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Abstract 

Objectives: To explore the heterogeneous disability trajectories and construct explainable machine learning models 
for effective prediction of long-term disability trajectories and understanding the mechanisms of predictions among 
the elderly Chinese at community level.

Methods: This study retrospectively collected data from the Chinese Longitudinal Healthy Longevity and Happy 
Family Study between 2002 and 2018. A total of 4149 subjects aged 65 + in 2002 with completed activities of daily liv-
ing (ADL) information for at least three waves were included. The mixed growth model was used to identify disability 
trajectories, and five machine learning models were further established to predict disability trajectories using epide-
miological variables. An explainable approach was deployed to understand the model’s decisions.

Results: Three distinct disability trajectories, including normal class (77.3%), progressive class (15.5%), and high-
onset class (7.2%), were identified for three-class prediction. The latter two were further merged into abnormal class, 
accompanied by normal class for two-class prediction. Machine learning, especially random forest and extreme gradi-
ent boosting achieved good performance in both two tasks. ADL, age, leisure activity, cognitive function, and blood 
pressure were key predictors.

Conclusion: The findings suggest that machine learning showed good performance and maybe of additional value 
in analyzing quality indicators in predicting disability trajectories, thereby providing basis to personalize intervention 
measures.
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Introduction
Disability has become a global problem characterized 
by restrictions on independent activities of daily living, 
which greatly reduces the individual’s social adaptability 
and aggravates the economic burden [1–3]. The elderly 

are more likely to be accompanied by disability due to the 
decline of body function, the high incidence of diseases 
such as cerebrovascular diseases and rheumatoid arthri-
tis, and the lack of necessary rehabilitation and self-care 
knowledge [4]. With rapid aging, the disabled population 
is also expanding. In China, the disability rate of people 
over 60  years old is about 26.4%, which is higher than 
that in the UK (18.3%) and in the US (15.6%) [5].

Disability level is constantly changing with age 
increases, especially for older adults [6]. In recent years, 
lots of studies [7–16] started to explore the distinct pro-
file of disability trajectories in the elderly population and 
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showed significant implications for developing personal-
ized interventions for potential vulnerable older adults. 
For example, the pattern of disability trajectories is 
deeply explored among older adults in the United States 
[12, 14]. While trajectories of disability are yet to be fully 
investigated in older Chinese. With the development of 
health management and behavioral intervention, it is 
particularly important to identify the high-risk popula-
tions for developing unfavorable disability trajectories 
and take appropriate prevention measures in advance.

Machine learning (ML) is composed of a series of 
ingeniously conceived algorithms. It obtains features 
from large-scale data sets and automatically learns the 
internal patterns of data without any assumptions [17]. It 
is helpful to find complex nonlinear relationships in high-
dimensional data. With the development of algorithms 
and the improvement of computing power, ML has been 
widely used in healthcare. Many studies have shown 
that ML methods can effectively improve the accuracy 
of disease diagnosis and prognosis prediction [17, 18]. 
Therefore, making full use of the advanced ML methods 
will help to improve the accuracy of disability trajectory 
prediction. However, most ML models are black-box 
models with defects in the visualization of intermediate 
processes and interpretation of results [19]. So its appli-
cation in real-world clinical practice such as risk predic-
tion models to assist medical decision-making is limited 
[20]. To overcome this problem, SHapley Additive exPla-
nations (SHAP) combined with the ML algorithms are 
performed for local and global interpretability analysis 
which provide intuitive explanations for risk prediction 
and are meaningful for early intervention [21].

In this context, this study focused on three issues: first, 
mixed growth model (GMM) was used to describe the 
heterogeneity of disability trajectories over a 16-year 
period among the 65 + adults of the Chinese Longitudi-
nal Healthy Longevity and Happy Family Study. Second, 
under a consideration of feature selection (least absolute 
shrinkage and selection operator, LASSO), ML algo-
rithms, namely logistic regression (LR), support vector 
machine (SVM), artificial neural network (ANN), and 
two ensemble learning methods of random forest (RF) 
and eXtreme Gradient Boosting (XGBoost), were used to 
predict the types of disability trajectories using epidemi-
ological variables, and models were evaluated from three 
aspects of discrimination, calibration, and clinical useful-
ness. Third, the method of SHAP was applied to explain 
the potential mechanisms of the model’s decisions.

Materials and methods
Study design and participants
This study collected data from the Chinese Longi-
tudinal Healthy Longevity and Happy Family Study 

(CLHLS-HF), which has been conducted by the Center 
for Healthy Aging and Development Studies, National 
School of Development of Peking University [22]. 
CLHLS-HF is the earliest and longest national social sci-
ence survey in China. This project aims to investigate 
the determinants of health and life span of the elderly 
from various aspects. The survey covers 23 provinces, 
municipalities, and autonomous regions in China and 
the respondents are the elderly aged 65 and above and 
their children aged 35–64. A targeted random sample 
design is adopted to ensure the representativeness of the 
samples [23]. CLHLS-HF was approved by the Institu-
tional Review Board, Duke University (Pro00062871), 
and the Biomedical Ethics Committee, Peking University 
(IRB00001052-13074). All participants provided written 
informed consent. All methods were carried out follow-
ing the principles of the Declaration of Helsinki.

The six waves of data (2002, 2005, 2008–2009, 2011–
2012, 2014, and 2017–2018) were used in this study. Par-
ticipants aged 65 years and above in 2002 were selected 
at the baseline. In addition, in order to ensure that the 
follow-up information is sufficient to support the con-
struction of trajectory model, we included respondents 
with at least three waves of completed ADL information, 
and finally 4149 subjects were included in this study. The 
follow-up information of CLHLS-HF database and the 
sample selection of this study are presented in Supple-
mentary Fig. 1.

Disability assessment
Disability was assessed by activities of daily living (ADL), 
which is consist of basic ADL (BADL) and instrumen-
tal ADL (IADL). BADL included the 6 daily activities 
(bathing, dressing, continence, using the toilet, indoor 
transferring, and feeding themselves), and IADL was 
measured by the 8 instrumental activities (shopping, 
cooking, visiting neighbors, doing laundry, walking con-
tinuously for 1  km, continuously crouching and stand-
ing up 3 times, lifting a weight of 5 kg, and taking public 
transportation). Each item was coded as 0 (“indepen-
dently”), 1 (“with part assistance”), or 2 (“with complete 
assistance”). Consistent with previous studies [10, 13, 15, 
16], disability scores were calculated by summing all 14 
items so that a higher score for disability indicated worse 
physical condition. The disability scores were used to 
identify the potential trajectories of disability in the cur-
rent analysis.

