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SUMMARY

Obesity is an established risk factor for cancer in many tissues. In the mammalian intestine, a pro-

obesity high-fat diet (HFD) promotes regeneration and tumorigenesis by enhancing intestinal stem 

cell (ISC) numbers, proliferation, and function. Although PPAR (peroxisome proliferator-activated 

receptor) nuclear receptor activity has been proposed to facilitate these effects, their exact role is 

unclear. Here we find that, in loss-of-function in vivo models, PPARα and PPARδ contribute to 

the HFD response in ISCs. Mechanistically, both PPARs do so by robustly inducing a downstream 

fatty acid oxidation (FAO) metabolic program. Pharmacologic and genetic disruption of CPT1A 

(the rate-controlling enzyme of mitochondrial FAO) blunts the HFD phenotype in ISCs. 

Furthermore, inhibition of CPT1A dampens the pro-tumorigenic consequences of a HFD on early 

tumor incidence and progression. These findings demonstrate that inhibition of a HFD-activated 

FAO program creates a therapeutic opportunity to counter the effects of a HFD on ISCs and 

intestinal tumorigenesis.

Graphical abstract

In brief

Mana et al. demonstrate that a high-fat diet enhances intestinal stemness and tumorigenicity 

through a PPAR-FAO program. The PPAR family members δ and α redundantly activate a robust 

FAO program in stem cells where loss or inhibition of CPT1a (the mitochondrial long-chain FAO 

rate-controlling step) dampens these HFD effects.
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INTRODUCTION

Obesity increases the incidence and mortality of many types of cancer, including those of the 

intestine (Calle and Kaaks, 2004; Lauby-Secretan et al., 2016). Many factors contribute to 

how obesity elevates colon cancer risk, including changes in systemic growth factors 

(Andres et al., 2015; Calle and Kaaks, 2004; Mah et al., 2014), visceral adipose tissue 

(Huffman et al., 2013), the microbiome (Arkan, 2017; Schulz et al., 2014), bile acids (Fu et 

al., 2019), inflammation (Grivennikov et al., 2012; Poullis et al., 2004), and dietary 

constituents (Beyaz et al., 2016; Wang et al., 2018; Yang et al., 2005). Diet in particular 

stands out as an important environmental and lifestyle factor that directly affects intestinal 

regeneration and tumorigenesis. For example, we and others have shown that constituents of 

a Western diet (a diet rich in fat and sugar), such as excess fatty acids (Beyaz et al., 2016; Fu 

et al., 2019; Park et al., 2016), cholesterol (Wang et al., 2016), high-fructose corn syrup 

(Goncalves et al., 2019), as well as low vitamin D (Peregrina et al., 2015), contribute to 

intestinal tumor formation through distinct mechanisms. These different dietary 

interventions mimic aspects of obesogenic diets in humans and increase tumorigenesis. 

Understanding precisely how each one does so will provide novel insights into how early 

cancers form or whether metabolic programs imposed by such diets can be exploited 

therapeutically.

The intestinal epithelial lining is at the frontline of digestion and absorption and is 

maintained by actively cycling Lgr5+ intestinal stem cells (ISCs) that are located at the base 

of intestinal crypts (Barker et al., 2007) and respond to dietary cues (Alonso and Yilmaz, 

2018). These Lgr5+ ISCs reside in a supportive microenvironment, or niche, comprised of 

small-intestine Paneth cells (Rodríguez-Colman et al., 2017; Sato et al., 2011), colonic deep 

secretory cells (Sasaki et al., 2016), stromal immune cells (Biton et al., 2018; Lindemans et 

al., 2015), and mesenchymal cell types (Degirmenci et al., 2018; McCarthy et al., 2020; 

Shoshkes-Carmel et al., 2018) that provide instructive signals to stem cells. Lgr5+ ISCs can 

respond directly or indirectly to diet through their niche. For example, low-calorie diets 

activate Lgr5+ ISCs indirectly via the Paneth cell niche (Igarashi and Guarente, 2016; 

Yilmaz et al., 2012) and directly by engaging a fatty acid oxidation (FAO) program in Lgr5+ 

ISCs (Mihaylova et al., 2018). Ketone bodies, which are terminally oxidized products of 

FAO, mediate some of the direct effects of diet on ISCs by modulating Notch signaling 

(Cheng et al., 2019). Thus, diverse strategies exist that enable ISCs to coordinate tissue 

adaptation with dietary cues.

We and others recently proposed that a pro-obesity high-fat diet (HFD) increases intestinal 

tumorigenesis by inducing many direct changes in Lgr5+ ISCs, which are the cells of origin 

for a majority of early dysplasias in the intestine (Barker et al., 2009; Beyaz et al., 2016; 

Mah et al., 2014). These HFD-mediated alterations in Lgr5+ ISCs include expansion of their 

numbers per crypt, higher proliferation, and enhanced regenerative capacity (Beyaz et al., 

2016), and this expansion in the pool of proliferative ISCs might contribute to how a HFD 

elevates cancer risk. We also demonstrated mechanistically that ISCs from HFD-fed mice 

and organoids exposed exogenously to dietary lipids engage a peroxisome proliferator-

activated receptor (PPAR) transcriptional program and that pharmacologic activation of 

PPARδ with a high-affinity agonist, GW501516 (GW), was sufficient to recapitulate many 
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aspects of the HFD ISC phenotype, including augmentation of their tumorigenic potential, 

thereby linking lipid sensing with stemness and tumorigenicity.

PPARs include a family of lipid-activated nuclear receptors (α, δ, and γ) that form obligate 

heterodimers with the retinoid X receptor (RXR) (Barak et al., 2002; Krey et al., 1993) and, 

upon ligand stimulation, which includes dietary fats or their derivatives, drive PPAR-specific 

transcriptional programs (Barish et al., 2006; Ordentlich et al., 2001). Although our initial 

study (Beyaz et al., 2016) implicated PPARδ signaling in the HFD intestinal phenotype, the 

in vivo necessity of this program remains unsettled. Furthermore, GW has been reported to 

be a highly selective agonist for PPARδ, but it is plausible that some of its effects occur 

through activation of other PPAR family members, requiring in vivo loss-of-function 

experiments to clarify the role of PPARs in the HFD intestine. Finally, PPAR family 

members have overlapping downstream targets (Forman et al., 1997) and, because of 

functional redundancy of PPARs, it may be possible to identify and target common 

downstream effectors that become active in the HFD state for therapeutic purposes.

Intestinal adaptation to a HFD may involve multiple downstream roles of PPAR targets. 

PPARδ, for instance, plays critical roles in intestinal physiology through regulation of lipid 

absorption, cholesterol trafficking, and enteroendocrine cell function (Daoudi et al., 2011; 

Oliver et al., 2001; Poirier et al., 2001). In particular, CPT1A-mediated FAO is a common 

metabolic process strongly activated by the PPAR family members δ and δ (Mascaró et al., 

1998). We observed previously that HFD-derived or GW agonist-treated ISCs and 

progenitors significantly upregulate genes involved in FAO (Beyaz et al., 2016); however, 

the functional role of FAO in mediating aspects of the HFD or PPAR response in ISCs and 

tumors that arise from them is unclear. Here we investigate the necessity of Ppard and Ppara 
and their FAO metabolic program as drivers of ISC adaptation to a HFD and whether HFD-

imposed FAO is a therapeutic vulnerability for the genesis and progression of early intestinal 

adenomas.

RESULTS

PPARδ and PPARα contribute redundantly to the effects of a HFD in ISCs

To determine the in vivo role of Ppard in driving ISC adaptation in response to HFD feeding 

(the macronutrient content is listed in Figure S1A), we generated a Ppardfl/fl; Vil-CreER 
strain to selectively delete Ppard in a tamoxifen-inducible manner in the intestinal 

epithelium. At 6–7 weeks of age, Ppardfl/fl; Vil-CreER (Ppard-iKO) or Ppardfl/fl (wild type 

[WT]) were treated with tamoxifen, and then cohorts were placed on a control diet or HFD 

(Figures 1A and S1A). After 24–28 weeks, small intestinal crypts from control-fed Ppard-

WT and -iKO mice were equally clonogenic in an organoid assay for stemness. However, 

although HFD crypts were more clonogenic than controls, loss of Ppard led to a modest 

decrease (Figure 1B), indicating that PPARδ contributes partially to HFD-stimulated crypt 

clonogenicity (Figures 1B and 1C; Beyaz et al., 2016). Separately, we used an alternate 

deletion strategy where Ppard was ablated after the establishment of HFD-induced obesity 

(Figures S1B and S1C). Loss of Ppard in this model had no effect on crypt clonogenicity 

(Figures S1B and S1C). In contrast to the mild effects of PPARδ on HFD ISC activity in 

organoid assays, long-term Ppard loss prevented expansion and proliferation of OLFM4+ 
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and Lgr5-EGFP+ ISCs in the HFD state and partially restored Paneth cell numbers (Figures 

S1D–S1G). Given that some features of the HFD state, like ISC numbers, but not elevated 

function, are counteracted by Ppard loss, these data raise the possibility that functional 

redundancy among PPAR family members in the HFD state may compensate for loss of 

Ppard.

To explore this possibility in more detail, we assessed how expression of Ppara and Pparg 
and their target genes changed with loss of Ppard in control and HFD intestines (Figure 1D). 

By qRT-PCR and RNAscope in situ hybridization (ISH), deficiency of Ppard led to altered 

expression of Ppara and Pparg transcripts and PPAR targets such as Pdk4, Cpt1a, Mgll, 
Fabp1, and Hmgcs2 in HFD crypts compared with WT controls (Figures 1D, S1H, and S1I). 

We generated Ppardfl/fl; Vil-CreER; Lgr5-eGFP mice, a model that disrupts Ppard in a 

tamoxifen-inducible and intestine-specific manner and allows flow cytometry isolation of 

Lgr5-EGFPhi ISCs or Lgr5-EGFPlow progenitors, to further probe how PPAR targets change 

in sorted control and HFD ISCs or progenitors at the protein level after Ppard loss. Ppard 
loss did not affect the protein abundance of CPT1A and HMGCS2 in Lgr5-EGFP+ ISCs and 

progenitors (Figure 1E), consistent with the notion that other PPARs may be involved in the 

HFD ISC response. However, FABP1 mRNA and protein expression differed with Ppard 
loss on the HFD (Figures 1D and 1E); FABP1 protein levels, but not mRNA levels, respond 

to the HFD in a PPARδ-dependent manner, illustrating that mRNA levels need not dictate 

protein expression and that FABP1 likely undergoes post-transcriptional regulation to 

account for these differences.

