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For achieving motor recovery in individuals with sensorimotor deficits, augmented

activation of the appropriate sensorimotor system, and facilitated induction of neural

plasticity are essential. An emerging procedure that combines peripheral nerve

stimulation and its associative stimulation with central brain stimulation is known

to enhance the excitability of the motor cortex. In order to effectively apply this

paired stimulation technique, timing between central and peripheral stimuli must be

individually adjusted. There is a small range of effective timings between two stimuli,

or the inter-stimulus interval window (ISI-W). Properties of ISI-W from neuromodulation

in response to mechanical stimulation (Mstim) of muscles have been understudied

because of the absence of a versatile and reliable mechanical stimulator. This paper

adopted a combination of transcranial magnetic stimulation (TMS) and Mstim by using

a high-precision robotic mechanical stimulator. A pneumatically operated robotic tendon

tapping device was applied. A low-friction linear cylinder achieved high stimulation

precision in time and low electromagnetic artifacts in physiological measurements.

This paper describes a procedure to effectively estimate an individual ISI-W from the

transiently enhanced motor evoked potential (MEP) with a reduced number of paired

Mstim and sub-threshold TMS trials by applying statistical sampling and regression

technique. This paper applied a total of four parametric and non-parametric statistical

regression methods for ISI-W estimation. The developed procedure helps to reduce time

for individually adjusting effective ISI, reducing physical burden on the subject.

Keywords: brain stimulation, transcranial magnetic stimulation, mechanical stimulation, motor evoked potential,

statistical estimation

1. INTRODUCTION

Upper limb motor function is commonly degraded with aging and is often impaired due to
neurologic injuries such as stroke and spinal cord injury. Of the 658,000 stroke survivors in the
U.S. annually, approximately 60% of stroke survivors experience significant impairments in hand
function, requiring long-term rehabilitative therapy to regain function (Dam et al., 1993). There are
few interventions that improve upper limb function. A lack of experimental tools and procedures
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has been a barrier in studying neuromodulation in response to
peripheral mechanical stimulation that is analogous to physical
therapy for individuals with hemiparesis.

1.1. Paired Associative Stimulation for
Neural Facilitation
Neural excitability of the motor cortex is essential for activating
muscles, but is often compromised in hemiparetic stroke
survivors, while modulation of this excitability can facilitate
motor learning and recovery (Hummel and Cohen, 2006; Kim
et al., 2006; Jung and Ziemann, 2009; Lazzaro et al., 2009; Teo
et al., 2010). Excitability of the motor cortex is modulated by
a repetition of electrical stimulation (Estim) to a peripheral
nerve (e.g., median nerve) alone or paired with central brain
stimulation known as Paired Associative Stimulation (PAS)
(Stefan, 2000; Wolters et al., 2003; Meunier et al., 2007; Kennedy
and Carson, 2008; Carson and Kennedy, 2013). Excitability of
the primary motor cortex (M1) can be potentiated in the long
term (approximately 1 h) after a repetition of a conventional form
of PAS, i.e., application of Estim to the peripheral nerve (e.g.,
median nerve) with an appropriate time interval immediately
(approximately 25 ms) before transcranial magnetic stimulation
(TMS) to M1 (termed Estim-PAS in this paper) in experimental
studies (Stefan, 2000; Wolters et al., 2003; Meunier et al., 2007;
Kennedy and Carson, 2008; Carson and Kennedy, 2013).

In a therapeutic analogy, as an emerging effective
rehabilitation for hemiparetic stroke survivors, a repetition
of a manual application of mechanical stimulation (Mstim)
to the target muscles (e.g., tendon tapping or rapid muscle
stretch) by a therapist immediately before a contraction effort of
a patient (termed Mstim-paired manual therapy in this paper)
can facilitate neuromotor recovery and often lead to significantly
better rehabilitation outcomes compared with the conventional
rehabilitation without Mstim (Kawahira et al., 2004, 2009, 2010;
Shimodozono et al., 2012; Kawakami et al., 2015; Matsumoto
et al., 2016).

One of the difficulties of stroke rehabilitation is that
neurorehabilitation efficacy is variable (Langhorne et al., 2011;
Pollock et al., 2014; Veerbeek et al., 2014). Since a repeated
application of PAS can result in facilitation or inhibition of neural
excitability depending on the timing interval of stimulations,
determination of the appropriate inter-stimulus interval (ISI) is
crucial for inducing facilitation (Poon et al., 2008; Kumpulainen
et al., 2012). ISI is the period of time that separates two
consecutive stimuli (Pereira et al., 2014). In the conventional
form of PAS (i.e., Estim-PAS), ISI is the timing difference
between Estim and TMS. Neural plasticity via Hebbian learning
is assumed to be induced through the repetition of paired
associative excitatory inputs to M1, one originating from the
stimulation of the somatosensory system (afferents) and another
from TMS or motor effort of an individual in response to
therapist’s instruction (Takeuchi and Izumi, 2015) that arrives
at M1 shortly after the peripheral stimulation. The time interval
between two paired inputs is critical to the consequence of PAS
and likely other therapeutic techniques (Wolters et al., 2005;
Takeuchi and Izumi, 2015). Since the scientific mechanisms

for this promising emerging Mstim-paired manual therapy are
not well understood, the time interval between the peripheral
Mstim by a therapist and central motor effort by a patient
is undefined and thus can be variable. Individual differences
in signal transduction times due to various anatomical and
physiological characteristics such as body size and composition,
sex, and age (Soudmand et al., 1982; Buschbacher, 1998; Fulöp
et al., 2001) may influence the timing-dependent profiles of
neural excitability and thus the effectiveness of Mstim-paired
manual therapy. Anecdotally, physical therapists skilled in this
clinical practice are able to adjust the stimulation intervals by
observing responses in a patient based on their experience.
However, this heuristic approach is unfortunately not fully
generalizable. As a result, Mstim-paired rehabilitation has been
difficult to standardize. Hence, it is imperative to develop an
efficientmethod that helps determine the appropriate range of ISI
for inducing neuromodulation in Mstim-paired manual therapy
or Mstim-PAS for each individual. In addition, it is reported that
this neuromodulation effectiveness is dependent on the particular
phase of the sleep-wake/circadian cycle (Cohen et al., 2010; Lee
et al., 2012).