Trajectories of disability
We used growth mixture model (GMM) to identify the 
heterogeneous disability trajectories of the targeted 
population from 2002 to 2018. GMM is able to establish 
several latent category groups considering individual and 
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population heterogeneity, and the individuals in each cat-
egory group enjoy the same or similar average growth 
trajectory (the same intercept and slope), which is used 
to describe the changes of individuals in category groups 
over time [24]. GMM estimates the parameters of the 
latent trajectories using the full-information maximum 
likelihood (FIML) approach, which allows incomplete 
longitudinal data [25]. Considering the sample size and 
the accuracy of characterization of disability trajectories, 
we selected the participants with at least three waves of 
disability data for analysis. Latent growth curve model 
(LGCM) and latent class growth model (LCGM) are spe-
cial cases of GMM. LGCM assumes that all individuals 
come from homogeneous groups, which is often used to 
determine the shape of GMM (linear, quadratic, or cubic) 
[25]. When the latent category variable has only one level, 
GMM is simplified to LGCM. The optimal shape is deter-
mined by comparing the Bayesian information criteria 
(BIC) of LGCM (the smaller the better). LCGM consid-
ers group heterogeneity and divides the population into 
different trajectory categories, which can be further used 
to determine the number of potential categories of GMM 
[24, 26]. Referring to previous studies [27, 28], this study 
attempts to analyze the trajectories of 1–6 categories. 
The number of categories is selected according to some 
statistical indicators and practical significance. Statisti-
cal indices, including Bayesian information criteria (BIC), 
entropy, Vuong-Lo-Mendell-Rubin likelihood ratio test 
(VLMR-LRT), and proportion of the smallest class, were 
selected. BIC is an information criterion and its decline 
represents an improvement of the models. Entropy is a 
measure of classification accuracy, ranging from 0 to 1. 
The larger the entropy, the better the trajectories classifi-
cation. VLMR-LRT compares the results of the k-1 class 
model with k class model. A significant p-value (< 0.05) 
indicates that k class model is better than k-1 class model. 
Besides, each class of trajectories must contain enough 
samples, no less than 5% of total population. In addition, 
the trajectory category should have practical significance, 
that is, easy to interpret and understand.

Data collection and candidate variables
Predictors in this study included sociodemographic 
characteristics, lifestyles, objective examination, men-
tal & cognitive & physical state, and family  socioeco-
nomic  factors. For sociodemographic characteristics, 
age, sex (man, woman), ethnicity (Han ancestry, minor-
ity), education (illiterate, literate), occupation (low level, 
high level), marital status (in married, others [unmarried 
or separated or divorced or widowed]), residence (rural, 
urban), and co-residence (living alone, living with fam-
ily) were included. Specifically, occupation was defined 
as a high level if the participant’s primary occupation 

before age 60 was professional, technical, governmental, 
institutional, managerial, or military personnel [29]. For 
lifestyles, fruits intake (low frequency, high frequency), 
vegetables intake (low frequency, high frequency), tea 
consumption (low frequency, high frequency), smoker 
(yes, no), alcohol drinker (yes, no), regular exercise (yes, 
no), and leisure activity index were considered. Espe-
cially, leisure activities included housework, personal 
outdoor activities, garden work, reading newspapers or 
books, raising domestic animals or pets, playing cards or 
mahjong, watching TV or listening to the radio, and tak-
ing part in some social activities. Each item had 5 levels 
and was coded as follows: “almost every day” (coded as 
5), “not daily, but once a week” (coded as 4), “not weekly, 
but at least once a month” (coded as 3), “not monthly, 
but sometimes” (coded as 2), and “never” (coded as 1). 
A total score was calculated and then was divided by 
the full score to obtain a leisure activities index which is 
range from 0 to 1 [29]. Objective Examination included 
weight, systolic pressure, diastolic pressure, rhythm of 
heart (irregular, regular), length from wrist to shoulder, 
and length from kneel to floor. For mental state, psy-
chological well-being (PWB) score were assessed, Mini-
Mental State Examination (MMSE) score were selected 
for cognitive measurement, for physical state, BADL 
score, IADL score, chronic condition, and self-reported 
diagnosis of chronic diseases including hypertension 
(yes, no), diabetes (yes, no), heart disease (yes, no) and 
stroke (yes, no) were selected. PWB was measured by 
three positive items (self-reported life satisfaction, opti-
mism, happiness) and three negative items (feel fearful-
ness or anxiety, feel lonely and isolated, feel useless with 
age). Specifically, for positive items, we coded as follows: 
5 (“always”), 4 (“often”), 3 (“sometimes”), 2 (“seldom”), 
and 1 (“never”); and for negative items, we coded oppo-
sitely. Therefore, the total scores of PWB ranged 6–30, 
with a higher score indicating much better well-being 
[30]. Mini-Mental State Examination (MMSE) was used 
to assess global cognitive function and contains a total of 
24 questions, involving 7 dimensions of orientation, food 
counting within one minute, memory, calculation, draw-
ing, recall, and language. Except for food counting within 
one minute (one point for each food, and not exceed 7 
points of a maximum score), other questions were coded 
as follows: 1 point (correct answer) and 0 point (wrong 
answer). So, the total scores of MMSE ranged from 0 
to 30, with higher scores representing better cognitive 
function [27]. As for physical state, studies have also 
pointed out that the type and number of chronic dis-
eases will affect the ability of daily living activities [31], 
so chronic condition and several diseases closely related 
to disability (hypertension, diabetes, heart disease, and 
stroke) were included. Chronic condition was measured 
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by cumulative numbers of 11 chronic conditions, includ-
ing hypertension, diabetes, cerebrovascular disease, heart 
disease, bronchitis/emphysema/asthma/pneumonia, 
tuberculosis, gastric/duodenal ulcer, cancer, arthritis, 
Parkinson’s disease, and dementia [28]. For family socio-
economic  factors, three predictors including household 
income per capita (low level, high level), adequate health 
services (yes, no), and sufficient financial support (yes, 
no) were selected. Specifically, the criteria for judging the 
level of household income per capita in rural and urban 
areas were 2,476 and 7,703 yuan respectively (approxi-
mately $299 and $931 based on the average exchange rate 
of RMB against US dollar in 2002) according to authori-
tative data released by the state. Those higher than this 
standard were defined as high level, while those below 
the criteria were defined as low level. Detailed measure-
ments of variables were summarized in Supplementary 
Table 1. The multiple imputation approach (5 times) was 
applied to reduce the influence of missing values on pre-
dictors in the analysis.