Next we turned our attention to Ppara, which, like Ppard, plays a critical role in regulating 

FAO metabolism (Evans et al., 2004). In vivo activation of PPARα for 30 days with an 

agonist, WY-14643 (Kliewer et al., 1994), not only increased expression of PPAR targets but 

also enhanced OLFM4+ and Lgr5-EGFP+ ISC numbers and crypt organoid clonogenicity, 

demonstrating that activated PPARα and PPARδ have similar effects on stem cell activity 

(Figures 1F and S1J–S1L; Beyaz et al., 2016). To test whether Ppara compensated for Ppard 
loss in HFD organoids, we treated control and HFD crypts from WT and Ppard-iKO mice 

with a PPARα inhibitor, GW6471 (Figure S1M; Xu et al., 2002). Notably, treatment with 

the PPARα inhibitor reduced the clonogenicity of HFD Ppard-iKO crypts to control levels 

and had no effect in the control or HFD WT groups (Figure S1M), indicating that PPARα 
and PPARδ are required for elevated HFD crypt function in the organoid assay. To further 

characterize the in vivo necessity of Ppara, we used a previously generated whole-body null 

mouse model (Lee et al., 1995) that was fed a control diet or a HFD. Ppara loss by itself 

mitigated the HFD-enhancing effects on ISC numbers and crypt clonogenicity (Figures S1N 

and S1P) but had no effect on their proliferation (Figure S1O). These findings indicate that 

PPARδ and PPARα have distinctive and redundant roles in supporting intestinal progenitor 

cell adaptation to a HFD.

To further examine the effects of Ppard and Ppara loss in vivo, we generated compound mice 

with inducible deletion of intestinal Ppard on a Ppara whole-body null background (Lee et 

al., 1995), Ppardfl/fl; Pparanull; Vil-CreER (Ppard/a-iKO). We then treated WT and 

compound mutant (Ppard/a-iKO) mice with tamoxifen and established cohorts on a control 

diet or HFD for 24 weeks prior to analysis (Figures 1G and S1A). As observed with the 
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Ppara mutant and inhibitor studies, in vivo loss of Ppara and Ppard was necessary to prevent 

increased crypt clonogenicity (Figure 1K) in acute and chronic loss of intestinal Ppard in the 

Ppara-null background. In addition, loss of both PPARs blocked expansion of OLFM4+ ISCs 

in vivo (Figures 1H and 1I) as well as induction of the PPAR program in Lgr5-EGFPhi ISCs 

and GFPlow progenitors, as seen in immunoblots or transcriptional analysis (Figures 1J, S1T, 

and S1U). ISC proliferation and Paneth cell numbers were also maintained at control WT 

levels (Figures S1R and S1S). Utilizing Ppardfl/fl; Pparanull; Lgr5-CreER; Rosa-LSL-
LacZfl/fl engineered mice to further test the in vivo role of Ppars on ISCs, we found that loss 

of Ppard and Ppara reduced lineage output specifically in the HFD state (Figures S1V and 

S1W). Last, compound Ppard and Ppara loss prevented HFD crypt survival and regeneration 

after a lethal dose of radiation (Figures S1X and S1Y). Our data illustrate that PPARδ and 

PPARα overlappingly contribute to the HFD response in intestinal stem and progenitor cells.

In our prior study (Beyaz et al., 2016), we had functionally validated that the PPARδ agonist 

GW was sufficient to emulate many of the effects of the HFD on ISCs. However, given that 

PPARδ and PPARα play redundant roles in the HFD ISC response, some effects of GW may 

act through stimulation of PPARα. To address this scenario, we treated WT, Ppard-iKO, 

Ppara-null, and Ppard/a-iKO organoids with GW for 8 days and performed RNA sequencing 

to probe the specificity of GW in engaging a PPAR or FAO transcriptional program (Beyaz 

et al., 2021). Although GW treatment in WT and Ppara-null mice (genotypes with intact 

PPARδ) led to strong gene set enrichment for signatures related to PPAR signaling pathways 

and lipid/fatty acid metabolism, Ppard deficiency reduced, but did not entirely eliminate, 

these signatures as double Ppard/a-deficiency did, nor did Ppard deficiency block the 

increase in PPAR transcriptional targets (Figures S1Z–S1BB). These findings indicate that at 

least some of GW’s activity involves PPARα.

FAO drives the ISC HFD and PPAR response

Upon ligand stimulation, PPARδ and PPARα induce a robust transcriptional program that 

drives fatty acid uptake and breakdown through FAO (Finck et al., 2002; Kersten et al., 

1999; Wang et al., 2003). To understand the extent to which HFD activates a FAO 

transcriptional program (Figure 2A), we performed single-cell RNA sequencing on control 

and HFD crypts extracted from three regions of the intestine: the proximal and distal small 

intestine and the colon (Figures S2A–S2C). We confirmed that PPAR target and FAO genes 

are highly enriched throughout the intestine in these HFD ISC populations compared with 

controls (Figures 2B and S2D). In addition, through liquid chromatography-mass 

spectrometry (LC-MS), we found that metabolites such as acetylcarnitine and β-

hydroxybutyrate (BOHB), known products of FAO, were more abundant in HFD crypts 

(Figures 2C and 2D). We then exposed HFD and control crypts to tritium-labeled palmitate 

to measure production of tritiated H2O, which serves as a proxy for FAO rates in cells 

(Manning et al., 1990; Nieman et al., 2011), and observed that HFD crypts were nearly 2-

fold more capable of FAO than controls (Figure 2E). Given that HFD primes for FAO 

metabolism, we wanted to find out how the cellular capacity of the crypt to use other fuel 

sources is affected using isotope-labeled substrates for glucose and glutamine. We incubated 

control and HFD crypts with U13C-glucose or U13C-glutamine and then measured formation 

of labeled downstream metabolites. Interestingly, with U13C-glucose, we observed that HFD 
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crypt cells incorporated fewer carbons into lactate and citrate than controls, supporting the 

notion that glucose metabolism is diminished in HFD ISCs and progenitors (Figures S2E–

S2I). However, neither diet showed a preference for U13C-glutamine as an alternate fuel 

source (Figures S2J–S2L). These data demonstrate that HFD crypts increase FAO and 

concomitantly decrease glucose oxidation.

Given that CPT1A, the rate-controlling enzyme in FAO, is highly expressed in HFD ISCs by 

gene expression (Figure 2B), mRNA ISH (Figure 2F), and protein immunoblots (Figures 1E 

and 1J), we wanted to find out whether FAO inhibition would attenuate the HFD-induced 

increase in organoid formation. We incubated crypts from control and HFD-fed mice in 

organoid assays with increasing concentrations of etomoxir, an irreversible inhibitor of 

CPT1A, to ascertain the role of FAO as an effector of the HFD response (Figures 2H and 2I). 

Although etomoxir had no effect on the ability of control crypts to form organoids, treatment 

with etomoxir dampened HFD crypt clonogenicity in a dose-dependent manner (Figures 2G 

and 2H). Similarly, PPARδ (GW) or PPARα (WY-14643, WY) agonist treatment in the 

organoid assay boosted FAO rates and sensitivity to etomoxir-mediated FAO inhibition 

(Figures S2M and S2N), highlighting the functional importance of FAO as a downstream 

target of the HFD-PPAR axis. Addition of octanoate, an 8-carbon fatty acid that bypasses 

CPT1A-mediated entry into mitochondria, counteracted the inhibitory effects of etomoxir on 

HFD crypt clonogenicity and Lgr5-eGFP+ organoids (Figures 2I–2K). Although exogenous 

octanoate had no additional effect on HFD crypt clonogenicity, likely because these crypts 

are already in a state of elevated FAO, stimulation of control crypt organoid formation with 

exogenous octanoate was observed (Figures 2I–2K and S2O–S2Q). In contrast, lactate or 

pyruvate, glycolytic metabolites that feed into the TCA cycle to undergo oxidation, fail to 

alleviate the effects of FAO inhibition on HFD crypt clonogenicity (Figure 2I).

CPT1A-mediated FAO promotes HFD ISC stemness

Next we sought to investigate the in vivo necessity of FAO metabolism in control and HFD 

ISCs using tamoxifen-inducible and intestine-specific Cpt1afl/fl; Vil-CreER; Lgr5-eGFP 
mice (Figure 3A). Consistent with our prior study (Mihaylova et al., 2018), acute deletion of 

Cpt1a for 4 weeks in control intestines had no effect on OLFM4+ or Lgr5-EGFP+ ISC 

numbers (Beyaz et al., 2021; Figures 3B–3E) or on stem and progenitor cell proliferation, as 

assessed with a 4-h pulse of bromodeoxyuridine (BrdU+) (Figures 3D and S3A). However, 

Cpt1a deletion in HFD intestines restored ISC numbers (Figures 3B and 3D) and 

proliferation to control levels (Figures 3D and S3A) and blocked the organoid-enhancing 

effects of a HFD on crypts (Figure 3F) and sorted >Lgr5-EGFPhi ISCs (Figure 3G). Using a 

Lgr5-CreER; Rosa-LSL-LacZfl/fl lineage tracer, loss of Cpt1a reduced β-galactosidase (β-

gal) lineage tracing from control and HFD stem cells but with a greater reduction in HFD 

crypts (Figures S1V and S1W). In addition, long-term Cpt1a loss (Figures S3E and S3F) 

prior to initiation of a HFD also blunted the regenerative effects of a HFD on crypts in the 

organoid assay (Figure S3K) and following injury from ionizing radiation (Figures S3L and 

S3M), indicating that HFD-induced FAO in ISCs and progenitors promotes recovery after 

damage. Acute (1 month) and long-term (6–7 months) Cpt1a loss had mild effects on 

intestinal differentiation, as assessed by quantification of Lysozyme+ Paneth cell numbers, 

ChromograninA+ (CgA+) neuroendocrine cell, or Alcian blue+ goblet cell numbers (Figures 
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S3B–S3D and S3H–S3J). Although a HFD decreases Paneth cell numbers, as we noted 

previously (Beyaz et al., 2016), it does so in a CPT1A-dependent manner because long-term 

Cpt1a loss rescues this decline (Figure S3H). Finally, Cpt1a loss prevented expansion and 

proliferation of stem/progenitor cells in the HFD crypt (Figures S3A and S3G).

