of each drug in a synergistic
combination may be reduced at a given effect level when compared
with the doses of each drug alone. Thus, the IFNa, erlotinib, and
nimotuzumab combination treatment exerted a synergistic effect
on HNSCC.

Both IFNa- and EGFR-targeted therapies promote RIG-I
expression in HNSCC cells. According to the results from our
previous study, high levels of activated RIG-I induced by a virus
infection significantly increase apoptosis and inhibit tumour
growth in HNSCC. We speculated that RIG-I may be involved
in the effects of the IFNa combination treatment. Based on
bioinformatics and literature analyses, RIG-I was considered as one
of the potential targets of both IFNa and EGF. Our results showed
a positive correlation between STAT1 and the DDX58 mRNA that
encoded the RIG-I protein in 207 patients with HNSCC
(Figure 3A), and IFNa greatly induced the expression of the
RIG-I protein in a dose- and time-dependent manner (Figure 3B).
More importantly, caspases 1, 3, 8, and 9 were activated in
response to the IFNa incubation, supporting the tumour inhibitory
effect of IFNa. Furthermore, IFNa reversed the downregulation of
RIG-I expression with a siRNA in HN4 and HN30 cells
(Figure 3C). The siRNA targeting RIG-I decreased the apoptotic
fraction compared with scramble with or without IFNa treatment
in HN4 and HN30 cells, and decreased cleaved PARP expression
under IFNa treatment. (Figure 3D, Supplementary Figure 4),
indicating that RIG-I has a key role in IFNa-induced apoptosis. In
contrast to IFNa, EGF induced a time-dependent inhibition of
RIG-I (Figure 3E). MG132 could also reverse the degradation of
RIG-I mediated by EGF (Figure 3F). We speculated that the
inhibition of RIG-I expression by EGF depended on the activation
of the ubiquitin degradation pathway. Consistent with this
hypothesis, treatment with MG132 induced RIG-I ubiquitination
in EGF-stimulated cells (Figure 3G). In further support of the
inhibitory effect of EGF on RIG-I, the EGFR inhibitors erlotinib
and nimotuzumab markedly promoted RIG-I expression with or
without EGF stimulation in HN4 and HN30 cells (Figures 3H
and I, Supplementary Figure 5). Based on these results, the
combination of IFNa and EGFR-targeted therapies exerted a
synergic effect on upregulating RIG-I expression in HNSCC.

IFNa enhances the effects of EGFR-targeted therapies
in vivo. Next, we confirmed the in vitro results using human
HNSCC xenografts in nude mice. First, the tumour volumes were
significantly (Po0.05) smaller in the combined drug group than in
the groups treated with each individual agent (Figure 4A). Notably,
although nimotuzumab exerted a moderate effect in vitro, it
exhibited a remarkable tumour inhibitory effect in vivo. Similarly,
the IFNa treatment noticeably (Po0.01) inhibited tumour growth
compared with the control. These results were also confirmed by
measuring the weights of the resulting tumours (Figure 4B). In
addition, according to the results of the TUNEL assay, IFNa
increased the number of apoptotic cells in vivo when mice were
also treated with erlotinib and nimotuzumab (Figure 4C). No
significant toxic effects on important organs were observed in any
treatment group (Figure 4D). Consistent with our in vitro
observations (Figures 3B and C), RIG-I expression was dramati-
cally induced in the IFNa-treated mice compared with the control
(Figure 4E). PBMCs from nude mice were analysed by flow
cytometry to determine whether IFNa stimulated the immune
system. IFNa administration obviously increased the percentage of
DCs (4.08±0.46% vs 1.75±0.61%, Po0.05) (Supplementary
Figure 6A). Moreover, the percentage of NK cells was also
significantly elevated by the IFNa treatment (15.90±2.78% vs
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5.02±1.43%, Po0.01, Supplementary Figure 6B). Overall, IFNa
enhanced the antitumour effects of erlotinib and nimotuzumab
and promoted RIG-I expression in vivo.