Feature selection
Feature selection helps to reduce the variable dimen-
sions, thereby avoiding over-fitting of prediction models. 
In this study, least absolute shrinkage and selection oper-
ator (LASSO) was selected for feature selection. LASSO 
is a compression estimation method, which can perform 
variable selection and complexity regularization while 
fitting the generalized linear model [32]. LASSO models 
were constructed based on five sets of imputation data. 
The penalty coefficient of LASSO models was adjusted 
through threefold cross-validation, and then the features 
with parameter value (weight parameter) not equal to 0 
were obtained in the predictive models.

Machine learning classifiers
Logistic regression (LR) is a classical and commonly 
used risk prediction model. It explores the relationship 
between a group of independent variables and dependent 
variables with the use of Logit function and reflects the 
risk in the form of probability. It has the advantages of 
simple model setting, fast training speed, and good inter-
pretation. Support vector machine (SVM) is a supervised 
learning method to realize the optimal division of data 
through the maximum interval hyperplane [33]. Because 
the result of SVM only depends on the support vector, 
it is especially suitable for the prediction of small sam-
ple data. SVM can map data to high-dimensional space 
with the help of kernel function to realize linear separa-
tion. In addition, the algorithm considers the minimi-
zation of empirical risk and structural risk and uses the 
hinge loss function as the agent loss, which leads to good 
stability [34]. Artificial neural network (ANN) refers to a 

complex network structure formed by a large number of 
neurons. It can approach nonlinear problem with strong 
self-learning and fault tolerance ability and can efficiently 
find the optimal solution for complex nonlinear problems 
[35]. The above three ML methods are all single classi-
fiers, so their performance is limited in solving complex 
problems. Some studies have pointed out that combin-
ing multiple weak classifiers to achieve comprehensive 
prediction is helpful to improve the performance of the 
model, such as boosting and bagging [36, 37]. Boosting 
continuously adds the same weak learners in serial mode, 
adjusts the sample distribution according to the classifi-
ers’ performance, and finally generates a strong learner in 
the form of voting or weighted average. Extreme gradient 
boosting (XGBoost) was selected as the representative in 
this study. Bagging realizes the prediction by synthesiz-
ing the results of multiple weak learners in a parallel way. 
Random forest (RF) method with decision tree as weak 
classifier was included. This method has the advantages 
of avoiding overfitting and automatic feature selection 
[38].

Derivation and evaluation of prediction models
In this study, the data set was divided by nested cross-
validation. This method can search for the best hyper-
parameters and evaluate the performance of the model 
with cross-validation [39]. Specifically, two cycles, 
namely, outer loop and inner loop were performed in 
nested cross-validation. Inner loop aims to obtain the 
best hyper-parameters of the models. For this study, grid 
search was selected for searching hyper-parameters. 
Outer loop combined with optimal hyper-parameters 
was used to evaluate model’s performance subsequently. 
Through this strategy, the data leakage can be prevented 
to some extent, therefore obtaining a relatively low devia-
tion of model evaluation. Some studies have pointed out 
that the test set error obtained by nested cross-validation 
is almost the real error [40]. In this study, ten-fold cross-
validation was used in both inner and outer loops.

Considering the imbalance in outcome variable, syn-
thetic minority over-sampling technique (SMOTE) [41] 
was used to increase the number of minority samples on 
the training set. For performance evaluation, discrimina-
tion, calibration, and clinical usefulness were assessed. 
Specifically, the indices for evaluating discrimination in 
this study included: (1) accuracy, which is used to evalu-
ate the proportion of samples predicted correctly by the 
model to the total samples, (2) recall, which refers to the 
proportion of true positive samples predicted by the clas-
sifier to all positive samples, (3) precision, which is the 
correct proportion of the positive samples predicted by 
the classifier, (4) F1 score, which was the harmonic mean 
of precision and recall. In addition to these conventional 
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ones, other comprehensive indices have been incorpo-
rated. Hamming distance measures the distance between 
the predicted label and the real label at the same posi-
tion of the sequence. Jaccard similarity coefficient is an 
index to compare the similarity between limited sample 
sets. The value range of the above indicators is between 
0 and 1, and a larger value indicates a better performance 
except for Hamming distance. Cohen’s kappa score is an 
index to evaluate the consistency and reliability of clas-
sification results. Kappa takes the accuracy that would be 
generated purely by chance into account, which is essen-
tially the ratio of actual consistency to non-opportunity 
consistency. It is less affected by unbalanced data with 
value ranging from -1 to 1 and the higher its value, the 
better the reliability of the result [42]. In addition, for the 
two-class prediction task, calibration was also assessed 
by reliability curve and histogram of prediction prob-
ability. The reliability curve is a curve with the predicted 
probability as the horizontal coordinate and the observed 
probability as the vertical coordinate. We hope that the 
predicted probability and the real value are as close as 
possible, and it is better that they are equal. Therefore, 
the closer the reliability curve and diagonal line of a 
model are, the better the calibration degree of the model 
is. Histogram of prediction probability is an image with 
the distribution of prediction probability after box divi-
sion as the abscissa and the number of samples in each 
box as the ordinate. Also, decision curve analysis (DCA) 
was used to evaluate the clinical usefulness of prediction 
models in two-class task. DCA evaluates the net benefit 
of the model under different thresholds, which provides 
a basis for clinical decision-making. The line of “all posi-
tive” and “all negative” represent the extreme situation 
of net benefit when all subjects are all determined to be 
positive and negative. The flow chart of the model deriva-
tion and validation was shown in Fig. 1.