As expected, loss of Cpt1a in HFD crypts led to many metabolic changes compared with 

controls. FAO from surplus free fatty acids (FFAs) provided by the HFD, for example, 

generates acetyl-coenzyme A (CoA), which can feed into ketogenesis and the TCA cycle 

(Figure 2A). Loss of Cpt1a led to decreased FAO in HFD crypts (Figure S3Q) and resulted 

in significant reductions in levels of FAO-associated metabolites, such as acetylcarnitine and 

BOHB (Figures 3H and S3N). Moreover, the abundance of the TCA intermediate citrate was 

lower in HFD Cpt1a-iKO crypts compared with controls, presumably due to loss of FAO-

derived acetyl-CoA (Figure S3P), whereas pyruvate levels increased concomitantly, 

representing an adaptation to decreased flux through the TCA cycle (Figure S3O). Notably, 

although loss of Cpt1a dramatically diminished crypt BOHB levels, it also led to a 

compensatory boost in HMGCS2 protein, independent of diet, in sorted EpCAM+ intestinal 

epithelial cells, ISCs, and progenitors (Figure 3I). A possible explanation for this 

observation is that FAO disruption through Cpt1a deletion reduces acetyl-CoA feeding into 

ketogenesis, which accounts for the diminishment of BOHB, whereas FFAs continue to 

stimulate sensors such as PPARδ and PPARα to transcribe genes involved in FAO and lipid 

metabolism (Figures S3R and S3S), including HMGCS2 (a known PPAR target) (Figure 3I). 

This upregulation of HMGCS2, after FAO disruption, permits crypt BOHB levels to remain 

stable on a control diet and to maintain at least basal levels in HFD crypts (Figure S3N). 

This finding is consistent with our recent studies implicating BOHB as a key metabolite that 

regulates intestinal stemness and dietary responses (Cheng et al., 2019; Gebert et al., 2020). 

Overall, these findings support the notion that a shift toward FAO in a HFD accounts for 

many of the metabolic and functional changes that occur in ISCs.

Intestinal tumors that arise on a HFD are sensitive to FAO inhibition

A pro-obesity HFD induces many changes in intestinal stem and progenitor cells, such as 

expanding their numbers, proliferation, and function by engaging a robust PPAR-FAO 

program. It is possible, for example, that tumors arising from ISCs in a HFD state retain a 

similar sensitivity to FAO inhibition as their non-tumor counterparts, raising the question of 

whether a HFD creates a therapeutic opportunity to exploit FAO dependencies in these 

tumors. To assess this possibility, we utilized conditional Apcfl/fl; Lgr5-eGFP-IRES-CreER 
(Apc-iKO) mice where tamoxifen administration leads to loss of both copies of Apc in 

Lgr5+ ISCs and rapid tumor formation, permitting study of early intestinal tumor formation 

in response to diet (Figure 4A; Barker et al., 2009; Beyaz et al., 2016; DeClercq et al., 

2015).

We placed Apc-iKO mice on a control or HFD for 1 month, and then induced Apc excision 

with a single tamoxifen injection. As expected, HFD feeding dramatically accelerated 

mortality in this model compared with the control condition (Figure 4B; Beyaz et al., 2016; 

Park et al., 2016). Many lines of evidence indicate that HFD-stimulated FAO mediates this 

accelerated tumorigenesis. First, Apc-null tumors and Lgr5-EGFP+ tumor cells from HFD 
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mice demonstrate heightened expression of Cpt1a and Hmgcs2 by ISH and immunoblots 

relative to controls (Figures S4A and S4B). Second, HFD tumors, as determined 4 days after 

Apc loss in Apcfl/fl; Vil-CreER mice (Figures S4B and S4C) and as predicted from the 

expression of Cpt1a and Hmgcs2, have higher levels of FAO-associated metabolites like 

acetylcarnitine and BOHB (Figure 4C). Third, loss of Cpt1a in mice on a HFD significantly 

reduced the number and size of spontaneous Apc-null adenomas formed in a loss-of-

heterozygosity model compared with Cpt1a-WT control counterparts (Figures S4K and 

S4L). Fourth, genetic disruption of Cpt1a in Cpt1afl/fl; Apcfl/fl; Lgr5-eGFP-IRES-CreER 
mice, where a single tamoxifen dose concomitantly deletes Cpt1a and Apc in Lgr5+ ISCs, 

dramatically dampened the numbers and area of β-catenin-positive tumors 20 days after 

tamoxifen administration in mice on an HFD for 7 weeks, whereas there was no effect on 

control diet tumors (Figures 4D–4F and S4D). Furthermore, HFD tumors were enriched for 

greater numbers of Cpt1a-competent escapers than what was observed in the controls, 

highlighting an important role of FAO in HFD tumor maintenance (Figures S4E and S4F). 

Last, to address how Cpt1a dampens HFD-mediated tumorigenesis, we administered three 

doses of tamoxifen over 8 days to Apc-iKO mice to maximize Cpt1a deletion. Acute Cpt1a 
loss reduced HFD-stimulated proliferation, as measured by Ki67, which also corresponded 

to decreased DNA damage and apoptosis, as assessed by γH2AX and C-Casp3 

immunofluorescence, respectively (Figures S4G–S4J). Although these data highlight that a 

HFD boosts adenomatous proliferation in a CPT1A-dependent manner, it is unclear whether 

the decrease in DNA damage or apoptosis with Cpt1a loss in an HFD stems indirectly from 

reduced proliferation or tumor size or directly from Cpt1a loss itself.

Although co-deletion of Cpt1a and Apc in Lgr5+ HFD ISCs reduced tumor initiation and 

burden when FAO was disrupted genetically at the beginning of tumor formation, we turned 

our focus to investigating whether FAO inhibition in established adenomas would also have 

growth-retarding effects in a HFD. To test this scenario, we induced Apc loss in Apc-iKO 

mice, maintained cohorts on a control diet or HFD for 20 days, and then mice were injected 

with daily doses of etomoxir starting on day 11 (Figure 4G). Analogous experiments were 

also performed with PPARδ and PPARα agonists (GW and WY, respectively) to understand 

the role of PPARs in this process (Figure 4G). While HFD and PPARα and PPARδ agonist 

treatments boosted tumor numbers (Figure S4N), etomoxir had no effect on adenoma 

multiplicity because tumors were initiated prior to etomoxir treatment. Etomoxir, however, 

did blunt the growth-enhancing effects of HFD and GW, but not WY, on adenoma size 

(Figures 4H, 4I, S4M, and S4N), indicating that the HFD and these agonists mediate some 

of their tumorigenic effects via FAO.

To test the effect of decreased FAO in HFD-induced adenomas in the colon (Figure 2B), we 

generated Apcfl/fl; Cpt1afl/fl; Vil-CreER and, similarly, Apcfl/fl; Ppardfl/fl; Pparanull; Vil-
CreER mice and injected 4-OH tamoxifen using an endoscopy-guided approach to induce 

adenoma formation specifically in the distal colon (Figures 4J and 4K). Ppard; Ppara loss in 

colonic adenomas significantly diminished tumor size in a HFD-dependent manner, 

analogous to their roles in actuating the HFD response in intestinal stem and progenitor cells 

(Figure 4K). Cpt1a loss decreased tumor size irrespective of diet, but there was a much 

larger reduction on the HFD, consistent with the notion that HFD tumors are more sensitive 

to Cpt1a inhibition (Figure 4K). Furthermore, Cpt1a-null tumor cells, which were strongly 
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selected against (Figure S4O), were less proliferative than their Cpt1a competent 

counterparts (Figure S4P). These data demonstrate that a HFD drives intestinal 

tumorigenesis in part by shifting tumor cell metabolism toward FAO metabolism and creates 

a therapeutic opportunity for tumor prevention or treatment by targeting the FAO pathway in 

the HFD state.

DISCUSSION

Here we propose that a HFD enhances intestinal stemness and tumorigenicity by engaging a 

PPAR-FAO program. Although we have suggested previously that PPARδ is the main PPAR 

family member that underlies the HFD ISC response, we now modify this view because 

PPARα also contributes to ISC regulation in a pro-obesity high-lipid environment. 

Compensation of PPARδ loss by PPARα is compatible with an earlier study that proposed 

that PPARδ inhibits PPARα activity, underscoring the complexity of PPAR biology in 

physiological states such as HFD-induced obesity (Shi et al., 2002). Because it can be 

therapeutically challenging to inhibit this redundancy in HFD ISCs, both of these PPARs 

converge on and elicit a robust FAO program where pharmacologic or genetic disruption of 

CPT1A-mediated FAO blunts the HFD-enhancing effects on ISCs or tumors that arise from 

them (Figure 4L). Disruption of this PPAR-FAO axis has minimal effects on baseline 

intestinal homeostasis (Figures 1 and S1), in contrast to other regulators of lipid metabolism, 

such as PRDM16 and HNF4α/γ (Chen et al., 2020; Stine et al., 2019). One possible 

explanation for this discrepancy is that PPARs, by sensing lipid availability, permit ISCs to 

adapt to diverse dietary states, especially ketotic states induced by an HFD, fasting, and 

ketogenic diets. PPARs, in the setting of a HFD, augment FAO in ISCs as a response to 

surfeit dietary lipids, but their genetic loss does not compromise basal FAO or ISC function 

(Figures 1J and 1K). Different from PPARs, PRDM16 and HNF4α/γ play an obligatory role 

in regulating basal FAO because their loss significantly hampers intestinal stemness in a 

FAO-dependent fashion (Chen et al., 2020; Stine et al., 2019).

Another important implication of our work is in regard to the role of FAO in stem cell 

biology and intestinal tumorigenesis (Shapira and Christofk, 2020). A PPARδ-FAO axis is 

necessary for maintaining the HSC pool (Ito et al., 2012), and FAO governs neural 

progenitor quiescence (Knobloch et al., 2017). It has also been proposed that limiting 

mitochondrial pyruvate metabolism by deletion of mitochondrial pyruvate carrier 1 (Mpc1) 

in the intestine and hair follicles promotes stemness (Flores et al., 2017; Schell et al., 2017). 

Subsequently, Bensard et al. (2020) have shown that loss of Mpc1 leads to a pro-tumorigenic 

phenotype (Bensard et al., 2020). A shared feature of Mpc1 loss and HFD-activated PPAR 

signaling is that both interventions restrict the participation of pyruvate in the TCA cycle 

and compensate by boosting FAO. With this metabolic shift, Mpc1 loss, like a HFD, 

enhances the contribution of fatty-acid-derived acetyl-CoA to the TCA cycle in ex vivo 
cultures (Schell et al., 2017). We have shown here and previously (Mihaylova et al., 2018) 

that FAO inhibition blunts the ISC-enhancing effects of a HFD and PPAR agonists, but 

deciphering how much of the ISC and pro-tumorigenic phenotype associated with Mpc1 
deletion occurs though FAO versus other sequelae of altered carbohydrate metabolism will 

be an important future endeavor.
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An intriguing similarity of fasting (Mihaylova et al., 2018) and a HFD is that both 

interventions augment ISC function through engagement of a PPAR-FAO program. 