1.2. Characterization of Mstim-Induced
Neuromodulation
Potentiated synaptic excitability of M1 is assessed with the
amplitude of motor evoked potential (MEP) via unpaired single-
pulse TMS. Induced potentiation at this motor system level is
analogous to the long-term potentiation (LTP) at the synaptic
level, i.e., strengthened excitatory synapses due to repetitive
timing-dependent excitation of presynaptic and postsynaptic
neurons (Hebbian model) (Hebb, 1949; Bliss and Collingridge,
1993; Markram, 1997). At the synaptic level, LTP can be induced
only when the postsynaptic neurons are excited immediately
after the excitation of presynaptic neurons. Similarly, the largest
and most consistent facilitation of M1 via neuromodulation is
induced when cortical stimulation is applied 2–5 ms after the
arrival of the Estim-induced sensory signal at the somatosensory
cortex (Stefan, 2000; Stefan et al., 2002; Ziemann, 2004; Müller
et al., 2007). With Estim, the arrival time can be determined for
each individual with the first negative peak around 20 ms latency
(N20) in somatosensory evoked potentials recorded through
electroencephalography (EEG) (Wolters et al., 2003; Müller et al.,
2007). The critical issue is that Estim-PAS can induce inhibition
if the brain is stimulated 5–10 ms before the arrival of the
sensory signal (Wolters et al., 2003; Ziemann, 2004; Müller et al.,
2007). For example, Wolters et al. previously utilized the N20-
P25 somatosensory evoked potential (SSEP) complex to evaluate
the effect of PAS timing on neural plasticity (Wolters et al., 2005).
The latency of the complex is important to clinical applications of
PAS, as changes of even 15 ms in timing can reverse the direction
of the neuromodulation (Wolters et al., 2005). Hence, the
consequent neuromodulation with this type of paired stimulation
can be inverted due to a subtle timing deviation.

Depending on stimulation intensity, Estim often causes a
painful sensation. In addition, PAS with electrical stimulation
requires tight synchronization between TMS and electrical nerve
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stimulation, needing skilled operators and long calibration time.
In contrast, Mstim is more applicable and relevant to the actual
clinical practice and desired muscle activity. Moreover, Mstim
allows access to various muscles that cannot be individually
accessed via electrical nerve stimulation.

As a simpler paradigm before this combined long-term effect
is investigated, however, there are few studies that examined
instantaneous and transient modulation of excitability of M1 due
to Mstim. In Estim, excitability of M1 is inhibited at a latency of
19–50 ms, known as short-latency afferent inhibition (Tokimura
et al., 2000), likely due to the direct thalamocortical projections
to M1 via cholinergic paramedian thalamic nuclei (Lazzaro et al.,
2000) and the projections from the primary sensory cortex to
M1 (Ferezou et al., 2007; Aronoff et al., 2010), which recruit M1
interneurons that inhibit layer V pyramidal neurons (Lazzaro
et al., 2000, 2007).

In contrast, Mstim of the periphery in the form of muscle
stretch often produces transcortical long-latency stretch reflex
with 50–150 ms latencies Rothwell et al. (1980); Shinohara et al.
(2005), suggesting the induction of long-latency facilitation of
M1. Impact-based Mstim to the muscle-tendon complex can
stimulate various mechanoreceptors in the skin, tendon, muscle,
and joint. These afferent inputs induced by Mstim can project
to various supraspinal pathways other than those with Estim,
potentially leading to not only net facilitation but also net
inhibition of M1 in a latency-dependent manner.

While long-term neuromodulation can be induced after a
repetition of Estim-PAS or Mstim-paired manual therapy with
an appropriate timing interval, a single application of peripheral
stimulation can also induce transient neuromodulation in
a time-dependent manner. The time-dependent profiles of
neuromodulation in response to impact-based Mstim of muscles
have been understudied because of the absence of a versatile
and reliable mechanical stimulator that allows for timing
adjustment. A combination of TMS and impact-based Mstim
by using a high-timing-precision robotic tendon tapping device
(Lacey et al., 2013, 2014; Ueda et al., 2014) was adopted to
enable the exploration into Mstim-induced neuromodulation
as shown in Figure 1A. In this study, MEPs were measured
via electromyogram (EMG) of the FCR muscle to observe
Mstim-induced neuromodulation as shown in Figure 1A. This
configuration that pairs Mstim and TMS enables investigation
of neuromodulation via different afferent nerve stimulation from
one studied by using the conventional conditioned stimulation
with Estim and TMS (Chen et al., 1999; Tokimura et al., 2000;
Tamburin et al., 2005; Bikmullina et al., 2009; Devanne et al.,
2009; Kojima et al., 2014). The form of mechanical tendon
tapping will not induce joint motion unlike other work that
utilized rapid joint extension as Mstim (Day et al., 1991).

