
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16640  | https://doi.org/10.1038/s41598-022-20863-8

www.nature.com/scientificreports

Efficacy of ultrasound endoscopy 
with artificial intelligence 
for the differential diagnosis 
of non‑gastric gastrointestinal 
stromal tumors
Yosuke Minoda1,2, Eikichi Ihara1,3*, Nao Fujimori1, Shuzaburo Nagatomo1, Mitsuru Esaki1, 
Yoshitaka Hata1, Xiaopeng Bai1, Yoshimasa Tanaka1, Haruei Ogino1, Takatoshi Chinen1, 
Qingjiang Hu4, Eiji Oki4, Hidetaka Yamamoto5 & Yoshihiro Ogawa1

Gastrointestinal stromal tumors (GISTs) are common subepithelial lesions (SELs) and require 
treatment considering their malignant potential. We recently developed an endoscopic ultrasound-
based artificial intelligence (EUS-AI) system to differentiate GISTs from non-GISTs in gastric SELs, 
which were used to train the system. We assessed whether the EUS-AI system designed for diagnosing 
gastric GISTs could be applied to non-gastric GISTs. Between January 2015 and January 2021, 52 
patients with non-gastric SELs (esophagus, n = 15; duodenum, n = 26; colon, n = 11) were enrolled. 
The ability of EUS-AI to differentiate GISTs from non-GISTs in non-gastric SELs was examined. The 
accuracy, sensitivity, and specificity of EUS-AI for discriminating GISTs from non-GISTs in non-gastric 
SELs were 94.4%, 100%, and 86.1%, respectively, with an area under the curve of 0.98 based on the 
cutoff value set using the Youden index. In the subanalysis, the accuracy, sensitivity, and specificity 
of EUS-AI were highest in the esophagus (100%, 100%, 100%; duodenum, 96.2%, 100%, 0%; colon, 
90.9%, 100%, 0%); the cutoff values were determined using the Youden index or the value determined 
using stomach cases. The diagnostic accuracy of EUS-AI increased as lesion size increased, regardless 
of lesion location. EUS-AI based on gastric SELs had good diagnostic ability for non-gastric GISTs.

Gastrointestinal stromal tumors (GISTs) are common subepithelial lesions (SELs) that are detected by screen-
ing endoscopy in approximately 0.4–3% of cases1–3. It is widely accepted that GISTs should be treated because 
of their malignant potential4–6. Although endoscopic ultrasound (EUS) has been reported as the most suitable 
modality for the diagnosis of SELs, it remains technically impossible to distinguish GISTs from non-GISTs using 
EUS alone5,7; thus, sampling of lesion tissue is required, such as via EUS-guided fine-needle aspiration/biopsy 
(EUS-FNAB)4–6,8–11.

Recently developed artificial intelligence (AI) techniques using deep learning methods, such as convolu-
tional neural networks (CNNs), have been increasingly used in several medical fields. Accumulated evidence 
has shown that AI is a useful tool in clinical practice12–15. We recently reported the usefulness of an EUS-based 
AI system (EUS-AI) for distinguishing GISTs from non-GISTs in the stomach, where gastric SELs were used to 
train EUS-AI16. It is possible that EUS-AI will also be useful in the differential diagnosis of non-gastric GISTs if 
an EUS-AI system designed to evaluate each part of non-gastric SELs can be built. However, in order to build 
such EUS-AI systems, a large number of EUS SEL images, including GISTs, occurring in respective parts of 
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the gastrointestinal tract are required. Indeed, substantial effort is required to collect non-gastric SEL images, 
including GISTs, since most SELs (and approximately 70% of gastrointestinal GISTs) occur in the stomach17. The 
first step is to assess whether EUS-AI designed for the diagnosis of gastric GISTs can be applied to non-gastric 
GISTs. Thus, the objective of the present study was to determine the diagnostic ability of EUS-AI that had been 
previously created based on gastric SELs for non-gastric SELs.