However, fasting and HFD are believed to have very different effects on health and cancer 

incidence. Although both diets strongly induce FAO for utilization of circulating FFAs as an 

energy source, the extent of fatty acid saturation of the mitochondrial FAO machinery is 

quite different between these two diets, which may ultimately affect tumor formation. In a 

HFD, ISCs are exposed to surplus amounts of FFAs, whereas in fasting, ISCs need to 

scavenge energy from a limited quantity of FFAs to satisfy their energy needs. In a HFD, 

excessive amounts of FFAs likely overwhelm the mitochondria and lead to generation of 

reactive lipids and reactive oxygen species that have a cumulative deleterious effect over 

time, which does not occur with fasting, where FFAs are much less abundant.

A remaining question is which factor(s) downstream of FAO contribute to the ISC-

enhancing effects of FAO. We recently discovered that the ketone body BOHB plays a part 

in regulating ISC homeostasis and their dietary responses. BOHB is a terminally oxidized 

lipid byproduct of FAO that has energetic and signaling properties (Newman and Verdin, 

2017; Puchalska and Crawford, 2017) and further serves as a class 1 histone deacetylase 

inhibitor to reinforce the NOTCH program in ISCs (Cheng et al., 2019). BOHB levels 

increase dramatically in ISCs from ketotic states induced by HFDs (Figure 2D), fasting 

(Mihaylova et al., 2018), and ketogenic diets (KDs) (Cheng et al., 2019), and all of these 

diets are associated with improved ISC function. Future studies will need to delineate the 

precise roles of mitochondrial activity and ketone bodies, such as the energetic and NOTCH 

signaling properties of BOHB, in accounting for the similarities and differences between 

HFD, fasting, and KD regimens on intestinal stemness and tumorigenicity.

From a therapeutic perspective, the precise role of Ppard in intestinal tumorigenesis has been 

a matter of debate, in part because of the commonly used agonist GW and different genetic 

models utilized to model Ppard loss, the latter of which has been reviewed previously 

(Beyaz and Yilmaz, 2016; Wagner and Wagner, 2020). For example, GW treatment 

accelerates intestinal tumorigenesis in an Apcmin model (Gupta et al., 2004) and promotes 

metastasis in orthotopic colon cancer cell line models (Wang et al., 2019). Based on our 

initial work showing that GW recapitulates the HFD ISC response (Beyaz et al., 2016), we 

suggested that PPARδ signaling coupled a HFD with enhanced intestinal stemness. 

However, as we find here, GW also has PPARα-stimulating properties (Figures S1Z–S1BB), 

raising the possibility that at least some of its effects on ISCs and early tumors are through 

PPARα. A previous study demonstrated that PPARα in loss-of-function and agonist 

treatment experiments enhances and attenuates DSS/chemically-induced AOM intestinal 

tumorigenesis, respectively, which is different from what we observe in the HFD Apc loss-

of-function model (Luo et al., 2019). One possibility is that DSS/AOM promotes 

tumorigenesis by not only transforming intestinal epithelial cells but also by inciting 

inflammation and that PPARα has a protective role in inflammation-driven tumorigenesis, a 

process relevant to inflammatory bowel disease. Future lines of investigation will need to 

decipher how PPARs mediate intestinal tumorigenesis in inflammation and obesity and in 

tumors with complex genetics beyond that achieved with DSS/AOM or Apc loss.
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Importantly, induction of FAO is a shared downstream and targetable feature of the HFD-

induced PPARδ/α program that can be exploited to ameliorate the stemness and cancer 

consequences of this obesity model. Wang et al. (2019) found that a HFD-activated Nanog 
program facilitates colon cancer metastasis in a PPARδ-dependent manner (Wang et al., 

2019). It is possible, for example, that FAO actuates some of the downstream effects of 

Nanog and offers a therapeutic metabolic target for colon cancer progression and metastasis 

in this dietary model. Additionally, epithelial FAO may have non-cell-autonomous effects 

that influence the tumor microenvironment in a HFD state, leading to disease progression 

(Ringel et al., 2020). Finally, as interest in exploiting diet-induced metabolic vulnerabilities 

grows and as our understanding of pathways that govern these approaches expands (Kanarek 

et al., 2020; Lien and Vander Heiden, 2019; Tajan and Vousden, 2020), exploration of 

whether FAO inhibition can be leveraged therapeutically in HFD or PPAR agonist-

stimulated tumors will be compelling to pursue.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by Ömer H. Yilmaz (ohyilmaz@mit.edu, (Ö.H.Y.)).

Materials availability—All in-house generated mouse strains generated for this study are 

available from the Lead Contacts with a completed Materials Transfer Agreement.

Data and code availability—RNA-seq and scRNA-seq data generated for this study are 

available at Gene Expression Omnibus (GEO) with the following accession numbers 

GSE151047, GSE164832.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice were under the husbandry care of the Department of Comparative Medicine in the 

Koch Institute for Integrative Cancer Research. All procedures were conducted in 

accordance with the American Association for Accreditation of Laboratory Animal Care and 

approved by MIT’s Committee on Animal Care. The following strains were obtained from 

the Jackson Laboratory: Lgr5-eGFP-IRES-CreERT2 (strain name: B6.120P2-Lgr5tm1(cre/

ERT2)Cle/J, stock number 008875), Rosa26-LSL-lacZ (strain name: B6.129S4-

Gt(ROSA)26Sortm1Sor/J, stock number 003474), Ppardfl/fl (B6.129S4-Ppardtm1Rev/J, stock 

number 005897), and Ppara−/− (129S4/SvJae-Pparatm1Gonz/J, stock number 003580). 

Cpt1afl/fl mouse strain has been previously described (Schoors et al., 2015). Villin-CreERT2 

mouse strain was a gift from Sylvie Robine and was previously described (el Marjou et al., 

2004). Apcfl/fl(exon 14) (Apcfl/fl) has been previously described (Colnot et al., 2004). The 

following strains were bred in-house: 1) Ppardfl/fl; Ppara−/−; Villin-CreERT2; Lgr5-eEGFP-

IRES-CreERT2, 2) Ppardfl/fl; Ppara−/−; Villin-CreERT2, 3) Cpt1afl/fl; Villin-CreERT2; Lgr5-

eGFP-IRES-CreERT2, 4) Cpt1afl/fl; Apcfl/fl; Lgr5-eGFP-IRES-CreERT2, Rosa26-LSL- 

LacZfl/fl,5) Apcfl/fl; Lgr5-eGFP-IRES-CreERT2; Rosa26-LSL-LacZfl/fl,6) Ppardfl/fl; Ppara
−/−; Apcfl/fl; Villin-CreERT2, 7) Cpt1afl/fl; Apcfl/fl; Villin-CreERT2, 8) Apcfl/fl; Villin-

CreERT2, 9) Ppardfl/fl; Ppara−/−; Lgr 5-eEGFP-IRES-CreERT2; Rosa26-LSL-LacZfl/fl, 10) 
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Cpt1afl/fl; Lgr5-eEGFP-IRES-CreERT2; Rosa26-LSL- LacZfl/fl, 11) Ppardfl/fl; Villin-

CreERT2, 12) Ppardfl/fl; Villin-CreERT2; Lgr5+-eEGFP-IRES-CreERT2,13) Ppara−/−; Lgr5-

eEGFP-IRES-CreERT2, 14) Apcfl/+; Lgr5-eGFP-IRES-CreERT2; Rosa-LSL-LacZfl/fl,15) 

Apcfl/+; Cpt1afl/fl; Lgr5-eGFP-IRES-CreERT2; Rosa-LSL-LacZfl/fl. Long-term high-fat diet 

(containing 60% kcal from fats (Research Diets D12492)) was provided to male and female 

mice at the age of 8-12 weeks for 6 to 8 months. Control mice were provided either standard 

chow (LabDiet, 5P76) or a purified Control diet (10 kcal% fats, matching sucrose, Research 

Diets, D12450J). All mice were sex and aged matched, and provided food ad libitum. 
PPARδ agonist GW501516 (Sigma Aldrich, SML1491) was reconstituted in DMSO at 20 

mg/ml and diluted 1:10 in a solution of 5% PEG400 (Sigma Aldrich, P4338), 5% Tween80 

(Sigma Aldrich, P4780), 90% water for daily intraperitoneal injection for 30 days. PPARα 
agonist WY-14643 (Sigma Aldrich, C7801) was reconstituted in water at 20 mg/ml and 

diluted in the same injection solution described above. Floxed alleles were excised following 

intraperitoneal injection of tamoxifen suspended in 1 part 100% ethanol: 9 parts sunflower 

seed oil (Spectrum S1929) at a concentration of 10 mg/ml and dosed at 100mg/kg. Mice 

harboring conditional alleles were administered tamoxifen three times within one week 

unless otherwise specified. BrdU (Sigma Aldrich, 19-160) was prepared at 10 mg/ml in PBS 

and injected at 100 mg/kg 4 hours prior to harvesting tissue with the exception of induced 

colon tumors in which the time interval between injection and collection was 1 hour.