1.3. Need for Individually Adjusting Mstim
and TMS Timings
Due to the generally large variability in ISI windows (ISI-W) for
observing Mstim-enhanced MEP in individuals, an adjustment
procedure must be performed before actual neuroscientific
research in every single subject. ISI-W can also vary depending on

the experimental arrangement, including mechanical variability
associated with the tested muscle and employed Mstim. Mstim is
an indirect method to stimulate the peripheral sensory organs by
applying physical perturbation in the form of transient changes in
pressure, velocity and acceleration in the target peripheral tissues.
These processes introduce additional dynamic factors, which
lead to delayed and variable responses, such as skin and tendon
stretch dynamics, muscle spindle discharge timings associated
with the human sensorimotor system dynamics, in addition to air
pressure propagation and development in the pneumatic system
associated with the mechanical tendon tapping system.

The method of evaluating all responses across the set range
and interval for identifying the ISI-W requires many data
samples, which is laborious to the recipient of stimulation
and makes the collection of a large data set time-consuming.
For example, in the authors previous study (Kim et al.,
2016), the initial range of ISIs for Mstim sub-threshold TMS
neuromodulation was uniformly given to be 250 ms for all
subjects where 12 Mstim trials were applied for 5 ms increments,
totaling 600 Mstim trials. Including variable rest breaks between
trials, average duration to complete data collection for each
individual to determine the ISI-MEP profile was approximately
2 h (see section Experimental Procedure).

1.4. Our Approach
The goal of the current work is to develop statistical
sampling and regression methods to efficiently model transient
neuromodulations in the motor cortex via impact-based Mstim
to muscles by means of a high-timing-precision robotic
mechanical stimulator and its paired cortical stimulation.
An experimental identification of the exact timing and
magnitude of neuromodulation in M1 of an individual usually
requires many test trials at different ISIs to individualize
stimulation timings.

To mitigate this issue, the proposed procedure estimates
individual ISI-W with sub-threshold TMS and Mstim. Statistical
sampling and regression with relatively large time intervals (e.g.,
5 ms) approximates the profile of Mstim-enhanced MEP with a
reduced number of stimulation trials.

2. MATERIALS AND METHODS

2.1. Design and Assessment of
High-Timing Precision Tendon Tapping
Robot
Msim-induced neuromodulation has not been well studied
because of the absence of a basic mechanistic theory for
this promising rehabilitation and a robust reliable system
to implement interval-controlled Mstim. Compared with the
conventional Estim, there is limited research on Mstim and its
application to therapeutic exercises. To provide impact-based
Mstim in a well-controlled manner, a pneumatically powered
robotic tapper shown in Figure 1B (Lacey et al., 2013, 2014; Ueda
et al., 2014) was utilized.

The developed robotic tendon tapping device enables paired
Mstim of periphery and transcranical stimulation of the cortex
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FIGURE 1 | Robotic neuromodulation system paired with magnetic brain stimulation. (A) Schematic diagram of neuromodulation in the motor cortex induced by

peripheral stimulation and observation of induced motor evoked potential. (B) Robotic tendon-tapping system. (C) Anatomical structure of Flexor carpi radialis

muscle. The robotic tendon tapping device applies mechanical impact to the wrist tendon of the FCR muscle indicated by a circle. (D) Experimental setup of

peripheral Mstim and measurement of neuromodulation by means of TMS; A subject is lying down on a bed experiencing Mstim and TMS. Both devices are operated

by the main computer. (E) Enhanced MEP response with different intervals between Mstim and TMS (Subject 1). Values shown at the right indicate time intervals in

milliseconds between tvalve and tTMS. tValve was fixed and tTMS was changed. Artifacts were observed in EMG due to both Mstim and TMS. Artifacts due to Mstim are

not full shown as the plots were trimmed to 0.2 mV and mechanical impact timings are not fully shown. Red arrows indicate MEP when Mstim and TMS are

overlapped over the motor cortex. Note that no MEP was observed on the top and bottom traces where the timing interval between Mstim and TMS was outside of

the effective ISI-W that observes enhanced MEP.

(Lacey et al., 2014; Kim et al., 2016). This device is operated
by a pneumatic linear cylinder (Airpel E9D20U, low-friction
type, Airpot Corporation, Norwalk, CT) equipped with a medical
hammer to apply impact-based mechanical stimulation to the
target muscle in a form of tendon tapping as shown in Figure 1B.
This pneumatic system creates tapping motion: the hammer
linearly moves toward a target tendon, taps the tendon for 0.5
s, and retracts back to the original position. A pneumatic valve
(MPYE-5-M5-010-B, Festo, Esslingen, Germany) is connected
to the cylinder via a 7.5 m long pneumatic hose. A pressure
sensor (SSI-P51-101, SSI Technologies, Inc., Janesville, WI, US)
measures pressure in the upper chamber of the cylinder where
constant pressure (60 psi) is applied from a pressure compressor.
An accelerometer (MMA2202K, Freescale Semiconductor, Inc.,
Austin, TX, US) attached to the medical hammer detects the time
when the hammer hits the tendon.

The tendon-tapping robot was designed to be adjustable
to different locations and dimension of subjects by rotating
and translating the hammer housing structure so that the
hammer can tap the tendon from an appropriate angle.
To allow for the future use of this device in functional
magnetic resonance imaging (fMRI) environment to directly
monitor the brain activity with robotic intervention,
only MRI safe materials are used (Lacey et al., 2014)
(Figure 1B). The only major ferromagnetic component
is the FESTO pneumatic valve that is placed several
meters away from the subject. This configuration helps to
reduce electromagnetic interference on electromyographic
and electroencephalographic measurements that would
have had significant artifacts (Luck, 2014) if a non-
shielded electromagnetic motor had been used to swing
a hammer.
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2.2. Experimental Procedure
Healthy adult subjects (n = 11) participated in this study from
the pool of Georgia Institute of Technology, Atlanta Campus. All
subjects were between 18 and 30 years and were right-handed
without history of neurological disorders. The experimental
procedure was approved by the Institutional Review Board (IRB)
at Georgia Institute of Technology (Protocol number: H14191).
Subjects were asked to read and sign a consent form before
the experiment.