RIG-I overexpression inhibits tumour growth in vivo. A
lentivirus vector expressing RIG-I was constructed and transfected
into HNSCC cell lines to obtain stable cell lines and to test the
function of RIG-I (Figure 5A). The xenograft tumours were smaller
in mice in the RIG-I overexpression group than in the vector
control group (Figure 5B). The tumour volumes and weights were

measured and the results showed that RIG-I overexpression
markedly (Po0.01) inhibited tumour growth compared with the
vector, whereas RIG-I knockdown significantly (Po0.05) pro-
moted tumour growth (Figures 5C and D). Thus, in addition to
acting as a well-known RLR against viral infection, RIG-I also
functions as a tumour suppressor in HNSCC cells. Moreover, we
detected whether RIG-I could induce immune response in vivo.
MX1 is considered an ideal and specific marker for the activity of
the IFNa signalling pathway (Silginer et al., 2017). We observed
that both RIG-I and MX1 were significantly increased in LV-RIG-I
group than vector using immunohistochemistry (Figure 5E).
Moreover, IFNA1 mRNA, encoding IFNa protein, also increased
in LV-RIG-I group than vector (Figure 5F).

RIG-I knockdown reduces the sensitivity of HN4 and HN30 cells
to IFNa, erlotinib, and nimotuzumab. An MTT assay was
performed using transfected cells to determine whether RIG-1
regulated the sensitivity of HN4 and HN30 cells to IFNa, erlotinib,
and nimotuzumab. RIG-I knockdown significantly reduced the
sensitivity of HN4 and HN30 cells to 10, 100, and 1000 ng ml� 1

IFNa (Figure 6A). RIG-I silencing significantly reduced the
sensitivity of HN4 cells to 0.1, 1, 10, and 100 mM erlotinib and
HN30 cells to 1, 10, and 100 mM erlotinib (Figure 6B). However, a
significant difference in the sensitivity of HN4 cells to nimotuzu-
mab was not observed. The viability of nimotuzumab-treated
HN30 cells transfected with the RIG-I siRNA was significantly
higher than of treated cells transfected with the scrambled siRNA
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(IFN�:Nimotuzumab)

HN30
Molar ratio 20:1
(IFN�:Erlotinib)

2 2

CI CI

0 0
0

2 2

CI CI

0 0
0 00.5 0.5

Fa Fa

1 1

00.5 0.5

Fa Fa
1 1

Figure 2. Synergistic antitumour effects of IFNa and EGFR-targeted therapies in vitro. Effects of treatments with combination of IFNaþ erlotinib
or nimotuzumab on HN4 and HN30 cell lines. The CI/fractional effect curve (Fa) showed the CI versus the fraction of cells affected/inhibited by the
combination treatment in different cell lines. For each cell line, the molar ratio of equipotent doses of the two agents (at the ratio of their IC50S) is
shown. The combination analysis was performed using CompuSyn software.

Table 1. IC50 (r), DRI, and CI for IFNa combination treatment

DRI at IC50

Cell
lines

IC50 (r) IFNa Erlotinib Nimotuzumab CI

HN4 0.95247 10.3011 3.70441 – 0.36703
0.98092 3.26596 – 371.503 0.30888

HN30 0.97663 7.70632 1.40254 – 0.84275
0.97936 9.38196 – 298.758 0.10993

Abbreviations: CI¼ combination index; DRI¼ dose-reduction index; IFNa¼ interferon-
alpha. IC50(r) represents the correlation coefficient for the fit between the CI and Fa. CIs
were calculated for ED50 using an isobologram analysis generated with CompuSyn
software. The DRI represents the order of magnitude (fold) of dose reduction obtained for
the ED50 effect of the combination treatment compared with each drug alone.
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(Figure 6C). After RIG-I knockdown, cells were more resistant to
IFNa and EGFR inhibitors combination treatment (Figures 6D and
E). RIG-I expression was not reduced by siRNA after synonymous
mutant RIG-I plasmids transfection (Supplementary Figure 7A).
Cell viability was significantly higher after co-transfection with
siRNA for RIG-I and WT RIG-I plasmids than MT plasmids under
IFNa and EGFR inhibitors combination treatment (Supplementary
Figure 7B). Based on these in vitro results, the RIG-I expression
level alters the sensitivity of HNSCC cells to IFNa, erlotinib, and
nimotuzumab, and its expression may predict the response of
HNSCC to IFNa and EGFR-targeted therapies.