METHOD DETAILS

Crypt isolation and culture—Small intestines were removed, flushed with PBS−/−(no 

calcium, no magnesium), opened laterally, gently wiped to remove mucus layer and cut into 

~10cm sections. Intestine pieces were rinsed 3 times and incubated at 4°C in PBS−/− + 10 

mM EDTA for 45 min. Crypts were then mechanically separated from the connective tissue 

by shaking, and filtered through 70μm mesh into a 50 mL conical tube to remove villi and 

tissue fragments. Isolated crypts were counted and embedded in 3.5:6.5 media: Matrigel 

(Corning 356231 growth factor reduced) mixture at 5-10 crypts per μl and cultured in a crypt 

culture medium modified from Sato et al. (2009). Unless otherwise described, crypts were 

grown in Advanced DMEM (GIBCO, 12491015) supplemented with EGF 40 ng/ml 

(Peprotech, 315-09), Noggin 200 ng/ml (Peprotech 250-38), R-Spondin 500 ng/ml 

(Peprotech, 315-32), N-acetyl-L-cysteine 1 μM (Sigma Aldrich, A9165), B27 1x (Life 

Technologies, 17504044), Chir99021 1 μM (LC Laboratories, C-6556), Y-27632 

dihydrochloride monohydrate 10 μM (Sigma Aldrich, Y0503). Intestinal crypts were plated 

in 10 (5 μl) droplets of Matrigel and placed on flat bottomed 48 (96) well plates (Olympus 

25-108 (48) 25-109 (96)) and allowed to solidify for 15 min in a 37°C incubator. 250/150 μL 

of crypt medium was added to each well and maintained at 37°C in a humidified incubator at 

5% CO2. Crypt medium was changed every three days. Clonogenicity (colony-forming 

assay) was assessed on day 3 or as specified. Etomoxir in PBS (0 –100 μM, Sigma Aldrich, 

E1905) was added to the cultures 12 hours after plating, media was exchanged on day 3 and 

clonogenicity assessed on day 5. PPARα antagonist GW6471 (Tocris, 4618) was 

reconstituted in DMSO and provided to culture at 1 μM. For the carbon substrate 

supplementation experiments, basal media was RPMI (GIBCO, no glucose, 11879020) 

supplemented with 5mM glucose (Sigma Aldrich, D7021), the same growth additives as 

mentioned above for crypt culture, and one of the following carbon sources: sodium 
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octanoate (1 mM, Sigma Aldrich, C5048 sodium pyruvate (500 μM, Sigma Aldrich, P8574), 

or sodium lactate (5 mM, Sigma Aldrich, L7022) were added to respective wells of culture 

with or without Etomoxir (37.5 μM) in a 96 well plate for 4 days. Organoid images were 

acquired on Nikon Ti Eclipse epifluorescence microscope equipped with LCD light source 

(lumencor light engine® SOLA, SM 5-LCR-SA) and sCMOS camera (Andor Zyla 4.2 

cMOS).

Flow isolated Lgr5-eGFPhi ISCs were centrifuged at 250 g for 5 minutes, re-suspended in 

the appropriate volume of crypt medium and seeded onto 15 μL of Matrigel (Corning 

356231 growth factor reduced) containing 1 μM JAG-1 protein (Anaspc, AS-61298) in a flat 

bottom 48-well plate (Olympus, 25-108).

qRT-PCR and in situ hybridization—Approximately 10,000 crypts were resuspended in 

400 μL of TRI Reagent (Sigma Aldrich, 93289) and total RNA was isolated according to the 

manufacturer’s instructions. RNA was converted to cDNA using qScript cDNA SuperMix 

(Quantabio, 95048-100). qRT-PCR reaction was performed using diluted cDNA (1:20) 3 

wells with SYBR green fast mix (Quantabio, PerfeCTa, 95072-012) on a Roche lightcycler 

(Roche, LightCycler 480 II). Primers used are described on the Key resources table.

Single molecule in situ hybridization was performed using Advanced Cell Diagnostics 

RNAscope 2.5 HD Detection Kit. The in situ hybridization probes used in this study are as 

follows: Mm-Cpt1a (Ref 443071), Mm-Pparα (Ref 454051).

Immunoblotting—The following antibodies were used: mouse monoclonal anti-Cpt1a 

(1:500(sorted), (1:1000crypt lysates), Abcam ab128568), rabbit monoclonal anti-HMGCS2 

(1:500(sorted), 1:1000(crypt lysates), Abcam, ab137043), rabbit monoclonal anti-FABP1 

(1:1000, CST, 13368), monoclonal rabbit anti-PDK4 (1:1000, Abcam, ab214938), rabbit 

monoclonal γ-tubulin (1:1000, Sigma-Aldrich, T5198) and monoclonal anti-rabbit total H3 

(1:3000, CST 4449S).

Lgr5-eGFPhi ISCs, Lgr5-eGFPlow progenitors, or EpCAM+ cells were sorted directly into 

6X Laemmli sample buffer (Alfa Aesar, J61337) and boiled for 5 minutes. Either 10,000 

cells were loaded per sorted sample or 10ug of crypt lysates were loaded per sample onto a 

4%–12% gradient gel, transferred on to PVDF membrane (Immobilon-P transfer, Millipore, 

ipvh00010), and analyzed using IgG-HRP antibodies (1:3000, CST, 7076, 7074) and 

Advansta WesternBright Sirus ECL detection kit (K12043D20).

Immunohistochemistry (IHC) and immunofluorescence (IF)—Tissues were fixed 

in 10% formalin, paraffin embedded and sectioned in 4-5micron sections as previously 

described (Yilmaz et al., 2012). Antigen retrieval was performed using Borg Decloaker RTU 

solution (Biocare Medical, BD1000G1) and a pressurized Decloaking Chamber (Biocare 

Medical, NxGen). Antibodies and respective dilutions used for immunohistochemistry are as 

follows: rabbit monoclonal anti-OLFM4 (1:10,000, CST, 39141), rabbit monoclonal anti-

GFP (1:1000, CST, 2956S), mouse monoclonal anti-β-catenin (1:200, BD Biosciences, 

610164), rat anti-BrdU (1:2000, Abcam 6326), rabbit polyclonal anti-lysozyme (1:2000, 

Thermo RB-372-A1), rabbit polyclonal anti-ChromograninA (1:4000, Abcam 15160), and 
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rabbit polyclonal anti-KI67 (1:4000, Abcam, ab15580). Biotin-conjugated secondary donkey 

anti-mouse, anti-rabbit, or anti-rat antibodies were used (1:500, Jackson ImmunoResearch). 

Vectastain Elite ABC immunoperoxidase detection kit (Vector Laboratories, PK6100) was 

followed by Signalstain® DAB substrate kit for visualization (CST, 8049S). All antibody 

dilutions were performed in Signalstain® Antibody Diluent (CST, 8112L). The following 

primary antibodies were used for immunofluorescence: rabbit monoclonal anti β-catenin 

(1:500, Abcam, 32572), mouse monoclonal anti-CPT1a (1:250, Abcam, ab128568), rat 

Anti-BrdU (1:2000, Abcam ab6326), or rabbit cleaved caspase 3 (Asp 175) (5A1E) (1:1000, 

CST, 9664S). Alexa Fluor secondary antibodies, anti-mouse 488, anti-rabbit 568, and anti-

rat 594, were used for visualization. Tissue was mounted using Invitrogen Prolong Gold 

mounting medium containing DAPI. Images were acquired using a 20x objective (Nikon 

Plan Apo) using a Nikon Eclipse 90i upright microscope equipped with a Hamamatsu Orca-

ER CCD camera, and APC line 1200 light source.

Isolation of ISCs and flow cytometry—Following crypt isolation, the crypt 

suspensions were pelleted (100 g, 5 min, 4°C) and supernatant was discarded. Crypts were 

resuspended in TrypLE (GIBCO, no phenol red, 12604039) and dissociated into individual 

cells by warming crypts in water bath at 32°C for 60 s. Dissociated single cells were treated 

with the following antibody cocktail for flow cytometry analysis: CD45-PE (eBioscience, 

12-0451-83), CD31-PE (Biolegend, 102514), Ter-119PE (Biolegend, 116208), CD24-Pacific 

Blue (Biolegend, 101820), CD117-APC/Cy7 (Biolegend, 105826), and EpCAM-APC 

(eBioscience, 17-5791-82). 7AAD (Invitrogen, A1310) was used a viability dye to exclude 

dead cells from the analysis. ISCs were isolated as Lrg5-eGFPhiEpCAM
+CD24low/−CD31−Ter119−CD45−7AAD−. eGFPlow progenitors were isolated as Lrg5-

eGFPlowEpCAM+CD24low/−CD31−Ter119−CD45−7AAD−. Cells were sorted using a BD 

FACS II SORP cell sorter.

Loss of heterozygosity—Apcfl/+; Lgr5-eEGFP-IRES-CreERT2; ± Cpt1afl/fl mice were 

injected with tamoxifen (100mg/kg) 3 times and placed on either High Fat or Control diet 

for 6 months. Upon tissue collection, small intestines were flushed, cut in half, fixed in 10% 

formalin, paraffin embedded, and sectioned into 4-5 micron sections. Sections were 

subsequently stained for β-catenin (BD Pharmagen) to enumerate adenomatous legions and 

CPT1a (Abcam) to identify the contribution of CPT1a null clones in the adenomas.

Lineage tracing analysis—The protocol for lineage tracing has been previously 

published (Barker and Clevers, 2010). In brief, mice harboring Lgr5-eEGFP-IRES-

CreERT2; Rosa-LSL-LacZ were injected with tamoxifen (100mg/kg) 72 hours prior to 

sacrifice. The small intestine was removed and 5 cm of jejunum and ileum were fixed in 

glutaraldehyde fixative solution for 2 hours. The tissue was then washed with 1x PBS + 

0.02% NP-40 and placed in β-galactosidase (lacZ) substrate solution for 5 hours at 37°C and 

then 14 hours at 4°C. Samples were washed with 1x PBS, placed in 10% formalin solution, 

paraffin embedded using a short xylene cycle, and sectioned into 4-5 micron sections. 

Section slides were deparaffinized, rehydrated, and counterstained with 0.1% neutral red. 

Blue LacZ+ CBC+ crypts were identified and the length from the base of the crypt to the 

highest LacZ+ cell along the migratory trajectory was measured.
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RNA-seq data processing and differential expression analysis—Single-end 

RNA-seq reads were aligned to a transcriptome derived from the mm10 primary assembly 

with an ensembl v.88 annotation using STAR version 2.5.3a (Dobin et al., 2013) and gene 

expression was summarized using RSEM version 1.3.0 (Li and Dewey, 2011), samtools 

version 1.3 (Li et al., 2009). Differential expression analysis was done with R version 3.4.4 

using DESeq2_1.18.1 (Anders and Huber, 2010) and normal log fold change shrinkage. The 

resulting data were parsed and assembled using Tibco Spotfire Analyst version 7.11.1.

3′ DGE FASTQ sequencing reads were collapsed to one representative read per unique 

molecular identifier using a custom python script. Gene expression was quantified using 

salmon (version 1.1.0) (Patro et al., 2017) using a transcriptome prepared from the mouse 

mm10 primary genome assembly using the ensembl version 98 annotation. The resulting 

counts were summarized to the gene level using R (version 3.6.2) running tximport (version 

1.12.3) (Soneson et al., 2015) and counts per million (cpm) were calculated using utilities 

implement in edgeR (version 3.26.8) (Chen et al., 2016). The cpm values with a +1 offset 

were transformed to log2 space for visualization. Differential expression for treatments 

within cell lines and between untreated cell lines was done using DESeq2 (version 1.24.0) 

(Love et al., 2014) and apeglm log fold change shrinkage. Data assembly and visualization 

was done using Tibco Spotfire Analyst (version 7.11.1). Pre-ranked Gene Set Enrichment 

Analysis (version 4.0.3) (Subramanian et al., 2005) was run using DESeq2 Wald statistic as 

a ranking metric and gene set collections from msigDB (version 7.0) (Liberzon et al., 2015).

scRNA-seq Seq-Well library preparation—Seq-Well with second-strand synthesis was 

performed as previously described (Aicher et al., 2019; Gierahn et al., 2017; Hughes et al., 

2020). Briefly, dissociated cells from the proximal small intestine, distal small intestine, or 

colon of mice were diluted to a concentration of 15,000 cells in 200 μL, then added to a 

functionalized PDMS microarray pre-loaded with mRNA capture beads (Chem-Genes). 