As shown in Figure 1D, a subject was supine on a bed
experiencing Mstim from the robot as well as TMS. The timing
of TMS and Mstim (i.e., tTMS and tvalve, respectively) were
controlled by Signal (Cambridge Electronic Design Limited, UK).
The tapping device applied Mstim to the wrist tendon connected
to the flexor carpi radialis (FCR) muscle as shown in Figure 1C.
The impact timing (i.e., thit) was detected by the accelerometer
attached on the hammer. The robotic system was configured as
illustrated in Figure 2D. Two timing commands, tvalve and tTMS,
were sent from the host PC. Resultant MEP amplitudes were
recorded from a subject. To measure peak-to-peak MEP values
of the FCR muscle for different ISIs, surface EMG was used. Two
Ag-AgCl electrodes (E224N, In Vivo Metric, Healdsburg, CA,
US) were placed on the FCRmuscle belly as shown in Figure 1D.

An accelerometer mounted to the medical hammer was
utilized to measure the acceleration of the hammer and detect
the onset of hammer tendon impact (thit). As shown in
Figure 2C, thit was determined by detecting the time where the
acceleration crossed zero for the first time after the initiation of
hammer motion. Assuming negligible variability in tTMS, ISI was
calculated by ISI = tTMS − thit. Note that tTMS and tvalve were
reference commands in the system. thit is a resultant timing point
which is thit = tvalve + tdelay as shown in Figure 2B. In this
paper, the acceleration was measured from five subjects out of
eleven subjects.

Enhanced MEP amplitudes were measured following the
conventional procedure developed for Estim study. In the
conventional method, the timing between tTMS and tvalve was
incrementally changed from 0 to 500 ms by 5 ms as shown
in Figure 3A. Once all MEP amplitudes were recorded, the
data was used for ground truth for MEP modeling and ISI-W
estimation. A series of ISIs whereMEPmeasurements were above
the baseline (i.e., MEP with 100% resting motor threshold TMS)
indicating enhancement was used to determine the effective
ISI-W with sub-threshold TMS.

Note that in the conventional incremental procedure of MEP
data collection, the experimenter in general expected a single
distribution of MEP across ISI, and was allowed to manually
terminate date collection when little or no MEP was observed
after observing a distribution before reaching the longest end of
searching time range of 500 ms. Without manual termination,
a maximum of 600 trials was needed to incrementally sweep
the entire search time range: Each mechanical stimulation took
1 s (1 s × 12 trials) followed by a 2 min rest. Among 12
MEP measurements at a single ISI, first two measurements were
discarded and last 10 measurements were recorded. The first two
measurements were discarded due to potential startle response.
Two 5 min long breaks were given between sessions. As a result,

typical time to collect data from one subject was: (1 s × 12
repetitions + 120 s rest) × 50 intervals + 600 s long rest × 2 =

130 min. By allowing the experimenter to decide and manually
terminate, average number of trials was reduced to 260, which
was still almost an hour.

2.3. Evaluation of Timing Precision of
Tendon Tapping
Mechanical impact timing delay and precision of the tendon
tapping robot were evaluated previously (Kim et al., 2016).
Two types of timing evaluation were conducted by applying
mechanical impact to (1) a force sensor (LCM703-50, Omega
Engineering Inc., Stamford, CT) fixed to a rigid floor and (2) the
forearm of human subjects (a total of four). In the first evaluation,
the force sensor was used to detect the timing location of thit. A
total of 50 trials were performed. In the second measurement of
impact application on human subjects, accelerometer readings
were used to detect the hitting time (thit) as illustrated in
Figure 2C. Data was collected from average of 365 tapping trials
per subject.

As expected, the tapping delay tdelay ranged from 172 to
188 ms for different subjects primarily due to slight differences
in distance between the hammer’s initial position and the
target tendon position. However, within a single subject, highly
repeatability was observed. By offsetting mean time delay
between the subject, timing precision of mechanical impact
application was determined to be 2 ms in STD across all the trials,
and judged that the tapping precision was sufficiently high with
small variability to meet the timing precision of Mstim.

2.4. Statistical Regression of Enhanced
MEP and ISI-W Estimation
A total of four methods have been implemented and compared to
each other: (1) Nonlinear Regression with Gaussian Model (NR),
(2) Support Vector Machine Regression (SVMR), (3) Gaussian
Process Regression (GPR), and (4) Particle Filter (PF). NR is
a widely used regression method that assumes a parametric
nonlinear model of experimental data including biological data
(Motulsky and Christopoulos, 2010). Shapiro-Wilk Test was
applied to the current MEP data. This test verifies the null
hypothesis that the samples came from a normally distributed
population. The mean MEP values at different ISIs were applied
to this test to examine whether the MEP distribution is normal
or not. Measured MEP distributions from eight subjects out of
eleven did not reject the null hypothesis as shown in Figure 3B.
Based on this normality test, a single-Gaussian Model was
adopted as a parametric model to fit the measured MEP profiles
for NR and PF. A two-Gaussian model was tested to see how
two Gaussian peak amplitudes are determined in NR for all
subjects (n = 11) for ten times each. In each trial, a greater
amplitude was labeled as “High” and smaller amplitude was
labeled as “Low” as shown in Figure 3D. Amplitudes were
normalized for each subject for comparison across the subjects.
Amplitude of the Gaussian with a higher amplitude was 6.3
times greater on average than the other Gaussian. In addition,
in 70% of the trials, the amplitude of the second Gaussian
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FIGURE 2 | Timing control diagram of Mstim-induced neuromodulation and measurement of MEP. (A) Sources of time delay in Mstim-based robotic neuromodulation

system. All event timings are based on tStart. (B) Timing descriptions. (C) Representative acceleration and EMG measurement. (D) System configuration diagram.