IFNa transcriptionally regulates RIG-I expression through
STAT1. Based on the results presented above, IFNa enhanced
the inhibitory effects of erlotinib and nimotuzumab in vitro and
in vivo by upregulating RIG-I expression in HNSCC. As shown
in Figure 1, the effect of the combination of IFNa and EGFR-
targeted therapies may depend on STAT1 activation. Therefore,
we speculated that IFNa mainly upregulated RIG-I expression
through STAT1 activation. Fludarabine specifically inhibits

STAT1 activation without affecting the phosphorylation of other
STAT proteins (Meng et al., 2007). The IC50 values of
fludarabine for HN4 and HN30 cells were 0.9214 to 5.395 and
2.006 to 18.51 mM, respectively (Supplementary Figure 8).
Fludarabine attenuated IFNa-induced RIG-I expression in both
HN4 and HN30 cells (Figure 7A), supporting the hypothesis that
STAT1 activation plays a major role in IFNa-induced RIG-I
expression. STAT1 is one of the key downstream signal
transducers and activators of IFNa, and IFNa-induced STAT1
phosphorylation at Tyr701 leads to STAT1 dimerisation, nuclear
translocation, DNA binding, and the subsequent transcription of
a series of immune-related target genes (Li et al., 2014a). A
publicly available schematic diagram of the binding motif of
human STAT1 was shown in Supplementary Figure 9. Five
putative STAT1 binding sites in DDX58 promoter region were
predicted by the JASPAR database (Supplementary Figure 10).
Consistent with this prediction, p-Stat1 (Tyr701) bound the
promoter region of the DDX58 gene in IFNa-stimulated HN4
and HN30 cells in the ChIP assay (Figure 7B). A dual-luciferase
reporter system was performed to test whether IFNa activated
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DDX58 transcription. The activity of the DDX58 promoter was
significantly increased by IFNa stimulation in a dose-dependent
manner (Figure 7C). In summary, IFNa transcriptionally
activated RIG-I expression, whereas EGFR-targeted therapies
blocked RIG-I degradation. Both IFNa and erlotinib/nimotuzu-
mab synergistically promoted RIG-I expression to inhibit
HNSCC tumour growth (Supplementary Figure 11).

DISCUSSION

Based on our comprehensive results, IFNa enhanced the
antitumour activity of erlotinib and nimotuzumab in HNSCC by
upregulating RIG-I expression both in vitro and in vivo. A clear
synergistic antitumour effect of IFNa, erlotinib, and nimotuzumab
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was observed in the median drug analysis and CI calculation. This
finding is of great significance to the clinical application of the
combination treatment with IFNa and EGFR-targeted drugs to
HNSCC.

IFNa is a cytokine with multiple functions that exerts a
chemosensitising effect on several tumours. In colon and bladder

cancer cell lines, IFNa only promotes the antiproliferative effect of
erlotinib in assays using crystal-violet staining (Yang et al., 2005,
2007). However, the two previous studies were operated by the
same author who used a less-effective method of analysis, crystal-
violet staining. A combination treatment including gefitinib and
IFNa produces a synergistic antiproliferative effect in vitro and
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induces a delay in tumour growth and increases the survival rate of
nude mice with established HNSCC xenografts (Bruzzese et al.,
2006). However, few studies have examined the effects of a
combination treatment comprising IFNa and EGFR mAbs, which
may utilise a different mechanism to inhibit EGFR signalling.
Several in vitro and in vivo experiments were applied in this study
to confirm the synergistic effects of IFNa and erlotinib/nimotu-
zumab on HNSCC. To our surprise, human IFNa increased the
percentages of NK cells and DCs in nude mice to trigger the mouse
immune system, but the underlying mechanism remains unclear.
Nimotuzumab represents the first human mAb against EGFR to be
approved as a treatment for HNSCC. In our study, nimotuzumab
moderately inhibited tumour cell growth in vitro, whereas it
exerted a strong inhibitory effect in vivo. This phenomenon is
interesting and reminds us of the difference between in vitro and
in vivo environments. Our study was the first to simultaneously
investigate both TKIs and mAbs of EGFR in combination with
IFNa as a treatment for HNSCC. These results will be very
significant for clinical applications of the combination of IFNa
with erlotinib and nimotuzumab in the future.