Results
225 SEL cases was enrolled in this study. 52 patients with non-gastric SEL (15 esophageal, 26 duodenal, and 11 
colon), including 20 patients diagnosed by EUS-FNAB or biopsy alone, were used as test cases (Table 1). The 
median size of the SELs enrolled in this study was 21.5 mm, and the efficacy of EUS-AI, which was constructed 
using 173 previously reported gastric SELs16, was assessed in two test cases: the abovementoned all 52 cases and 
32 cases who underwent surgery with postoperative diagnosis of GIST in 31 cases and non-GIST in remaining 
only one excluding 20 cases being diagnosed by EUS-FNAB or biopsy alone.

When evaluated in all 52 cases, the accuracy, sensitivity, and specificity of EUS-AI for discriminating GISTs 
from non-GISTs in the gastrointestinal tract other than the stomach were 94.4%, 100%, and 86.1%, respectively. 
The receiver operating characteristic curve of EUS-AI for the diagnosis of non-gastric GISTs and its AUC (0.98, 
high accuracy) are shown in Fig. 1. When evaluated in 32 cases where the final pathology diagnosis was made 
with surgical specimens, the accuracy, sensitivity, and specificity of EUS-AI was 96.9%,100%, and 0%, respec-
tively, and its AUC was 0.90 (high accuracy). The null specificity was obtained because only one of non-GIST 
cases underwent surgery in this study population. In contrast, the diagnostic accuracy of EUS-FNAB was 100% 
for the 29 patients who underwent surgery after preoperative diagnosis had been made by EUS-FNAB.

In the subanalysis, the diagnostic abilities of EUS-AI for non-gastric GISTs in the esophagus, duodenum, and 
colon is analyzed using the abovementoned all 52 cases and summarized in Table 2. The accuracy, sensitivity, 
and specificity of EUS-AI for distinguishing GISTs from non-GISTs were 100%, 100%, and 100%, respectively, 
in the esophagus, 96.2%, 100%, and 0%, respectively, in the duodenum, and 90.9%, 100%, and 0%, respectively, 
in the colon based on the cutoff value set for each part of the gastrointestinal tract using the Youden index 
(Table 3). There was no difference in diagnostic accuracy and sensitivity for non-gastric GISTs in the esophagus, 
duodenum, and colon between the abovementioned Youden index and the cutoff value of 0.94 set for the stom-
ach as previously reported. The AUC for the diagnostic ability of EUS-AI for non-gastric GISTs including the 
esophagus, duodenum, and colon were 1.0 (high accuracy), 0.96 (high accuracy), and 0.80 (moderate accuracy), 
respectively (Table 3).

SEL cases that were incorrectly diagnosed by EUS‑AI.  Three cases were incorrectly diagnosed by 
EUS-AI as follows: esophageal leiomyoma 15 mm in size with mixed hypoechoic and hypoechoic features on 
EUS, duodenal aberrant pancreas (Fig. 1B), and colonic appendiceal myxoma (Fig. 1C).

Relationship between the diagnostic accuracy of EUS‑AI for non‑gastric GISTs and lesion 
size.  The relationship between the diagnostic accuracy of EUS-AI and lesion size is shown in Fig. 2A. The 
diagnostic accuracy of EUS-AI increased as the lesion size increased, regardless of the lesion location (Fig. 2B).

Discussion
This study showed that EUS-AI is useful for the differential diagnosis of GISTs in the gastrointestinal tract other 
than the stomach, although it was trained for gastric SELs. Furthermore, the cutoff value of EUS-AI for distin-
guishing between GISTs and non-GISTs in the stomach can also be applied to non-gastric GISTs.

Even including the cases diagnosed by EUS-FNAB or biopsy alone, the diagnostic accuracy and sensitivity of 
EUS-AI for non-gastric GISTs were 90–100% and 100%, respectively, which are comparable to those of gastric 
GISTs (90% for accuracy and 100% for sensitivity) that we previously reported16, but also comparable to other 
AI systems with different algorithms for SELs of the upper gastrointestinal tract18–20. The diagnostic accuracy 
of EUS-AI for non-gastric GISTs in different parts of the gastrointestinal tract increased with lesion size, which 
was also consistent with the findings in the stomach, indicating that the diagnostic ability of EUS-AI depends 

Table 1.   Patient and lesion characteristics for test cases. Values are presented as n, n (%), or median (range). 
GIST, gastrointestinal stromal tumors.