Machine learning interpretation
SHAP was performed for interpretability analysis. This 
algorithm reflects the magnitude and direction of fea-
tures’ influence on ML models by calculating the SHAP 
value, and makes local and global interpretability anal-
yses for the targeted classification [21]. In local inter-
pretability analysis, it shows the contribution of each 
feature to the prediction in a specific sample, in which 
the output is promoted from the base value (the mean 
of the predicted value) to the final value. Features that 
lower the SHAP value are shown in blue, otherwise in 
red. Global analysis includes summary plot and feature 
importance. The y-axis of summary plot indicates the 
feature ranking, and the x-axis represents the distribu-
tion of SHAP values that respond to features. In each 
row, the attribution of each individual to the outcome 

is drawn with dots of different colors, where red and 
blue color represent higher and lower feature values 
respectively. Feature importance chart is a bar chart 
obtained by taking the average of the absolute value 
of the feature’s SHAP value (stacked bar charts for 
multi-classification).

Sensitivity analysis
In this study, four sensitivity analyses were carried out 
to verify the stability of the results: (1) Given that tra-
jectory analysis is more stable for participants with 
more observations over time, we conducted sensitivity 
analyses by restricting to participants with complete 
data for at least four waves (n = 2,457). We also com-
pared the performance of ML models in distinguish-
ing these trajectories. (2) Disability was measured by a 
composite score of 6 BADL and 8 IADL. However, the 
difficulty of completing each activity in IADL is more 
tough than in BADL, but the scores of each item are 
the same. Although the number of items in IADL is 
appropriately increased, it should be considered that 
IADL is more sensitive than BADL and more likely to 
reflect the changes of disability in earlier period [6, 43]. 
Therefore, we conducted trajectory analysis only based 
on the sum of 8 IADL score (n = 4,149), and prediction 
performance of this task was also compared with the 
original results. (3) Trajectories of disability may also 
be influenced by potential factors such as age, sex, and 
education [7–9, 31]. Therefore, with a consideration of 
age, sex, and education, we used these factors as covari-
ates and explored the trajectories for the targeted par-
ticipants (n = 4,149), and the ML models’ performance 
after considering covariates was also detected. (4) The 
missing rate of MMSE was about 40.49% in our anal-
ysis. We used multiple imputation to fill missing data 
and further included the participants with complete 
MMSE information for constructing prediction model 
(n = 2469) to investigate the impact of MMSE missing 
on the performance of the prediction models.

Statistical analysis
Continuous variables were presented as mean ± stand-
ard deviation. Categorical variables were presented as 
percentages. The comparisons of baseline character-
istics among different trajectories were performed by 
ANOVA test and chi-square test. All the above analyses 
were conducted with SPSS 27.0. Disability trajectories 
were performed with Mplus 8.3 (Muthén and Muthén, 
2019). Feature selection, model derivation, and model 
evaluation were performed with Python 3.7.6. A 
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Fig. 1 Flow chart of model derivation and validation
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two-sided p-value of < 0.05 was considered statistically 
significant.

Results
Heterogeneous trajectories of disability
A trajectory with quadratic shape yielded the best 
fit under LGCM because a lower BIC was observed. 
Among the LCGM models with classes ranging from 1 
to 6, a three-class model was selected because the pro-
portion of samples in the smallest group was less than 
5% in four-class. Finally, a better fit (BIC = 102,109.346, 
entropy = 0.929, p-value of VLMR-LRT < 0.0001) 

and good separation of different classes (smallest 
class = 7.158%) were also observed in the three-class 
GMM model (Table 1).

Figure 2 shows the mean disability scores over time for 
the three trajectory classes: normal class (77.3%, inter-
cept = 1.031, p < 0.001; linear slope = -0.152, p = 0.055; 
quadratic slope = 0.441, p < 0.001), progressive class 
(15.5%, intercept = 3.468, p < 0.001; linear slope = 7.383, 
p < 0.001; quadratic slope = -0.625, p < 0.001), and high-
onset class (7.2%, intercept = 15.444, p < 0.001; lin-
ear slope = -3.035, p < 0.001; quadratic slope = 1.267, 
p < 0.001). The sensitivity analyses identified disability 
trajectories with similar shapes and distributions among 
participants who had complete information on ADL for 
at least four waves (Supplementary Fig. 2) and who had 
complete information on IADL for at least three waves 
(Supplementary Fig. 3). With adjusting age, sex, and edu-
cation, similar results were also observed (Supplemen-
tary Fig. 4), and we found that there were differences in 
the baseline disability score between different genders 
(higher in woman compared with man, p < 0.001, Sup-
plementary Table 2) as well as between different educa-
tion level (higher in illiterate compared with literate, 
p < 0.001), but the effects of sex and education on the 
linear slope (p = 0.836, p = 0.622, respectively) and quad-
ratic slope (p = 0.732, p = 0.243, respectively) were not 
significant. Meanwhile, age showed a positive effect on 
the disability score in each wave (all p-values < 0.001).

Baseline characteristics of study population
Table 2 shows the results of baseline characteristics of the 
study samples with different trajectory classes. This study 
identified 3210, 642, and 297 participants with normal 

Table 1 Performance of latent class growth model and growth 
mixture model

Abbreviations: BIC Bayesian information criteria, VLMR-LRT VUONG-LO-MENDELL-
RUBIN likelihood ratio test, LGCM Latent growth curve model, LCGM Latent class 
growth model, GMM, growth mixture model

BIC

LGCM

 linear 105,530.680

 quadratic 105,345.372

 cubic 105,359.053

LCGM BIC Entropy VLMR-LRT Smallest class

 1-class 111,004.715 100%

 2-class 105,054.609 0.942 0.0000 16.173%

 3-class 102,817.976 0.892 0.0000 8.093%

 4-class 101,585.221 0.904 0.0018 3.720%

 5-class 100,586.689 0.881 0.0009 4.278%

 6-class 99,933.216 0.862 0.0153 3.068%

GMM

 3-class 102,109.346 0.929 0.0000 7.158%

Fig. 2 Heterogenous disability trajectory classes of older adults with complete information at least three waves (n = 4,149). Disability score (0–28) 
was measured by the sum score of BADL (0–12) and IADL (0–16). Three trajectory classes were identified: progressive class, high-onset class, and 
normal class. Each trajectory represents the mean change pattern of the 3 classes
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Table 2 Sample characteristics by disability trajectories classes in 2002

Total sample (N = 4149) Trajectory Class P-valuea Missing data

Normal (n = 3210) Progressive (n = 642) High-onset (n = 297)