Main PC operates Mstim and TMS devices based on tvalve and tTMS via a DAQ interface. (E) Enhanced MEP ISI-W with Mstim and sub-threshold TMS. Enhanced

MEP amplitude changes with varying ISI (tTMS-thit ). MEP was measured for ten times at every 5 ms increment of ISI. Effective ISI-w to observe enhanced MEP was 70

ms (from 5 to 75 ms) in this particular subject.

converged to zero, supporting practical usefulness of single-
Gaussian modeling while it would reduce precision to some
extent. SVMR is a nonparametric regression method based on
support vector machine (SVM). GPR is another nonparametric
regression method that utilizes certain base functions that
represent uncertainties in prediction as a Gaussian distribution,
and may resemble the variability of multiple MEP measurements
at a single ISI (Rasmussen and Williams, 2008). Nonparametric
algorithms may be useful to model ISI-MEP data that does
not necessarily fit a Gaussian model and perform regression
with no assumption on the underlying function. On the other
hand, nonparametric methods require many data points and
relatively long processing time. PF was previously implemented

by the authors (Takemura et al., 2018) where 30 particles
were adopted.

The top row of Figure 3A shows the procedure of the
incremental method that incrementally changes the interval
between tTMS and tValve by 5 ms to sweep through the
predefined searching range. PF distributed 30 particles within
the search range as shown in the third figure in Figure 3A.
Each particle specified a certain ISI to observe MEP. Each
particle’s weight was updated based on its MEP measurement.
Based on the locations and weights of particles, particles were
redistributed in the next iteration to update the estimation of
ISI-W. Detailed explanation on PF can be found in Takemura
et al. (2018). NR, GPR, and SVMR first measured MEP for
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FIGURE 3 | Sampling and statistical regression of enhanced MEP for individual ISI-W estimation. (A) MEP sampling procedures for different regression methods to

estimate effective ISI-W. Top: conventional incremental measurement of MEP. Middle: NR/SVMR/GPR. Bottom: PF. (B) Normality test of enhanced MEP

measurements. (C) Example estimation of enhanced MEP by NR. (D) Modeling of enhanced MEP profile with two Gaussian functions by NR. The amplitude of the first

Gaussian function converged significantly greater than the amplitude of the second Gaussian; enhanced MEP profiles may be modeled by a single Gaussian function.

(E) Determination of ISI-W from single-Gaussian fitting in NR and PF. Region within two standard deviations from the mean (i.e., two sigma) was used to determine

ISI-W. (F) Result of ISI-W estimation with seven initial observations by GPR. Horizontal bar represents estimated ISI-W at each iteration. Blue bar on top is ISI-W

determined from the conventional incremental measurement as ground-truth.
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predetermined initial ISIs. ISI-W was estimated in an iterative
fashion as shown in the second figure in Figure 3A. An
acquisition function determined next ISI to observe MEP. This
new observation updated the estimation of ISI-W. Detailed
procedures of all four methods are given in Algorithms 1–4
in Supplementary Material. Figure 3C shows a representative
estimation process with NR for one subject. The Gaussian model
fits more closely to the measured MEP as regression progresses.
In this particular trial, the initial number of observations
was chosen to be 7 shown by red circles in the top plot
of Figure 3C.

MEP amplitudes corresponding to initially chosen ISI values
were recorded and stored in a form of an array. Arrays of
ISI and MEP amplitudes were fed into the NR, SVMR, GPR,
and PF algorithms. Next ISI to evaluate MEP was determined
based on updated prediction, completing one iteration. New ISI
and corresponding MEP were added to the arrays for the next
iteration. This procedure continued until predefined stopping
criteria were met that are given as follows: Variances at the
lower and upper ends of themodeled distribution were evaluated.
Iteration was terminated when variances in last five iterations
of both the lower and upper ends were lower than 50, or
iteration reached a maximum number of 99. The variance of 50
corresponds to 7 ms standard deviation of the last five lower and
upper ends. This is slightly greater than the 5ms increment of
ISI, which tolerates one interval long (5 ms) change of two ends
location. The detailed procedures are explained in Algorithms
1–4 in Supplementary Material.

After the regression of MEP amplitude converged, a threshold
method was applied to find two ends of the Gaussian model
to determine its ISI-W. For a Gaussian distribution, the range
within two standard deviations (i.e., two sigma, or 95%) was
used as an estimation of effective ISI-W as shown in Figure 3E.
0.135 is the value of a normal distribution at two ends. For
the nonparametric SVMR and GPR, the same amplitude of
0.135 was applied to determine the ISI-W for consistency. The
final estimated profiles from these methods had hill-shaped
curves similar to Gaussian curves (see Figure 3C and Figure S1).
Figure 3F shows how estimation of ISI-W progresses with GPR.

Number of observations refers to the number of MEP
measurements before the algorithm stops. Cross correlation
between an estimated MEP curve and measured MEP profile
as the ground-truth was evaluated. A correlation coefficient
was determined using Pearson’s linear correlation coefficient. F1
score was calculated by evaluating true positive, false positive
and false negative. Using the two ends of both estimated ISI-W
and measured ISI-W, F1 score produced a value ranging from 0
to 1 that represented the similarity between the estimated and
measured ISI-W lengths. When the two time windows exactly
matched, F1 score would become 1. Otherwise, F1 score would
take a value <1. Percentage of convergence is the percentage
of trials that have converged before reaching the maximum
iterations of 99.