The synergistic effect of IFNa and erlotinib/nimotuzumab
mainly depended on RIG-I activation, which directly inhibited
tumour growth. This novel mechanism for the combination of
IFNa and EGFR-targeted therapies in HNSCC improves our
understanding of the effects of the IFNa combination treatment.
The upregulation of EGFR expression in response to an IFNa
treatment is considered an escape mechanism from resistance to
EGFR-targeted therapies (Budillon et al., 1991; Caraglia et al.,
1995). These previous observations were partially attributed to an

EGF-dependent survival pathway and IFNa-induced ERK activa-
tion. RIG-I is one of the most important RLRs for detecting viral
RNA and initiating the innate immune response. Based on our
results, innate immunity might have an important role in the
effects of EGFR-targeted therapies.

In our study, a novel tumour suppressor function of RIG-I was
confirmed in HNSCC. In a cohort of patients with HBV-associated
hepatocellular carcinoma, high intratumour levels of the cytosolic
RIG-I protein predicted the response to IFNa therapy, and the
depletion of RIG-I from HCC xenografts compromised the
antineoplastic effects of IFNa on mice (Hou et al., 2014). RIG-I
silencing reduced the sensitivity of HNSCC cells to IFNa, erlotinib,
and nimotuzumab in our study. Therefore, the upregulation of
RIG-I expression plays an important role in modulating the effects
of IFNa and EGFR-targeted therapies and inhibiting tumour
growth in HNSCC. Thus, RIG-I is required for an effective
response to IFNa in patients. Moreover, EGFR inhibitors blocked
EGF-induced RIG-I ubiquitination to upregulate RIG expression in
HNSCC cell lines. However, the mechanism by which EGF
stimulation induces RIG-I ubiquitination in HNSCC requires
further investigation. The activation of the RIG-I pathway by a
virus infection promotes the transcription of IFNa and antiviral
enzymes. RIG-I expression was significantly induced by IFNa in
tumour cells in our study. The positive feedback loop between
IFNa and RIG-I provided a new insight into the effects of the
combination of IFNa and EGFR inhibitors. The therapeutic effects
of IFNa and EGFR-targeted therapies greatly relied on RIG-I
expression. Virus RNA-unprimed RIG-I alters its conformation
and functional states to disrupt the association between Src and
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AKT and inhibit tumour proliferation (Li et al., 2014b). This
finding may explain the tumour suppressor function of RIG-I in
HNSCC. Patients with higher RIG-I expression in HNSCC tissues
may benefit from IFNa and EGFR-targeted therapies. Assessments
of the expression of RIG-I in biopsy tissues from patients with
HNSCC could be applied to select patients who would benefit from
the combination treatment. RIG-I may be a predictive marker for
the use of a combination of IFNa and EGFR-targeted therapies in
patients with HNSCC in future clinical investigations.

In conclusion, IFNa enhanced the antitumour effects of
erlotinib and nimotuzumab by upregulating RIG-I expression,
providing a strong rationale for tests of the therapeutic efficacy of
EGFR-targeted therapies (erlotinib and nimotuzumab) in combi-
nation with IFNa as a treatment for HNSCC in future clinical
trials. Moreover, RIG-I expression may be an effective predictor of
the effectiveness of the IFNa combination treatment in patients
with HNSCC.
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