Sociodemographic Characteristics
 Age 74.99 ± 7.58 75.23 ± 7.97 85.42 ± 8.72 89.12 ± 9.30  < 0.001 —

Sex

 Male 1972 (46.4%) 1619 (50.4%) 248 (38.6%) 60 (20.2%)  < 0.001 —

 Female 2222 (53.6%) 1591 (49.6%) 394 (61.4%) 237 (79.8%)

Ethnicity

 Han Ancestry 3852 (92.8%) 2970 (92.5%) 602 (93.8%) 280(94.3%) 0.326 —

 Minority 297 (7.2%) 240 (7.5%) 40 (6.2%) 17 (5.7%)

Education

 Illiterate 2280 (55.1%) 1635 (51.0%) 412 (64.5%) 233 (79.3%)  < 0.001 10 (0.24%)

 Literate 1859 (44.9%) 1571 (49.0%) 227 (35.3%) 61 (20.7%)

Occupation

 Low level 497 (12.0%) 416 (13%) 63 (9.9%) 18 (6.1%) 0.003 12 (0.29%)

 High level 3640 (88.0%) 2788 (87.0%) 574 (90.1%) 278 (93.9%)

Marital Status

 Unmarried/Separated/
Divorced/Widowed

2160 (52.1%) 1475 (46.0%) 451 (70.2%) 234 (78.8%)  < 0.001 —

 Married 1989 (47.9%) 1735 (54.0%) 191 (29.8%) 63 (21.2%)

Residence

 Urban 1692 (40.8%) 1242 (38.7%) 309 (48.1%) 141 (47.5%)  < 0.001 —

 Rural 2457 (59.2%) 1968 (61.3%) 333 (51.9%) 156 (52.5%)

Co-residence

 Living alone 664 (16.0%) 496 (15.5%) 135 (21.0%) 33 (11.1%)  < 0.001 —

 With family 3485 (84.0%) 2714 (84.5%) 507 (79.0%) 264 (88.9%)

Lifestyles
 Fruit Intake

 Low frequency 2758 (66.5%) 2124 (66.2%) 433 (67.4%) 201 (67.7%) 0.741 —

 High frequency 1391 (33.5%) 1086 (33.8%) 209 (32.6%) 96 (32.3%)

Vegetables Intake

 Low frequency 416 (10.0%) 285 (8.9%) 77 (12.0%) 54 (18.2%)  < 0.001 1 (0.02%)

 High frequency 3732 (90.0%) 2924 (91.1%) 565 (88.0%) 243 (81.8%)

Tea Consumption

 Low frequency 2797 (67.4%) 2097 (65.3%) 459 (71.5%) 241 (81.1%)  < 0.001 1 (0.02%)

 High frequency 1351 (32.6%) 1112 (34.7%) 183 (28.5%) 56 (18.9%)

Smoker

 Yes 979 (23.6%) 838 (26.1%) 117 (18.2%) 24 (8.1%)  < 0.001 1 (0.02%)

 No 3169 (76.4%) 2371 (73.9%) 525 (81.8%) 273 (91.9%)

Alcohol Drinker

 Yes 988 (23.8%) 822 (25.6%) 136 (21.2%) 30 (10.1%)  < 0.001 4 (0.10%)

 No 3157 (76.2%) 2386 (74.4%) 505 (78.8%) 266 (89.9%)

Regular Exercise

 Yes 1573 (37.9%) 1261(39.3%) 269 (42.0%) 43 (14.5%)  < 0.001 3 (0.07%)

 No 2573 (62.1%) 1948 (60.7%) 372 (58.0%) 253 (85.5%)

 Leisure Activity Index 0.49 ± 0.13 0.51 ± 0.12 0.45 ± 0.13 0.31 ± 0.10  < 0.001 2 (0.05%)

Objective Examination
 Weight 51.25 ± 10.25 52.00 ± 10.02 49.65 ± 10.53 46.58 ± 10.43  < 0.001 —

 Systolic Pressure 133.03 ± 17.63 132.35 ± 17.23 134.65 ± 18.15 136.80 ± 20.00 0.28 4 (0.10%)

 Diastolic Pressure 84.65 ± 12.22 84.34 ± 12.06 85.79 ± 12.76 85.58 ± 12.57 0.04 6 (0.14%)



Page 9 of 17Wu et al. BMC Geriatrics          (2022) 22:627  

class, progressive class, and high-onset class, respectively. 
For the comparisons of baseline characteristics among 
trajectory classes, significant differences were found in all 
variables except for ethnicity, fruit intake, systolic pres-
sure, length from wrist to shoulder, length from kneel 
to floor, PWB score, household income per capita, and 
sufficient financial support. Comparisons between the 
analytical sample and drop-out sample are presented in 

Supplementary Table 3. The samples in the current anal-
ysis were younger, more likely to live with family mem-
bers and suffer from hypertension, had more females and 
rural residents, had lower frequency of fruit intake, had 
higher frequency of leisure activity and heart rate, had 
better basic activity of daily living, worse chronic condi-
tion, and a low level of household income.

Table 2 (continued)

Total sample (N = 4149) Trajectory Class P-valuea Missing data

Normal (n = 3210) Progressive (n = 642) High-onset (n = 297)

Rhythm of Heart

 Regular 3872 (93.4%) 3025 (94.3%) 588 (91.6%) 259 (87.5%)  < 0.001 4 (0.10%)

 Irregular 273 (6.6%) 182 (5.7%) 54 (8.4%) 37 (12.5%)

 Heart Rate 72.44 ± 7.53 72.37 ± 7.46 72.73 ± 7.61 72.51 ± 8.10 0.01 6 (0.14%)

 Length from Wrist to 
Shoulder

49.84 ± 5.53 50.20 ± 5.43 49.62 ± 5.90 48.33 ± 5.55 0.10 2 (0.05%)

 Length from Kneel to 
Floor

46.66 ± 5.37 46.79 ± 5.27 46.49 ± 5.81 45.59 ± 5.28 0.14 6 (0.14%)

Mental & Cognitive &Physical State
 PWB Score 22.51 ± 3.74 22.64 ± 3.71 22.42 ± 3.57 20.97 ± 4.21 0.189 226 (5.45%)