Number of cases 52

Sex, male/female 33/19

Age, years 21.5 (32–74)

Lesion size, mm 21.5 (8.0–100)

Histological type and number of cases

GIST 36 (93.3%)

Leiomyoma 14 (6.7%)

Aberrant pancreas 1 (3.8%)

Appendiceal mucocele 1 (9.1%)
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on the lesion size regardless of tumor location. In addition, there was no significant difference in the diagnos-
tic accuracy and sensitivity of EUS-AI for non-gastric GISTs between the cutoff value set for different part of 
the gastrointestinal tract using the Youden index and that of the stomach as we previously determined. These 
findings suggest that once the EUS-AI system is built to differentiate GISTs from non-GISTs in one part of the 
gastrointestinal tract, it can be applied to other parts of the gastrointestinal tract.

Interestingly, the diagnostic accuracy of EUS-AI was similar despite the large difference in the frequency of 
GISTs between the esophagus and other sites. This suggests that the frequency of the disease is not involved in 
EUS-AI diagnosis; instead, the EUS imaging findings themselves are important in diagnosis. EUS images of GISTs 
tend to show typical changes such as cystic degeneration with increasing lesion size21–23. It is possible that the 
accuracy of the EUS-AI system can be further improved by analyzing the pixel pattern of GISTs in the EUS image.

If the EUS-AI system constructed based on gastric SELs is established as the primary diagnostic tool not 
only for gastric GISTs but also for non-gastric GISTs, it will result in several advantages. First, EUS-AI is more 
feasible than EUS-FNAB for the diagnosis of duodenal SELs. Reports indicate that the diagnostic accuracy of 
EUS-FNAB for duodenal SELs is unsatisfactory owing to poor endoscope operability due to the unique duode-
nal anatomical structure of the narrow lumen and duodenal fold, although the malignant potential of duodenal 
GISTs is generally higher than that of gastric GISTs24. Indeed, it is much easier to obtain EUS images for EUS-AI 
than for EUS-FNAB. Second, EUS-AI can be safely applied without an invasive sampling process such as EUS-
FNAB, and the differential diagnosis of GISTs can be automatically made, which is expected to reduce the risk 
of adverse events such as bleeding and infection. Third, EUS-AI can be used at any institution without the need 
for special endoscopic techniques, such as EUS-FNAB. This should lead to the early diagnosis and treatment of 
non-gastric GISTs, which are highly malignant25.

This study has some limitations. First, it was retrospective. Second, all EUS images were obtained from a 
single center. Third, the number of SELs was relatively small. Finally, we enrolled the case where the pathologi-
cal diagnoses were made not only with surgical specimen but also with the samples obtained by EUS-FNAB or 
biopsy because the cases being diagnosed as benign tumors such as leiomyoma by EUS-FNAB or biopsy do not 

Figure 1.   Diagnostic ability of EUS-AI. (A) The receiver operating characteristic curve for the diagnostic 
ability of EUS-AI for non-gastric GISTs is shown. Fifty-two patients with non-gastric SELs were analyzed using 
EUS-AI. For each case, a diagnosis of GIST or non-GIST was made, and the probability of GIST was evaluated. 
(B) EUS image of a duodenal aberrant pancreas, which was misdiagnosed as GIST by EUS-AI. The lesion 
was judged to originate from the muscle layer (white arrow). (C) EUS image of colonic appendiceal mucosal 
retention, which was misdiagnosed as GIST by EUS-AI. EUS-AI, endoscopic ultrasound-based artificial 
intelligence; GIST, gastrointestinal stromal tumors; SEL, subepithelial lesion.
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undergo surgery. It might cause a bias, however, we consider it is acceptable since the diagnostic accuracy of 
EUS-FNAB or biopsy in our institution could be sufficiently high. A prospective multicenter study should be 
required to verify the findings of the present study.