After four washes with PBS and one wash with RPMI, the array was sealed with a plasma-

functionalized polycarbonate membrane (pore size 0.01 μm). To seal the membrane to the 

array surface, the array was placed at 37°C for 40 minutes, followed by lysis in guanidium 

thiocyanate (Sigma), 1mM EDTA, 1% beta-mercaptoethanol and 0.05% sarkosyl (Sigma) 

for 20 minutes at room temperature. Afterward, lysis buffer was exchanged via gentle 

rocking in hybridization buffer to facilitate mRNA hybridization to the capture bead, 

containing 2M NaCl (Fisher Scientific) with 8% (v/v) polyethylene glycol (PEG, Sigma) for 

40 minutes at room temperature. Beads were collected in a wash buffer containing 2M NaCl, 

3mM MgCl2, 20mM Tris-HCl, and 8% (v/v) PEG, followed by reverse transcription with 

Maxima H Minus Reverse Transcriptase (Fisher Scientific) for 30 minutes at room 

temperature and overnight at 52°C, all with end-over-end rotation. Exonuclease I digestion 

(New England BioLabs) was carried out according to manufacturer’s instructions, followed 

by bead washes in TE with 0.01% Tween-20 (TE-TW, Fisher Scientific) and TE with 0.5% 

SDS (TE-SDS, Sigma). For second-strand synthesis, beads were denatured using 5 minutes 

of end-over-end rotation in 0.1 M NaOH. Beads were then washed with TE-TW and TE, 

followed by 60 minutes at 37°C in second-strand synthesis reaction mixture (Hughes et al., 

2020). KAPA HiFi Hotstart Readymix and ISPCR primer were used to carry out PCR (95°C 

for 3 minutes; 4 cycles of 98°C for 20 s, 65°C for 45 s, 72°C for 3 minutes; 12 cycles of 
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98°C for 20 s, 67°C for 20 s, 72°C for 3 minutes; 5-minute extension at 72°C). cDNA was 

purified using an AMPure XP SPRI bead cleanup, with an initial 0.6X volume ratio, 

followed by a 0.8x volume ratio. 900 pg of purified cDNA library per sample was used as 

the input to Nextera XT DNA Sample Preparation kit. Sequencing libraries were purified 

through the same SPRI bead cleanup ratios (i.e., 0.6X and 0.8X volume ratios) and 

confirmed to have a length distribution with an average of 500-750 base pairs (Agilent 

hsD1000 Screen Tape System). Samples were sequenced through Illumina paired-end 

sequencing on a NovaSeq 6000. Read 1 began from a custom read 1 primer for 20 bases 

(12bp cell barcode, 8bp UMI), and read 2 contained 50bp of transcript information.

Seq-Well data alignment, filtering, and analysis—Version 2.1.0 of the Drop-seq 

pipeline was used to align sequencing reads to a custom reference genome that consisted of 

eGFP added to the standard mm10 reference genome. Demultiplexed FASTQs were aligned 

to the custom reference genome through STAR and the Drop-seq pipeline, implemented on 

the Broad Institute’s Terra cloud computing platform. Through alignment, reads were 

grouped based on cell barcode and collapsed if UMIs were separated by a Hamming 

distance of 1, forming digital gene expression matrices for each sample.

DGEs were pre-processed to remove cells with fewer than 500 genes detected (likely 

corresponding to detection of ambient RNA or low-quality cells), more than 75,000 UMIs 

(likely corresponding to doublets), or more than 35% of UMIs corresponding to 

mitochondrial genes (likely indicating low-quality cells with ruptured membranes). Data was 

then analyzed using Seurat in R (Stuart et al., 2019), with normalization implemented via 

SCTransform’s regularized negative binomial regression. Cells were designated as stem cells 

if Lgr5 or eGFP were detected, as either natural or transgenic markers of stem cell identities, 

respectively. Notably, across the relevant sample metadata used in these comparisons (i.e., 

diet condition and stem cell identity), quality metrics did not exhibit large differences, 

supporting that differences in gene expression are not artifacts of sample/sequencing quality 

(Figure S2A–B). For downstream visualization and clustering, principal component analysis 

was performed on the highly variable genes returned from SCTransform, with a choice of 21 

principal components made by examining the elbow plot of variance explained by each 

principal component (results robust against alternate choices of QC and visualization 

parameters). UMAP visualization was implemented using the “uwot” R package on the 21 

principal components.

Module scores in stem cell populations were calculated with Seurat’s “AddModuleScore” 

function, with the PPARδ module comprised of Hmgcs2, Angptl4, Pdk4, Acsl3, Me1, Aco1, 
Reg3g, and Plin2, genes designated as PPARδ targets from Figure S1BB. The stem module 

is based on top stem cell markers from Smillie et al. (2019). Importantly, Lgr5 was one of 

the top stem cell markers (Smillie et al., 2019); we removed it prior to scoring our dataset, 

given that it was used as a marker for calling stem cells in our study and could provide an 

upward bias when comparing Lgr5+ to Lgr5− populations. Nonetheless, populations called 

as stem cells in our study exhibited increased stemness scores compared to remainder cells, 

as expected. Significance of differences in the distribution of gene expression/module score 

between high fat and control diet stem cells was assessed using the non-parametric Mann-

Whitney test (implemented as “wilcox.test” function in R, with “alternative” set to “greater” 
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to evaluate the hypothesis that expression of PPARδ target genes involved in fatty acid 

oxidation is increased in high fat diet stem cells), and p values were corrected for multiple 

hypothesis testing using the Benjamini-Hochberg (implemented with “p.adjust” function in 

R, with “method” set to “Hochberg”).

Metabolomics, U13C-glucose and U13C-glutamine tracing, and LC/MS methods
—Crypts were harvested in cold PBS+EDTA, pelleted, washed once with saline and 

resuspended in LC/MS grade 80% methanol containing internal standard solutions (909 nM 

each of 17 isotopically labeled amino acids, Cambridge Isotope Laboratories, MSK-A2-1.2). 

Samples were vortexed for 10 min at 4°C, centrifuged for 10 min at 4°C, and separated from 

the pellet. Samples were then dried in a vacuum dryer, resuspended in 100 μl of LC/MS 

grade water, and analyzed by LC/MS as described (Birsoy et al., 2015). For labeling 

experiments, crypts were isolated from mice on either Control or HFD in cold PBS+EDTA, 

rinsed with saline, and subsequently incubated in RPMI (GIBCO, no glucose, 11879020) 

containing above mentioned crypt medium components plus 11mM glucose, 2mM 

glutamine and 30 μM Palmitate. Crypts were incubated for 60 min at 37°C, 5% CO2. For 

glucose labeling experiments, isolated crypts were incubated with 11 mM U13C-glucose 

(Cambridge Isotopes, CLM-1396-PK) in supplemented RPMI for 60 min at 37°C, 5% CO2. 

For glutamine labeling experiments, isolated crypts were incubated with 2 mM U13C-

glutamine (Cambridge Isotopes, CLM-1822H-PK) in supplemented RPMI for 60 min at 

37°C, 5% CO2. The polar metabolites were extracted by the addition of LC/MS grade 

methanol, water and chloroform. The mixture was vortexed for 10 min at 4°C and then 

centrifuged for 10 min at 4°C. The aqueous fraction was carefully removed from the 

chloroform fraction and both the polar and the non-polar fraction were transferred to clean 

microfuge tubes and dried using a vacuum centrifuge. The polar fraction was analyzed as 

described above (Birsoy et al., 2015). Stable isotope tracing data corrected for natural 

abundance using an in-house script as discussed in Buescher et al. (2015).

For LC-MS, 2 μl of each sample was injected onto a ZIC-pHILIC 2.1 × 150 mm (5 μm 

particle size) column (MilliporeSigma). Buffer A was 20 mM ammonium carbonate, 0.1% 

ammonium hydroxide; buffer B was acetonitrile. The chromatographic gradient was run at a 

flow rate of 0.150 ml/min as follows: 0-20 min.: linear gradient from 80% to 20% B, 

20-20.5 min.: linear gradient from 20% to 80% B; 20.5-28 min.: hold at 80% B. The mass 

spectrometer, QExactive orbitrap, was operated in full-scan, polarity switching mode with 

the spray voltage to 3.0 kV, the heated capillary was held at 275°C and the HESI probe held 

at 350°C. The sheath gas flow was set to 40 units, the auxiliary gas flow was set to 15 units, 

and the sweep gas flow was set to 1 unit. The MS data acquisition was performed in a range 

of 70-1000 m/z, with the resolution set at 70,000, the AGC target at 106 and the maximum 

injection time at 80 msec. Relative quantitation of polar metabolites was performed with 

Tracefinder4.1 (Thermo Fisher Scientific) using a 5ppm mass tolerance and referencing an 

in-house library of chemical standards.

Fatty acid oxidation assay—Isolated crypts (4000, estimated 1 million cells) were 

plated on a 24 well plate coated with 10% Matrigel (Corning 356231 growth factor reduced) 

in 400 μL crypt medium (RPMI (GIBCO, no glucose, 11879020) basal medium with 5mM 
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glucose) and allowed to incubate in a humidified 37°C incubator at 5% CO2 for 15 min. 

10% essentially fatty acid free BSA (Sigma Aldrich, A6003) in PBS was complexed at a 

volume ratio of 6.7:3 with palmitic acid-[9,10-3H] (Pekin Elmer, NET043001MC) by 

vortexing for 60 s and was added at a 1:100 ratio to crypt medium. This hot medium was 

split into half and Etomoxir (75 μM final) was added to inhibit FAO. 100 μl of the hot 

FFA:PA:medium mixture was added to the incubated crypts, for a total volume of 500 μl, 

and were incubated for 1 hour, 37°C, 5% CO2. Samples were removed from the wells and 

pelleted at 21K rcf. for 2:30 min. 400 μL of resulting supernatant was transferred to a filter 

column (Fisher Scientific, 11-387-50) containing 3 mL of activated Dowex®1X8 resin 

(Sigma Aldrich, 217425). 2.5 mL of ddH2O was added to elute 3H-water from the column. 