 BADL Score 11.77 ± 0.99 11.96 ± 0.26 11.81 ± 0.52 9.60 ± 2.70  < 0.001 —

 IADL Score 13.80 ± 3.82 15.05 ± 1.85 12.60 ± 3.01 2.79 ± 2.44  < 0.001 —

 MMSE score 27.95 ± 2.74 28.20 ± 2.40 27.08 ± 3.35 24.17 ± 5.12  < 0.001 1680 (40.49%)

 Chronic Condition 0.68 ± 0.91 0.65 ± 0.85 0.77 ± 1.03 0.90 ± 1.09  < 0.001 364 (8.77%)

Hypertension

 Yes 677 (16.9%) 486 (15.7%) 126 (20.3%) 65 (22.3%) 0.001 145 (3.49%)

 No 3327 (83.1%) 2606 (84.3%) 495 (79.7%) 226(77.7%)

Diabetes

 Yes 77 (1.9%) 54 (1.7%) 19 (3.1%) 4 (1.4%) 0.07 146 (3.52%)

 No 3926 (98.1%) 3044 (98.3%) 601 (96.9%) 281 (98.6%)

Stroke

 Yes 178 (4.4%) 110 (3.5%) 36 (5.8%) 32 (11.1%)  < 0.001 125 (3.01%)

 No 3946 (95.6%) 3005 (96.5%) 585 (94.2%) 256 (88.9%)

Hear Disease

 Yes 363 (9.1%) 260 (8.4%) 71 (11.5%) 32 (11.1%) 0.02 141 (3.40%)

 No 3645 (90.9%) 2841 (91.6%) 548 (88.5%) 256 (88.9%)

Family Socioeconomic factors
 Household Income per Capita

  Low level 3029 (75.8%) 2337 (75.2%) 476 (77.7%) 216 (78.3%) 0.27 153 (3.69%)

  High level 967 (24.2%) 770 (24.8%) 137 (22.3%) 60 (3.4%)

 Adequate Health Services

  Yes 3792 (91.4%) 2974 (92.7%) 586 (91.3%) 232 (78.1%)  < 0.001 1 (0.02%)

  No 356 (8.6%) 235 (7.3%) 56 (8.7%) 65 (21.9%)

 Sufficient Financial Support

  Yes 3312 (79.9%) 2581 (80.4%) 508 (79.3%) 223 (75.1%) 0.08 2 (0.05%)

  No 835 (20.1%) 628 (19.6%) 133 (20.7%) 74 (24.9%)

Values are presented as mean ± standard deviation, number (%)

Abbreviations: PWB, psychological well-being; BADL, basic activity of daily living; IADL, instrumental activity of daily living; MMSE, Mini-Mental State Examination
a ANOVA test and chi-square test were performed, and the null hypothesis is no difference across the three classes
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Performance evaluation of three-class prediction models
The selected variables with LASSO in five sets of impu-
tation data were shown in Supplementary Table 4, and 
the optimal hyper-parameters for each of the imputa-
tion data sets were listed in Supplementary Table  5. 
The performance of prediction models was shown 
in Table  3. Generally, the performance of five ML 
algorithms was comparable in the full-variable and 
selected-variable data sets. Specifically, XGBoost and 
RF achieved relatively the best performance, with bal-
anced accuracy around 0.77, weighted recall around 
0.84, weighted specificity and weighted F1 score nearly 
0.85. Also, the two models performed moderately 
in other comprehensive indices with Hamming distance 
ranged 0.16–0.17, Jaccard similarity coefficient of 0.74 
to 0.76, and Cohen’s kappa score in the 0.56–0.57 range. 
The SVM model was inferior to RF and XGBoost, while 
LR and ANN were the worst. The sensitivity analy-
ses also showed similar results for three-class predic-
tion among participants who had at least four waves 
of ADL information (Supplementary Table 6), and who 
had at least three waves of IADL information (Supple-
mentary Table 7). Also, similar prediction performance 
was observed for predicting disability trajectories with 

consideration of covariates (Supplementary Table 8) as 
well as among participants who had complete informa-
tion on MMSE (Supplementary Table 9).

Performance evaluation of two-class prediction models
Considering the low proportion of progressive class and 
high-onset class, we further merged these two classes into 
abnormal class, so as to establish the two-class (abnormal 
class vs. normal class) ML models. Similarly, the origi-
nal variables were processed by LASSO in the five sets 
of imputation data (Supplementary Table  10) and the 
hyper-parameters were tuned (Supplementary Table 11). 
Compared with the three-class task, the performance 
of ML models had a certain improvement in the binary 
classification task. Meanwhile, RF and XGBoost still had 
the best performance, followed by SVM, LR, and ANN 
(Table 4). Besides, the reliability curve and histogram of 
prediction probability demonstrated moderate calibra-
tion results (Supplementary Fig. 5–6). We observed that 
the reliability curves of RF and XGBoost were close to 
the diagonal line but the overall trend was lower than the 
line, which indicates that the predicted risk was slightly 
overestimated generally. The histogram showed that the 
prediction probability of most samples was concentrated 

Table 3 Performance of machine learning for three-class task prediction

Accuracy, recall, precision, F1 score were all calculated with weighted metrics. Hamming, Jaccard, and Kappa refer to Hamming distance, Jaccard similarity coefficient, 
and Cohen’s kappa score

Full variables Selected variables with LASSO

LR SVM RF ANN XGBoost LR SVM RF ANN XGBoost

Accuracy 0.706 0.734 0.773 0.735 0.771 0.714 0.744 0.774 0.744 0.771

Recall 0.779 0.810 0.844 0.785 0.834 0.780 0.810 0.843 0.780 0.840

Precision 0.769 0.807 0.854 0.775 0.833 0.771 0.800 0.848 0.773 0.848

F1 Score 0.760 0.807 0.848 0.766 0.832 0.761 0.802 0.845 0.759 0.843

Hamming 0.221 0.190 0.156 0.215 0.166 0.220 0.190 0.157 0.220 0.160

Jaccard 0.639 0.705 0.759 0.645 0.735 0.639 0.696 0.754 0.636 0.751

Kappa 0.507 0.495 0.568 0.516 0.567 0.512 0.518 0.575 0.514 0.564

Table 4 Performance of machine learning for two-class task prediction

Accuracy, recall, precision, F1 score were all calculated with weighted metrics. Hamming, Jaccard, and Kappa refer to Hamming distance, Jaccard similarity coefficient, 
and Cohen’s kappa score