In conclusion, an EUS-AI system based on gastric SELs demonstrated good diagnostic ability for non-gastric 
GISTs. This system is likely to contribute to the diagnosis of gastrointestinal SELs in the future.

Methods
Study design and inclusion/exclusion criteria.  This retrospective study was approved by the Kyushu 
University ethical review board on April 2021 (approval study number: 2021-190), and the requirement for 
obtaining written informed consent from patients was waived. All steps of this study were performed in accord-
ance with relevant guidelines. A total of 225 SELs were included in this study, with the following inclusion crite-
ria: patients with (a) non-gastric SELs who underwent EUS performed by EUS experts in our hospital between 
January 2015 and January 2021; (b) non-gastric SELs suspected to arise from the muscle layer of the gastroin-
testinal tract on EUS images, and (c) non-gastric SELs with available histopathological diagnoses. We excluded 
cases with poor-quality EUS images caused by air or strong artifacts.

EUS images, lesion size, and pathological diagnosis.  All EUS images were acquired by EUS experts 
with at least 5  years of experience in EUS procedures using conventional echoendoscopes (GF-UE260-AL5, 

Table 2.   Patient and lesion characteristics of esophageal, duodenal, and colonic lesions. Values are presented 
as n, median (range), or n (%). GIST, gastrointestinal stromal tumors.

Esophagus

Number of cases 15

Sex, male/female 11/4

Age, years 45.5 (32–68)

Lesion size, mm 20.0 (8.0–55)

Histological type and number of cases

 Leiomyoma 14 (93.3%)

 GIST 1 (6.7%)

Duodenum

Number of cases 26

Sex, male/female 12/14

Age, years 65 (35–81)

Lesion size, mm 21.0 (13–39)

Histological type and number of cases

 GIST 25 (96.2%)

 Aberrant pancreas 1 (3.8%)

Colon

Number of cases 11

Sex, male/female 10/1

Age, years 55 (33–74)

Lesion size, mm 35.0 (12–100)

Histological type and number of cases

 GIST 10 (90.9%)

 Appendiceal mucosal retention 1 (9.1%)

Table 3.   Diagnostic ability of EUS-AI according to cutoff values. AUC, area under the curve; EUS-AI, 
endoscopic ultrasound-based artificial intelligence; SEL, subepithelial lesion.

SEL location Cases used to set the cutoff value Cutoff values Accuracy (%) Sensitivity (%) Specificity (%) AUC​

Esophagus
Esophageal 0.997 100 100 100 1.0

Gastric 0.94 100 100 100

Duodenum
Duodenal 0.93 96.2 100 0 0.96

Gastric 0.94 96.2 100 0

Colon
Colonic 0.93 90.9 100 0 0.80

Gastric 0.94 90.9 100 0



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16640  | https://doi.org/10.1038/s41598-022-20863-8

www.nature.com/scientificreports/

GF-UCT260, TGF-UC260J; Olympus Corporation, Tokyo, Japan) or mini-probes (UM-3R, UM-2R; Olympus 
Corporation). All echoendoscopes and mini-probes were used while they were connected to conventional EUS 
processors (Prosound SSD α-75 scanner, Prosound SSD α-5 scanner: Hitachi Aloka, Tokyo, Japan; EU-ME2; 
Olympus Corporation). The maximum diameter of the lesions was measured using the EUS images. The his-
tological diagnoses of the specimens obtained from EUS-FNAB, endoscopic biopsy, or surgical operation were 
made by three pathologists, including at least one certified by the Japanese Society of Pathology. No interob-
server disagreement between the pathologists was reported for the diagnosis of SELs used in this study.