750 μL of eluent was added to 2.5 mL of EcoLume (MP Biomedicals, 882470). Betacounts 

were measured on a scintillation counter (Beckman Coulter, LS6500).

Irradiation experiments—Mice were challenged by a lethal split dose of irradiation, 

7.5Gy x 2 with six hours between exposures. Tissue was collected 72 hours post the last 

dose. Numbers of surviving crypts were enumerated in the jejunum from Hematoxylin and 

Eosin stained tissue and identified as robust crypt structures with dense nuclei and presence 

of Paneth cells.

Orthotopic injection into the colon—Prior to injection, mice 1) Apcfl/fl; Villin-

CreERT2; 2) Cpt1afl/fl; APCfl/fl; Villin-CreERT2, 3) Ppardfl/fl; Ppar−/−; Apcfl/fl; Villin-

CreERT2 were placed on either High Fat Diet or matching purified Control Diet for one 

month. Mice were directly injected in the colon with 50μL of 30 μM (Z)-4-

hydroxytamoxifen (resuspended in PBS, single dose) using previously established methods 

(Roper et al., 2017). Mice remained on their assigned diet for an additional month with 

optical colonoscopies performed at week 2 and week 4 after injection using a Karl Storz 

Image1 HD Camera System, Image1 HUB CCU, 175 Xenon Light source, and Richard 

Wold 1.9mm/9.5Fr Integrated Telescope (Roper et al., 2018). Colonoscopy images were 

saved for offline analysis. Mice received a 1 hour pulse of BrdU (100mg/kg) prior to tissue 

collection (1 month). The colon was flushed, lateralized, and imaged using a Nikon SMZ18 

stereoscope at 0.75x magnification for gross tumor analysis. Colons were then fixed in 10% 

formalin, paraffin embedded, and sectioned to the widest point of the individual tumors. 

Tumor sections were stained with β-catenin (BD Pharmogen) for IHC. Subsequent tumor 

sections were stained with Cpt1a (Abcam) and BrdU (Abcam) for IF analysis of the tumors.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise specified in the figure legends, all experiments reported in this study were 

repeated at least five independent times. Unless otherwise specified in the main text or figure 

legends, all sample number (n) represent biological replicates. For murine organoid assays, 

2-5 wells per mouse per ex vivo treatment were analyzed. All center values shown in graphs 

refer to the mean. No sample or animals were excluded from analysis and sample size 

estimates were not used. Animals were randomly assigned to groups. Experiments used 

roughly equivalent male and female mice to avoid sex bias. Studies were not conducted 

blind with the exception of all histological analyses. Please note that statistical details are 

found in the figure legends. All experiments involving mice were carried out with the 
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approval from the Committee for Animal Care at MIT and under the supervision of the 

Department of Comparative Medicine at MIT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• HFD augments intestinal stemness through PPARδ and PPARα

• A PPAR-FAO program enhances stemness and tumorigenicity in a HFD

• Loss or inhibition of Cpt1a-mediated FAO blunts the HFD-enhancing effects 

in ISCs

• Early intestinal tumors arising from HFD ISCs are highly sensitive to FAO 

inhibition
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Figure 1. PPARδ and PPARα function redundantly to enhance stem cell activity in a HFD
(A) Schematic of intestinal Ppard conditional deletion with Villin-CreERT2 (Ppard-iKO), 

including timeline of tamoxifen (T) injections for long-term deletion, diet, and tissue 

collection.

(B and C) Quantification of organoids per crypt from WT (Ppardfl/fl) or Ppard-iKO mice in 

(A) (B), accompanied by representative bright-field images (C). LT-iKO indicates deletion of 

intestinal Ppard prior to establishment on the diet. Scale bar, 200 μm.

(D) qRT-PCR of transcripts amplified from crypts collected from WT (Ppardfl/fl) or Ppard-

iKO mice on chow or HFD. Transcripts were normalized to β-actin.

(E) Immunoblot of flow-sorted ISCs (Lgr5-EGFPhi) and progenitors (Lgr5-EGFPlow) from 

WT and Ppard-iKO (Ppardfl/fl; Villin-CreERT2; Lgr5-eGFP-IRES-CreERT2) mice on a 

control diet or HFD. Villin-CreERT2; Lgr5-eGFP-IRES-CreERT2 animals were used as WT 

controls.

(F) Quantification of organoids per crypt from mice injected daily for 30 days with the 

PPARα agonist WY-14643 (4 mg/kg) or vehicle.

(G) Schematic of the intestinal Ppard conditional allele with Villin-CreERT2 crossed to 

Ppara-null (Ppard/a-iKO), including timeline of T injections, diet, and tissue collection. 

Villin-CreERT2 transgenic mice were used as WT controls.

(H) Quantification of OLFM4+ cells per jejunal crypt. Each data point represents 

quantification of 20+ crypts from one animal (n = 6).

(I) Representative images of OLFM4+ immunohistochemistry (IHC) from (H). Scale bar, 20 

μm.

(J) Immunoblot blot of flow-sorted ISCs (Lgr5-EGFPhi) and progenitors (Lgr5-EGFPlow) 

from WT and Ppard/a-iKO mice on a control diet or HFD. Ppard/a-iKO mice carried Lgr5-
eGFP-IRES-CreERT2 for isolation of ISC and progenitor populations. Villin-CreERT2; 
Lgr5-eGFP-IRES-CreERT2 animals were used as WT controls.
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(K) Quantification of organoids per crypt from mice in (G).

To compare differences in diet, control WT mice were fed chow in (B)–(D) and a purified 

control diet in (E) and (H)–(K). In (B), (D), (F), and (K), each data point represents the 

average of 2–3 technical replicates of one animal. *p < 0.05, **p < 0.01, ***p < 0.005, 

****p < 0.0001, one-way ANOVA.
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Figure 2. HFD fuels FAO in ISCs
(A) Schematic of mitochondrial FAO involving key processes, proteins, metabolites, and 

fuel inputs.

(B) Log(UMIs per 10K + 1) expression of genes integral to the FAO in ISCs from control-

fed (gray, n = 2) or HFD-fed mice (green, n = 3) (P.SI, proximal small intestine; D.SI, distal 

small intestine; C, colon). Benjamini-Hochberg-corrected p values: *p < 10–2, **p < 10–5, 

***p < 10–10.
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(C and D) Relative abundance of the FAO-mediated metabolites acetylcarnitine (C) and 

BOHB (D) isolated from freshly harvested crypts and measured by liquid chromatography-

mass spectrometry (LC-MS).

(E) FAO activity (counts per minute [cpm]) of metabolized 3H-palmitic acid normalized to 

total protein in crypts from control and HFD-fed mice, accompanied by the fold change 

calculated as the ratio of HFD cpm per control cpm.

(F) Single-molecule RNA in situ hybridization (ISH) of Cpt1a in WT tissue from control 

and HFD-fed mice. Scale bars, 50 μm and 20 μm (inset).

(G and H) Quantification of organoids per crypt from control or HFD-fed mice grown in 

culture (ADMEM medium) with increasing concentrations of the irreversible CPT1A 

inhibitor etomoxir (Eto) (G), accompanied by representative images (H). Scale bar, 200 μm.

(I) Quantification of organoids per crypt from control or HFD-fed mice, grown in RPMI 

1640 basal medium with or without Eto (37.5 μM) and supplemented with octanoate (1 

mM), sodium pyruvate (0.5 mM), or sodium-L-lactate (5 mM).

(J) Representative images of HFD-derived Lgr5-EGFP+ organoids in (I). Scale bar, 200 μm.

(K) Quantification of HFD-derived Lgr5-eGFP+ organoids grown in the presence of 

octanoate (1 mM) or Eto (37.5 μM).

In (B)–(I), mice were fed a purified control diet or HFD. In (E), (G), and (I), each data point 

represents the average of 3+ technical replicates from one animal. *p < 0.05, **p < 0.01, 

***p < 0.005; ns, not significant; one-way ANOVA.
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Figure 3. CPT1A-mediated FAO promotes HFD ISC stemness
(A) Schematic of intestinal Cpt1a conditional deletion with Villin-CreERT2; Lgr5-eGFP-
IRES-CreERT2 (Cpt1a-iKO), including timeline of T injections, diet, and tissue collection. 

Villin-CreERT2; Lgr5-eGFP-IRES-CreERT2 animals were used as controls.

(B and C) Quantification of OLFM4+ cells per jejunal crypt (B) with representative images 

(C). Scale bar, 20 μm.

(D and E) Quantification of BrdU+ and EGFP+ CBC cells per jejunal crypt (D) with 

representative images (E). Scale bar, 20 μm.

(F and G) Quantification of organoid per crypt (F) or Lgr5-EGFPhi ISC (G) from control or 

HFD-fed mice carrying WT or deleted copies of Cpt1a (iKO).

(H) Relative abundance of the FAO-mediated metabolites acetylcarnitine and BOHB isolated 

from freshly harvested crypts of HFD-fed mice and measured by LC-MS.

(I) Immunoblot blot of flow-sorted ISCs (Lgr5-EGFPhi), progenitors (Lgr5-EGFPlow), and 

epithelial crypt (EpCAM+) cells from WT and Cpt1a-iKO mice on a control diet or HFD.

(B)–(E) were reprinted from Beyaz et al. (2021). In (A)–(I), mice were fed a purified control 

diet or HFD. In (F) and (G), each data point represents the average of 3+ technical replicates 

from one animal. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001, one-way ANOVA.
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Figure 4. HFD-initiated tumors are metabolically vulnerable to FAO disruption
(A) Schematic of the Apc tumor model with Lgr5-eGFP-IRES-CreERT2 driving Apcfl/fl 

excision specifically in Lgr5-CreERT2 stem cells upon T induction (25 mg/kg) 1 month 

after establishment on a control diet or HFD.

(B) Kaplan-Meier survival curve of the mice in (A).

(C) Relative abundance of the FAO-mediated metabolites acetylcarnitine and BOHB isolated 

from freshly harvested crypts of Apcfl/fl; Villin-CreERT2 mice and measured by LC-MS.
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(D) Schematic of Apcfl/fl; Lgr5-eGFP-IRES-CreERT2 tumor initiation model with or 

without the Cpt1afl/fl allele. Mice were put on a control diet or HFD for 1 month prior to a 

single T injection (25 mg/kg), followed by 20 days before tissue collection.