For these statistical regression estimations, MEPs of
corresponding ISIs were measured and recorded in advance
using the conventional incremental method. During the
statistical regression estimation, the estimation algorithm

retrieved necessary MEP measurements from the pool of data.
Five subjects out of 11 had acceleration measurement of the
hammer motion which could be used to narrow the search time
range. Using this acceleration reading, ISI-W estimation results
were analyzed in two different groups, one without acceleration
measurements (for 11 subjects) and one with acceleration
measurements (for five subjects) which collected 1,895 and 824
data points, respectively. For the group without the acceleration
measurements, the search range was between tValve and the end
of the trial. For the group with the acceleration measurement,
thit detected by the accelerometer was used as the start of the
search range.

3. RESULTS

3.1. Assessment of High-Timing Precision
Tendon Tapping Robot
To characterize timing-dependent transient neuromodulation
due to Mstim, the mechanical tapping device must satisfy
timing precision requirements. Compared with Estim, there are
additional sources of time delay and variability in the developed
pneumatic device, including: (1) air pressure propagation time
in the pneumatic line, (2) pressure development time in the
pneumatic chamber and pressure attenuation, (3) travel time of
the hammer moving from its initial position to the target tendon
position, and (4) non-linear mechanical interaction between
the hammer material and skin/subcutaneous tissues. The sum
of these factors produces a system delay between a pneumatic
valve open command and resultant tendon tapping as illustrated
in Figure 2A.

It should be noted that such delays can be compensated as long
as the delay is repeatable. In other words, the speed of response
of the mechanical tapping device is not important, but its timing
precision is critical for the study of transient neuromodulation
induced byMstim. The developed device was designed to address
this issue. A mean time delay was 195.5 ms with a standard
deviation of 2 ms, which is an order of magnitude smaller than
a typical ISI-W size due to Mstim (Kim et al., 2016), ensuring
high repeatability of mechanical stimulation in time as shown in
Figure S3. Furthermore, the timing of the onset of Mstim can be
observed by using the accelerometer attached on the pneumatic
hammer. Figure 2B shows all timing events. Figure 2C shows
representative measurements of acceleration and EMG of the
procedure. Note that for Mstim-induced neuromodulation, ISI
is defined as the timing difference between tHit and tTMS.

3.2. Effective ISI for Observing
Mstim-Enhanced MEP
Instantaneous and transient neuromodulation of M1 was
explored by observing the emergence of the combined effects of
sub-threshold Mstim to a wrist flexor tendon and sub-threshold
TMS of M1 for a wrist flexor muscle (flexor carpi radialis) as
shown in Figure 1C. Sub-threshold TMS (90% of resting motor
threshold) was applied targeting the muscle at various ISI from
Mstim, using the tendon tapping robot (Kim et al., 2016). See
section Experimental Procedure for details. When sub-threshold
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Mstim or TMS alone was applied, the absence of an evoked
response was confirmed as shown in Figure 1E top and bottom
traces. With a combination of sub-threshold Mstim and TMS at
various ISIs with 5ms steps, evoked responses were observed (red
arrows in the 2nd–14th traces) when the range of time interval
from the Mstim robotic command to TMS was 60 ms (i.e., from
245 to 305 ms) in this setup. Within this 60 ms window, the
combined effect of Mstim and sub-threshold TMS is substantial
enough to activate the motor neurons to observe enhanced MEP.
Since application of Mstim solely does not produce a long latency
reflex response (Lacey et al., 2013), sub-threshold TMS was
paired with Mstim to observe enhanced MEP due to Mstim in
the muscle of interest Figure 2E shows a representative plot of
enhanced MEP vs. ISI with sub-threshold TMS in one subject
showing an effective ISI-W of 70 ms (subject 4). The measured
effective ISI-W lengths of each individual are listed in Figure 3B.
These lengths were determined based on MEPs measurement at
ISIs using the conventional incremental method and individual
ranges of ISI-W were variable as shown in the Figure 3B (mean
108 ms, std 45 ms). These measured effective ISI-W were used
to compare and evaluate the performance of estimation methods
(i.e., F1 score).

The length of effective ISI-W due to Mstim is comparable
to our observation of the reflex-based latency window size
in a hand muscle (50 ms) (Rothwell et al., 1980; Shinohara
et al., 2005). When sub-threshold TMS was applied with sub-
threshold Estim of the median nerve, however, the effective
interval window size was 15–20 ms (Lacey et al., 2013) which
is supported by previously reported work Poon et al. (2008).
Hence, the effective ISI-W size with Mstim appears to be larger
than Estim, (i.e., more dispersed response), possibly because
of desynchronized activation of mechanoreceptors (e.g., muscle
spindles) in response to Mstim. Mechanical peripheral stimulus
produces a dispersed afferent volley in comparison to the impulse
response to electrical stimulation. While this has been known
since at least 1983 (Burke et al., 1983), limited work investigates
the mechanism for this diffuse firing or its impact on stimulation
based neuromodulation. These results confirm the presence of
Mstim-induced transient neuromodulation of M1 and assures
the importance of determining the effect in comparison
to Estim.

3.3. Optimal Number of Initial Observations
NR, SVMR, and GPR procedures require initial data points
(initial observation of MEP) to begin regression that must be
specified by the user. The choice of the initial number of
observations, or nini, impacts the performance. The nominal
searching period was given as [tvalve tvalve+500 ms]. For example,
evenly distributed initial ISIs within the searching period of 500
ms would be 500, 650, 850, 1,000 ms when nini = 4. With the use
of the accelerometer, the range can be reduced to [thit tvalve+500
ms], which may improve the performance.

Figures 4A–C show comparisons of F1 score and number of
total observations until convergence with nini from 2 to 9 with
and without the accelerometer for NR, SVMR, and GPR. For
the PF, except for the high rate of convergence as shown in
Figure 5D, PF did not perform better than the other methods.