AI training and construction of the EUS‑AI system.  The training method for the AI has been previ-
ously described16. Briefly, EUS images from 173 cases with gastric SELs were prepared to train the AI according 
to the following procedures. Each EUS image was trimmed to only the lesion to allow the AI to recognize the 
lesions. A total of 2718 images from 173 SELs in 173 cases (1729 images in 112 cases with GIST and 989 images 
of 61 non-GISTs, including 43 leiomyomas, 7 schwannomas, 7 ectopic pancreases, 2 lipomas, and 2 inflamma-
tory changes) were prepared for the training data set.

Inverted forms and rotated images were prepared, with the images being rotated at 15° intervals; each rotated 
image was saved as a new image. The EUS-AI system was created on an AI-specific computer containing a 
GeForce GTX 1080 graphics processing unit (NVIDIA, California, USA), a core i7-8700 central processing unit 
(Intel, California, USA), and a deep analyzer graphical user interface-based deep learning tool (GHELIA, Tokyo, 
Japan). Xception was selected as the CNN-based deep learning model, and an adaptive moment estimation 
(ADAM) algorithm was selected to optimize the learning procedure.

Diagnostic ability of EUS‑AI for non‑gastric GISTs.  All EUS images for each case were supplied to the 
EUS-AI to make a diagnosis (Fig. 3). The EUS-AI estimated the probability that the lesion was a GIST on a scale 
of 0 to 1.0. The final diagnosis of GIST was made if the probability that the lesion was a GIST was higher than the 
cutoff value, which was set using the Youden index. The final diagnoses were assessed, and the diagnostic abili-
ties of the EUS-AI system (accuracy, sensitivity, specificity, and area under the curve [AUC]) were evaluated. The 
diagnostic ability according to the AUC was defined as follows: 1.0–0.9 as high accuracy, 0.9–0.7 as moderate 
accuracy, and 0.7–0.5 as poor accuracy. All statistical analyses were performed using JMP software version 15.1 
(SAS Institute, Cary, NC, USA). The diagnostic yield was also confirmed in cases where the postoperative patho-

Figure 2.   Relationship between the diagnostic ability of EUS-AI for non-gastric GISTs and lesion size. 
(A,B) The relationship between the diagnostic accuracy of EUS-AI and lesion size in the 52 cases with non-
gastric SELs (A), and in each part of the gastrointestinal tract (esophagus; n = 15, duodenum; n = 26, colon; 
n = 11) (B) was examined using a logistic regression model. The concordance rates between the diagnoses 
of the abovementioned conditions and pathological results were determined. The cases with colorectal SELs 
had missing values between 0 and 12 mm because of the insufficient number of cases. EUS-AI, endoscopic 
ultrasound-based artificial intelligence; GIST, gastrointestinal stromal tumors; SEL, subepithelial lesion.
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logical diagnosis was made in addition to determination of the diagnostic yield of EUS-AI using all non-gastric 
SEL cases. In addition, we evaluated the diagnostic accuracy of EUS-FNAB for the SEL cases who underwent 
surgery after preoperative diagnosis had been made by EUS-FNAB to determine that the pathological diagnosis 
made by EUS-FNAB is reliable in this study.

Diagnostic ability of EUS‑AI for non‑gastric GISTs in parts of the gastrointestinal tract.  To 
confirm whether there were any differences in the diagnostic ability of EUS-AI between the cutoff value set for 
each part of the gastrointestinal tract using the Youden index and that of the value set for the stomach (0.94) as 
we previously determined, the diagnostic abilities (accuracy, sensitivity, specificity, and AUC) calculated based 
on the two types of cutoff values were compared.

Relationship between lesion size and diagnostic ability.  To evaluate the relationship between the 
diagnostic ability of EUS-AI and lesion size, a subanalysis was conducted using the test sets, via a logistic regres-
sion model in the JMP software. In the logistic regression model, the independent variable was whether the 
diagnosis was correct, while the lesion size was set as the dependent variable.

Data availability
Of the datasets generated and analyzed in this study, data to the extent permitted by the Kyushu University Ethical 
Review Board are available from the corresponding authors upon reasonable request.
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