(E and F) Quantification of the area (E) and number (F) of β-catenin+ adenomas in the 

proximal half of the intestine.

(G-I) Schematic of Apcfl/fl; Lgr5-eGFP-IRES-CreERT2 tumor progression model (G). Mice 

receive a single T injection (25 mg/kg) to induce adenoma formation. The following day, 

cohorts are established on a control diet or HFD (H) or treated with daily injections of 

vehicle, GW501516 (GW; 4 mg/kg), or WY-14643 (WY; 4 mg/kg) (I). The diet regimen or 

agonist administration was extended for 20 days. On days 11–20 before tissue collection, 

mice received daily injections of the CPT1A inhibitor Eto (20 mg/kg). Shown is 

quantification of the β-catenin+ tumor area in mice under HFD conditions (H) and GW or 

WY administration (I) according to the regimens in (G). The inset plots represent the mean 

area fold change between non-Eto and +Eto recipients of a given treatment.

(J) Schematic of endoscopy-guided colonic injections with 4-OH Tamoxifen (Tam) 1 month 

after start of the control diet or HFD.

(K) Quantification of tumor area 1 month after injection. The mean fold change of WT 

versus mutant is depicted in the right graph inset.

(L) Model of ISC adaptation to a HFD: PPARδ and PPARα instruct a transcriptional 

program in response to a HFD that promotes CPT1A-mediated FAO. In contrast to a control 

diet, genetic loss or inhibition of Cpt1a on a HFD disrupts tumor initiation and progression.

Control mice were fed chow in (B) and (I) and a purified control diet in (C), (E), (F), (H), 

and (K). *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001, one-way ANOVA.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse Cpt1a Abcam Cat#: ab128568; RRID: AB_11141632

Rabbit Hmgcs2 Abcam Cat#: ab137043; RRID: AB_2749817

Rabbit Fabp1 Cell Signaling Technology Cat#: 13368S; RRID: AB_2798192

Rabbit Pdk4 Abcam Cat#: ab214938; RRID: AB_2864318

Rabbit H3 Cell Signaling Technologies Cat#: 4499S; RRID: AB_10544537

Rabbit γ-tubulin Sigma Aldrich Cat#: T5198

Rabbit Olfm4 Cell Signaling Technologies Cat#: 39141S; RRID: AB_2650511

Rabbit GFP Cell Signaling Technologies Cat#: 2956S; RRID: AB_1196615

Mouse β-catenin BD Biosciences Cat#: 610154; RRID: AB_397555

Rat BrdU Abcam Cat#: ab6326; RRID: AB_305426

Rabbit Lysozyme Thermo Fisher Cat#: RB-372-A1; RRID: AB_138387

Rabbit ChromograninA Abcam Cat#: ab15160; RRID: AB_301704

Rabbit Ki67 Abcam Cat#: ab15580; RRID: AB_443209

Rabbit β-catenin Abcam Cat#: ab32572; RRID: AB_32572

Rabbit Cleaved Caspase 3 Cell Signaling Technologies Cat#: 9664S; RRID: AB_2070042

Rabbit phospho-histone H2A.X Cell Signaling Technologies Cat#: 2577S; RRID: AB_2118010

CD45-PE, clone 30-F11 eBioscience Cat#: 12-0451-83; RRID: AB_465669

CD31-PE, clone Mec 13.3 Biolegend Cat#: 102514; RRID: AB_102514

Ter-119-PE Biolegend Cat#: 116208; RRID: AB_313709

CD24-Pacfic Blue, clone M1/69 Biolegend Cat#: 101820; RRID: AB_572011

CD117-APC/Cy7, clone 2B8 Biolegend Cat#: 105826; RRID: AB_1626278

EpCAM APC, clone G8.8 eBioscience Cat#: 17-5791-82; RRID: AB_2716944

Chemicals, peptides, and recombinant proteins

GW501516 Sigma Aldrich Cat#: SML1491

PEG400 Sigma Aldrich Cat#: P4338

Tween-80 Sigma Aldrich Cat#: P4780

GW6471 Tocris Cat#: 4618

WY14643 Sigma Aldrich Cat#: C7801

Tamoxifen Sigma Aldrich Cat#: T5648-1G

Sunflower Seed Oil Spectrum Cat#: S1929

5-Bromo-2′-deoxyuridine Sigma Aldrich Cat#: 19-160

Matrigel Corning Cat#: 356231

Advanced DMEM GIBCO Cat#: 12491015

EGF Peprotech Cat#: 315-09

Noggin Peprotech Cat#: 250-38

R-spondin Peprotech Cat#: 315-32
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REAGENT or RESOURCE SOURCE IDENTIFIER

N-acetyl-l-cystine Sigma Aldrich Cat#: A9165

B27 Life Technologies Cat#: 17504044

Chir99021 LC Laboratories Cat#: C-6556

Y-27632 dihydrochloride Sigma Aldrich Cat#: Y0503

48 well plates Olympus Cat#: 25-108

96 well plates Olympus Cat#: 25-109

Etomoxir Sigma Aldrich Cat#: E1905

Sodium octanoate Sigma Aldrich Cat#: C5038

Sodium pyruvate Sigma Aldrich Cat#: P8574

Sodium-L-lactate Sigma Aldrich Cat#: L7022

D-(+)-glucose Sigma Aldrich Cat#: G7021

JAG-1 Anaspec Cat#: AS-61298

TRI Reagent Sigma Aldrich Cat#: 93289

qScript cDNA SuperMix Quantabio Cat#: 95048

PerfeCTa SYBR green fast mix Quantabio Cat#: 95072

WesternBright Sirus Advasta Cat#: K12043D20

Elite ABC HRP Kit Vector Laboratories Cat#: PK6100

Signalstain® DAB Substrate Kit Cell Signaling Technologies Cat#: 8049S

Signalstain® Antibody Diluent Cell Signaling Technologies Cat#: 8112L

7AAD Invitrogen Cat#: A1310

RMPI (− glucose, + glutamine) GIBCO Cat#: 11879020

Prolong Gold Antifade Mountant with DAPI Invitrogen Cat#: P36941

D-Glucose (U13C6, 99%) Cambridge Isotope Laboratories Cat#: CLM-1396-PK

L-Glutamine (U13C5, 99%) Cambridge Isotope Laboratories Cat#: CLM-1822H-PK

Palmitic Acid [9,10-3H(N)]-1mCi (37 MBq) Perkin Elmer Cat#: NET043001MC

Bovine Serum Albumin Sigma Aldrich Cat#: A6003

Dowex 1x8 chloride resin Sigma Aldrich Cat#: 217425

EcoLume MP Biomedicals Cat#: 882470

(Z)-4-hydroxytamoxifen Calbiochem Cat#: 579002

Deposited data

RNA sequencing Data GEO repository GSE151047

RNA sequencing Data GEO repository GSE164832

Experimental models: Organisms/strains

Cpt1afl/fl Dr. Peter Carmeliet Schoors et al., 2015

Villin-CreERT2 Dr. Sylvie Robine, The Jackson 
Laboratory Stock No: 020282

Lgr5-eGFP-IRES-CreERT2 The Jackson Laboratory Stock No: 008875

Rosa26-LSL-LacZfl/fl The Jackson Laboratory Stock No: 003474

Apcfl/fl (exon14) Dr. Christine Perret Colnot et al., 2004

Cell Rep. Author manuscript; available in PMC 2021 July 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mana et al. Page 36

REAGENT or RESOURCE SOURCE IDENTIFIER

Ppardfl/fl The Jackson Laboratory Stock No: 005897

Ppara−/− The Jackson Laboratory Stock No: 003580

Ppardfl/fl; Villin-CreERT2 Yilmaz Lab Beyaz et al., 2016

Ppardfl/fl; Villin-CreERT2; Lgr5-eGFP-IR ES-
CreERT2

First presented in this work N/A

Ppardfl/fl; Ppara−/−; Villin-CreERT2; Lgr 5-eGFP-
IRES-CreERT2

First presented in this work N/A

Ppara−/−; Villin-CreERT2; Lgr5-eG FP-IRES-
CreERT2

First presented in this work N/A

Ppardfl/fl; Ppara−/−; Lgr5-eGFP-IRES-CreERT2; 
Rosa26-LSL-LacZfl/fl First presented in this work N/A

Ppardfl/fl; Ppara−/−; Villin-CreERT2 First presented in this work N/A

Cpt1afl/fl; Villin-CreERT2; Lgr5-GFP-IR ES-CreER First presented in this work N/A

Cpt1afl/fl; Lgr5-eEGFP-IRES-CreERT2; Rosa26-
LSL- LacZfl/fl First presented in this work N/A

Apcfl/fl; Lgr5-eGFP-IRES-CreERT2; Rosa26-LSL-
LacZfl/fl Yilmaz Lab Beyaz et al., 2016

Cpt1afl/fl; Apcfl/fl; Lgr5-eGFP-IRES-CreERT2 First presented in this work N/A

Apcfl/+; Lgr5-eGFP-IRES-CreERT2; Rosa26-LSL-
LacZfl/fl First presented in this work N/A

Apcfl/+; Cpt1afl/fl; Lgr5-eGFP-IRES-CreERT2; 
Rosa26-LSL-LacZfl/fl First presented in this work N/A

Ppardfl/fl; Ppara−/−; Apcfl/fl; Villin-CreERT2 First presented in this work N/A

Cpt1afl/fl; Apcfl/fl; Villin-CreERT2 First presented in this work N/A

Apcfl/fl; Villin-CreERT2 Yilmaz Lab Roper et al., 2017

Oligonucleotides

See Table S1 for rt-PCR primers Integrated DNA Technologies (IDT) N/A

Software and algorithms

FlowJo v10 FlowJo LLC. https://www.flowjo.com/

GraphPad Prism 8 GraphPad Software https://www.graphpad.com/scientific-software/
prism/

ImageJ-Fiji National Institutes of Health, USA https://fiji.sc/

Qlucore Omics Explorer 3.2 Qlucore https://www.qlucore.com/

Tracefinder 4.1 Thermo Scientific https://www.thermofisher.com/us/en/
home.html

Other

Standard Chow LabDiet Ref#: 5P76

High-Fat Diet Research Diets Ref#: D12492

Control Diet Research Diets Ref#: D12450J

In situ hybridization probe for mouse Cpt1a: Mm-
Cpt1a Advanced Cell Diagnostics Probe No: 443071

In situ hybridization probe for mouse Ppara: Mm-
Ppara Advanced Cell Diagnostics Probe No: 454051
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