In particular, PF still required a significantly greater number of
trials. For this reason, the figure evaluated the initial number
of observations only for NR, SVMR and GPR. For PF, 30
particles were used from our previous study (Takemura et al.,
2018) that resulted in the best estimation performance among
five different numbers of particles. In each graph, statistical
significance was evaluated between neighboring bar plots within
the same condition: without ACC and with ACC. For NR shown
in Figure 4A, F1 score increased significantly from nini=7 to
nini=8 without ACC and increased from nini = 6 to nini = 9 with
ACC. Total number of observations was low for nini < 7 without
ACC and nini < 5 with ACC. For SVMR shown in Figure 4B,
F1 score took the highest value for nini = 4 without ACC and
for nini = 3 with ACC. Total number of observations was low
between nini = 4 and nini = 8 without ACC and low after nini > 3
for with ACC. For GPR shown in Figure 4C, F1 score took the
highest value for nini=6 without ACC and nini <8 with ACC.
Total number of observations was low for nini >2 with ACC and
low for nini <8 with ACC.

Practically at least 1–2 non-zero enhanced MEP responses
must be observed as initial data points for a regression algorithm
to successfully progress. Given average ISI-W of 108 ms in this
dataset, nini = 6 or 7 would meet this requirement.

3.4. Reduction of Mstim-TMS Trials for
Individual ISI Window Estimation
Previous studies utilized a fixed ISI or a few manually-chosen
ISIs (Stefan, 2000; Kumpulainen et al., 2012) to characterize
neural responses associated with Estim. It should be noted that
these ISIs were mostly determined based on empirical knowledge
of neural conduction times. Other previous studies (Wolters
et al., 2003, 2005) incrementally varied the interval between
TMS and Estim to identify an ISI which would achieve the
highest long-term potentiation inMEP amplitude. The presented
work applied statistical sampling and regression methods to
reduce trials for the estimation of individual ISI-MEP profiles
by applying systematically chosen ISIs between Mstim and
TMS, instead of incrementally sweeping a predetermined range
of ISI.

In addition to individual differences, usually large variability
in MEPs is observed in a single subject. ISI-W estimation
methods must consider the stochastic nature of the human
neuromotor system responses as shown in Figure 2E where
large variation in MEP amplitudes was observed. Particle
filtering technique was applied earlier (Takemura et al.,
2018) in which particles determined when to apply TMS
relative to Mstim to update an estimate of the MEP profile
in an iterative manner. ISI-W estimation based on particle
filtering showed potential to reduce the required number of
observations. Other statistical regression methods were applied
for further improvement of ISI-W estimation performance as
shown in Figure 3A. In particular, a performance comparison
was conducted between four statistical estimation methods:
(1) Nonlinear Regression with Gaussian Model (NR), (2)
Support Vector Machine Regression (SVMR), and (3)
Gaussian Process (GP), in addition to previously reported,
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FIGURE 4 | Comparison of regression performance with different numbers of initial observations. (A) NR with F1 score (left) and total number of observations (right).

There is no data for nini=2 and 3 since initial data points are too few to run the algorithm. (B) SVMR with F1 score (left) and total number of observations (right). (C)

GPR with F1 score (left) and total number of observations (right).

(4) Particle Filter (PF). Details are described in section Materials
and Methods.

All of the regression methods required a certain
number of initial observations distributed within an initial
guess of ISI-W. When the accelerometer is available,
it can detect the onset of Mstim or thit . The period
between tvalve and thit can be excluded from regression
as facilitation must occur after thit . The use of the
accelerometer helps to narrow the searching range that
may improve performance.

Performance was evaluated based on (1) total number
of observations, (2) cross correlation, (3) F1 score, and (4)
percentage of convergence. Four regression methods and the
conventional method were compared using a significance level
(alpha) of 0.05 with the null hypothesis that there is no

significant difference between methods. Effect sizes are listed in
the Supplementary Material.

Number of observations required for convergence is shown
in Figure 5A. All the regression methods significantly reduced
the number of observations compared with the conventional
incremental method that required an average of 272 observations
when the experimenter was allowed to manually terminate
data collection. While PF improved the performance, PF still
required many more observations and produced greater variance
than NR, SVMR, and GPR did. On average, NR, SVMR, and
GPR required an order of magnitude smaller observations than
PF and the conventional incremental method with smaller
variance. The use of the accelerometer further improved the
performance by reducing number of observations up to 56%.
The result of cross correlation analysis is shown in Figure 5B
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FIGURE 5 | Comparison of performance on ISI-W estimation between different regression methods. (A) Numbers of total observations to obtain final estimation of

ISI-W. For the conventional incremental measurement method (center bar), the total number of observations varied allowing experimenter’s judgement to terminate the

trial where a maximum of 600 observations were required to fully sweep the predetermined search window without manual termination. In the left half, bars show

results without the use of the accelerometer (ACC) (n = 11). In the right half, bars show results with the use of the accelerometer (n = 5). (B) Correlation analysis of

MEP profile estimation. Correlation coefficients comparing estimated MEP profiles and MEP measurements as ground-truth. Initial number of observations, 6, 7, and

7, were used for NR, SVMR, and GPR, respectively (n = 11). (C) Performance of ISI-W estimation evaluated by F1 scores. Data is displayed in the same manner as in

(A). Measurements from the conventional incremental method were used as ground-truth data shown in the center. (D) Percentage of convergence.

evaluating how much estimated MEP profiles were close to the
profiles from full measurements as the ground truth. GPR’s
correlation coefficient was 31.67% higher than that of NR
(p < 0.05), and SVMR’s correlation coefficient was 16.67%
higher than that of NR (p < 0.05). There was no statistical
significance observed between SVMR and GPR. F1 score would
be an appropriate evaluation metric to evaluate the accuracy
of ISI-W estimation as shown in Figure 5C. GPR obtained F1
score greater than 0.8. The use of the accelerometer overall
improved the performance. As shown in Figure 5D, only a small
number of cases did not converge and reached the maximum

number of iterations, showing satisfactory robustness to different
data sets.