Full variables Selected variables with LASSO

LR SVM RF ANN XGBoost LR SVM RF ANN XGBoost

Accuracy 0.760 0.776 0.805 0.748 0.810 0.764 0.770 0.784 0.753 0.796

Recall 0.828 0.843 0.859 0.816 0.861 0.831 0.837 0.847 0.821 0.854

Precision 0.824 0.841 0.867 0.813 0.870 0.828 0.833 0.850 0.818 0.860

F1 Score 0.821 0.841 0.862 0.808 0.864 0.823 0.832 0.848 0.813 0.855

Hamming 0.172 0.157 0.141 0.184 0.139 0.169 0.163 0.153 0.179 0.146

Jaccard 0.707 0.738 0.768 0.690 0.772 0.710 0.724 0.748 0.697 0.759

Kappa 0.554 0.564 0.583 0.532 0.586 0.564 0.565 0.560 0.542 0.573
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near the value of 0, and there were only a few samples 
near the decision boundary (threshold probability at 
0.5), indicating that the models had a high confidence 
degree. As presented in Fig. 3, the DCA curves of RF and 
XGBoost were far from the all-positive line and all-neg-
ative line and had higher net benefit within a large range 
of threshold probability compared with other prediction 
models, which suggested that RF and XGBoost had the 
best clinical value in predicting normal class vs. abnor-
mal class. Similar results were also found in the data set 
with selected variables (Supplementary Fig. 7).

Interpretability analysis of prediction models
The global interpretability method in SHAP was used to 
interpret the decisions for RF and XGBoost. For three-
class task, the top 20 predictors for overall prediction and 
for prediction of each specific trajectory were shown in 
Fig.  4A-D (RF) and E–H (XGBoost). The top five most 
important predictors of RF were IADL, age, leisure activ-
ity, MMSE, and BADL. In XGBoost, IADL, age, BADL, 
leisure activity, and systolic pressure were the top five 
predictors. For two-class prediction, the top 20 pre-
dictors for overall prediction and for abnormal trajec-
tory prediction were shown in Fig. 5 A-B (RF) and C-D 
(XGBoost). In terms of the top five factors in two-class 
prediction of RF, participants with older age, lower IADL 
score, BADL score, leisure activity index, and MMSE 
score were prone to experience an abnormal progress 
of disability. For the top five variables in XGBoost, older 
age, lower IADL score, leisure activity index, higher dias-
tolic pressure, and living in urban areas were associated 
with a higher predicted probability of the abnormal class. 
Also, the predictors were similar in the LASSO-selected 

data set for three-class task (Supplementary Fig.  8A-D 
for RF; Supplementary Fig. 9A-D for XGBoost) and two-
class task (Supplementary Fig. 10A-B for RF; Supplemen-
tary Fig. 11A-B for XGBoost).

Furthermore, the local interpretability method in 
SHAP was used to understand the mechanism of indi-
vidual prediction. For three-class prediction, we selected 
one sample with progressive disability trajectory to illus-
trate how RF and XGBoost work for making the final 
decision in full-variables data set. The output of SHAP 
value (0.72) in RF was higher than the base value (0.15, 
Fig. 6A), which was similar for XGBoost (Fig. 6B), there-
fore, the final predicted class was progressive trajec-
tory. For two-class prediction, the results were shown in 
Fig. 6C-D when the selected sample was with abnormal 
class. Results for LASSO-selected data set were shown in 
Supplementary Fig. 12A-D.

Discussion
Based on nationally representative samples of older Chi-
nese community-dweller, this study extracted disability 
trajectories from 4149 subjects by GMM, which were 
divided into three categories: normal, progressive, and 
high-onset. The shape and trend of these three kinds of 
trajectories are similar to previous studies [3, 9, 12, 14]. 
Among them, the normal category represents the devel-
opment trajectory of normal people, showing a slow 
upward trend, mainly caused by the decline of body 
function with the increase of age [31]. The progressive 
class shows a trend that starts with an emergency and 
then slows down. The emergence of this group is mostly 
attributed to some diseases or injuries that restrict 
physical activities, such as cerebrovascular diseases and 

Fig. 3 Decision curve analysis for the prediction models in full-variable data set
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rheumatoid arthritis [44]. Some studies have also pointed 
out that the type and number of chronic diseases also 
affect the ability to perform activities of daily living to 
varying degrees [31]. While in the later period, the pro-
gression of disability is slowing due to the intervention 
of treatment and rehabilitation. High-onset groups are in 
a relatively serious disability state at the baseline, show-
ing a slow development trend before urgent. This group 
accounts for the least. The possible explanation for their 
existence is that this group can better manage the dis-
ability state in the early phase, but in the later stage, due 

to the accumulation of disability risk factors and the lack 
of awareness of long-term health management, a rapid 
development speed appears.

The progressive and high-onset classes are both unfa-
vorable functional states. Considering the relatively small 
proportion of these two classes, we combined them into 
abnormal class. Although studies have proved that binary 
prediction reduces the amount of outcome informa-
tion, ambiguous prediction could provide greater confi-
dence and improve the prediction performance to certain 
extent [45]. In this study, five ML methods were included 

Fig. 4 The relative feature importance (top 20) of RF (A-D) and XGBoost (E–H) in three-class prediction. A: overall importance of RF; B SHAP 
summary plot of RF model when the expected trajectory is progressive; C SHAP summary plot of RF model when the expected trajectory is 
high-onset; D SHAP summary plot of RF model when the expected trajectory is normal; E overall importance of XGBoost; F SHAP summary plot of 
XGBoost model when the expected trajectory is progressive; G SHAP summary plot of XGBoost model when the expected trajectory is high-onset; 
H SHAP summary plot of XGBoost model when the expected trajectory is normal
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to carry out three-class and two-class outcome predic-
tions on the whole data set and the feature selection data 
set screened by LASSO. We found that the performance 
of the two-class prediction was better than that of the 
three-class prediction in both data sets, which confirms 
the above conclusion. Furthermore, it could be found 
that although LASSO compressed the number of vari-
ables, there was no significantly decline of the models’ 
performance, suggesting that fewer key variables selected 
by LASSO was also able to achieve the prediction effect 
similar to the full-variable data set. In addition, we dis-
covered that the ensemble learning method (RF and 

XGBoost) had the best performance among the five mod-
els, which is attributed to the fact that it form a stronger 
classifier by combining multiple weak learners [37], even 
if some weak ones get wrong predictions, the others can 
also correct the error to varying degrees [36].