4. DISCUSSION

Individual differences in physiological characteristics (See Paired
Associative Stimulation for Neural Facilitation section) may
result in variability in effective ISI-W in individuals. With sub-
threshold TMS and Mstim, a single distribution of MEP across
ISI is expected. Parametric statistical regression methods were
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applied to find effective ISI-w with the expectation of single
distribution. The estimation results were close to the measured
ISI-W, capturing individual variability.

Due to the generally large variability in effective ISI-W
in individuals, an adjustment procedure must be performed
before actual neuroscientific research in every single subject.
The method of evaluating ISI requires many data samples and
times. However, to the best of the author’s knowledge, there
is no study reporting determination of effective ISIs efficiently
for individuals. These statistical regression methods would
provide ways to determine effective ISIs for each individual
by monitoring the subjects’ MEP with reduced number of
stimulation trials.

4.1. Gaussian Modeling of Mstim-Induced
MEP Enhancement
For Estim-induced neuromodulation in terms of conditioned
stimulation, other groups reported correlations between ISI and
MEP amplitudes (Chen et al., 1999; Tokimura et al., 2000;
Sailer, 2003; Bikmullina et al., 2009; Kojima et al., 2014).
Mathematical representation of MEP induced by peripheral or
cortical stimulation has been reported in the literature. For
example, a statistical model of MEP induced by electrical pulse
trains to simulate the firing pattern of MEPs was proposed (Ma
et al., 2011). Another work developed a regression MEP model
with different TMS intensities (i.e., input-output curve) (Goetz
and Peterchev, 2012; Goetz et al., 2014). Gaussian modeling was
adopted to fit the ISI-MEP relationship with a different number
of Gaussian functions (Delvendahl et al., 2012; Cirillo and Perez,
2015; Cirillo et al., 2015; Kallioniemi et al., 2018; Mohammadi
et al., 2018).

To the best of our knowledge, there are even fewer works that
studied ISI-MEP association with Mstim and its modeling by
using an automated tendon-tapping robot. The majority of MEP
profiles associated with ISI reported in the literature exhibited
a single MEP distribution as well as the ones collected in this
paper (see Supplementary Material for raw MEP data) along ISI
as shown in Figure 2E. While the objectives of Gaussian curve-
fitting in the past studies are different from our objective of time-
efficient ISI-W estimation, the use of Gaussian models seems
a reasonable choice. As far as Mstim with sub-threshold TMS
for effective ISI-W estimation is concerned, a single-Gaussian
model may be sufficient for parametric modeling of enhanced
MEP profiles.

With an oversimplified single Gaussian model, the speed of
convergence would be improved and issues associated with over-
fitting would be resolved. This simplified methods, PF and NR,
were suitable for robust estimation of individual ISI-W as shown
in Figure 5D. On the other hand, nonparametric methods,
SVMR and GPR, were applied, considering variability in MEP
profiles. They resulted in ISI-W estimation with better precision.

4.2. Limitation of This Study
In this study, effective ISI-Ws were estimated for each individual
using four different methods and the results were evaluated.
Since this study evaluated the overall estimation performance
across all subjects, potential between-subject variability may

not have been fully accounted for. Four estimation methods
could be further optimized by tuning parameters to improve
estimation performance.

5. CONCLUSION

In this work, a robotically enabled experimental procedure was
applied for the study of neuromodulation induced by peripheral
mechanical stimulation. This estimation procedure was enabled
by high timing precision of the tendon tapping robot (STD
< 5 ms). The size of ISI-W that observed enhanced MEP
with Mstim by means of tendon tapping was found to be
larger than that with sub-threshold Estim of the median nerve,
possibly due to different involvement of mechanoreceptors. A
single-Gaussian model was applied to enhanced MEP profiles
for parametric regression. The combination of robotic tendon
tapping and statistical regression can reduce the number of
observations to individually determine effective ISI to observe
enhanced MEP up to 6.5 % (NR with ACC), leading to reduction
of physical burden on the subject who would otherwise receive
many stimulation trials with high intensity for more than 2 h.
Parametric models (NR and PF) that utilized a single-Gaussian
model achieved high convergence. Regarding which estimation
method should be used, the presented comparison indicated
that the considered estimation methods performed differently in
terms of various evaluation metrics. While there was no single
method that outperformed the other methods, GPR would be
a reasonable choice to achieve an ISI-W length close to the
measured ISI-W length, resulting in a high F1 score. If the
priority is the reduction of the total number of stimulation trials
while achieving a high rate of convergence, NR should be chosen.
Individual estimation methods could be further optimized by
tuning parameters.

This line of research is expected to produce a reliable
tool, which will clarify unique neuromodulations of the motor
cortex with an application of robotic Mstim to muscles, in
comparison to the conventional Estim of a peripheral nerve,
and its paired central stimulation. The paired stimulation
technique may be extended to study not only excitatory
neuromodulation, but also inhibitory neuromodulation, when
applied with supra-threshold TMS. This technique may also
be used to evaluate neural plasticity with Mstim-TMS paired
stimulation. Statistical regression methods would be able to
capture individual effective ISI-W that is expected to have
larger variability in individuals with neurological disorders
compared with healthy individuals. The outcomes might allow
for evidence-based implementation of mechanical stimulation
paired with brain stimulation into individually tailored robotic
rehabilitation for hemiparetic stroke survivors and possibly
other disabilities.
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