Most of ML algorithms are known to be black-box 
models, which restricts the application of the ML meth-
ods in medical decision-making [20]. To overcome this 
problem, we used SHAP to analyze the local and global 
interpretability of the models’ decisions, aiming to 
provide references for the practical application of the 
models. In general, baseline ADL, age, leisure activity, 

Fig. 5 The relative feature importance (top 20) of RF (A-B) and XGBoost (C-D) in two-class prediction. A overall importance of RF; B SHAP summary 
plot of RF model when the expected outcome is abnormal; C overall importance of XGBoost; D SHAP summary plot of XGBoost model when the 
expected outcome is abnormal



Page 14 of 17Wu et al. BMC Geriatrics          (2022) 22:627 

cognitive function, and blood pressure showed signifi-
cant influence on the prediction of disability trajectories. 
Disability level is constantly progressing as age increases 
[4, 11]. Some researchers have shown that leisure activ-
ity is strongly associated with the risk of disability [46, 
47]. Cognitive impairment has a significant impact on 
disability and they are mutually reinforcing over time 
[48, 49]. In addition, hypertension can increase the risk 
of motor, cognitive, and mood disorders, and thus affect 
patients’ ability to perform activities of daily living [50]. 
Baseline ADL score is not only a component of the dis-
ability trajectories, but also an important predictor in 
following trajectory prediction. The use of baseline ADL 
score for prediction is consistent with real-world appli-
cations because the trajectories were also composed 
by the data of other five waves and ADL information 
available at baseline can be used to predict some future 
outcome. Similar idea was also validated in several suc-
cessful cases [51–53], in which the influential predictor 
was important constitution of outcome on the machine 
learning prediction. It is worth noting that baseline IADL 
and BADL are the two most important predictors when 
the expected outcome is high-onset, which is largely 
related to the stratification of intercept between high-
onset and other two types of trajectories, and patients 
with severe disability state at baseline are more likely to 

continue to suffer from worse functional condition. The 
importance of baseline IADL and BADL decrease in dis-
tinguishing normal and progressive class for their similar 
baseline scores, thus, other variables are needed to make 
more accurate predictions, such as leisure activity and 
age. Surely, the interpretability analyses were performed 
to provide internal explanations for models’ predic-
tions, rather than exploring causality between predictive 
variables and outcome because the goal of prediction is 
distinct from causal inference, it mainly focuses on mak-
ing effective prediction of disability trajectories using 
advanced machine learning methods, and it maybe of 
additional value in discovering potential risk factors [54].

The study focused on the dynamic process of disabil-
ity, rather than the static disability condition. The two-
class and three-class prediction models are applicable 
to different scenarios. If more attention is paid to the 
long-term outcomes in clinical practice, the two-class 
model with better performance will be the first choice. 
If more emphasis is placed on early prevention and 
early intervention, the three-class model with more 
detail information can provide more specific guid-
ing significance. It should be noted that the abnormal 
class of the binary models includes trajectories of pro-
gressive and high-onset, and the baseline ADL of these 
two categories is significantly different, but the baseline 

Fig. 6 Local interpretation of samples based on RF and XGBoost. A RF explanation when the expected trajectory is progressive; B XGBoost 
explanation when the expected trajectory is progressive; C RF explanation when the expected trajectory is abnormal; D XGBoost explanation when 
the expected trajectory is abnormal
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ADL cannot be used as the criterion for the classifica-
tion of these two categories, because the trajectory 
models only provide an average description [24, 25]. 
Due to individual variation, the starting point of the 
trajectory is not fixed at individual level, so the identifi-
cation of these two trajectories still needs to be judged 
according to the output of the prediction model.

The practical significance of this study is to provide 
more accurate prediction tools for primary screen-
ing of high-risk populations at a community level. We 
emphasize the use of easily available, low-cost epide-
miological variables as predictors. Although some stud-
ies have pointed out that the inclusion of longitudinal 
time series data can improve the performance of pre-
diction models [55, 56], we are more concerned about 
the convenience and accessibility of data collection, 
which is more in line with the requirements of practice. 
In addition, the identified important variables provide 
guidance for prevention strategies of the vulnerable 
population, such as regular recreational activities, cog-
nitive training, and blood pressure management. This 
result also suggests that individuals with poor ADL and 
older age are the key groups for prevention of disability, 
and effective management and support of these high-
risk groups is necessary to achieve better gains of popu-
lation health.

Limitations
There are still some shortcomings in the current study. 
Firstly, ML methods are superior in dealing with high-
dimensional and nonlinear problems, which depend on 
the support of sufficient sample size [17]. However, the 
sample size included in this study was relatively small, 
which might limit the performance of the models. Given 
this condition, we used nested cross-validation to make 
full use of available data and selected various metrics 
for performance evaluation. Secondly, the missing rate 
of MMSE was relatively high, which might have impact 
on predictions of ML models. To minimize the impact, 
multiple imputation and sensitivity analysis were imple-
mented. Thirdly, the current study only carried out inter-
nal validation, lacking external validation to evaluate the 
models’ generalization ability, so we will further expand 
the scope of the study to include samples from different 
regions for external validation. Finally, the prediction 
models in our study have not been transformed into clin-
ical application. We discussed the application prospect of 
the models in clinical practice, and subdivided the mod-
els for two-class and three-class prediction according to 
different application scenarios, providing sufficient prep-
aration for clinical application. Furthermore, appropriate 

tools such as risk calculators should be developed for 
achieving social and economic benefits.

Conclusion
Three distinct disability trajectories were found in 
Chinese older community-dwellers. ML methods, 
especially RF and XGBoost, had good performance in 
distinguishing both two-class and three-class tasks. 
Meanwhile, the interpretability analysis based on SHAP 
found that baseline ADL score, age, leisure activity, 
cognitive function, and blood pressure were the most 
important predictors. In clinical application, the two-
class and three-class predictions are suitable for dif-
ferent scenarios, and under the guidance of important 
predictors, personalized intervention measures, such 
as regular recreational activities, cognitive training, 
and blood pressure management, can be formulated 
towards people at high risk of disability.
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