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Abstract: Metabolic derangement is characteristic in patients with hepatitis C virus (HCV) infection.
Aside from established liver injury, various extrahepatic metabolic disorders impact the natural
history of the disease, clinical outcomes, and the efficacy of antiviral therapy. The presence of
steatosis, recently redefined as metabolic-associated fatty liver disease (MAFLD), is a common feature
in HCV-infected patients, induced by host and/or viral factors. Most chronic HCV-infected (CHC)
patients have mild steatosis within the periportal region of the liver with an estimated prevalence
of 40% to 86%. Indeed, this is higher than the 19% to 50% prevalence observed in patients with
other chronic liver diseases such as chronic hepatitis B (CHB). The histological manifestations of
HCV infection are frequently observed in genotype 3 (G-3), where relative to other genotypes, the
prevalence and severity of steatosis is also increased. Steatosis may independently influence the
treatment efficacy of either interferon-based or interferon-free antiviral regimens. This review aimed
to provide updated evidence of the prevalence and risk factors behind HCV-associated steatosis, as
well as explore the impact of steatosis on HCV-related outcomes.

Keywords: hepatitis C virus; steatosis; NAFLD/NASH (MAFLD); metabolic syndrome; hepatocellu-
lar carcinoma; interferon-based therapy; interferon-free direct-acting antivirals

1. Introduction

Hepatic steatosis refers to the accumulation of intrahepatic fat of at least 5% of liver
weight. In most cases, triacylglycerol accumulation in the liver is considered hepato-
protective; however, long-term storage of lipids could potentially cause liver metabolic
dysfunction, as well as steatosis including nonalcoholic fatty liver disease (NAFLD) and its
more advanced clinical manifestation, nonalcoholic steatohepatitis (NASH) [1]. Recently,
international experts suggested a change of nomenclature from NAFLD to metabolic-
associated fatty liver disease (MAFLD) to better emphasize the strong pathophysiological
link between steatosis and metabolic dysfunction [2,3]; however, this suggestion is still
under consideration, and the proposed criteria for MAFLD diagnosis require more re-
search [4]. NAFLD presents in approximately 25% of the most common liver disorders
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worldwide, ranging from 13% in Africa to 42% in southeast Asia [5–7]. Even though
NASH is more likely to advance to liver cirrhosis and hepatocellular carcinoma than simple
steatosis, both disorders may ultimately lead to advanced fibrosis; however, this process
occurs more gradually in simple steatosis [8–10]. NAFLD is primarily associated with
metabolic syndrome (MetS), which refers to the co-occurrence of several known risk factors
of cardiovascular disease (CVD) and type 2 diabetes (T2D), such as insulin resistance (IR),
obesity, atherogenic dyslipidemia, and hypertension [11,12]. These risk factors have been
further identified as underlying risk factors for NAFLD and NASH in 63.6% of hepatitis C
virus (HCV)-related cirrhotic livers [13].

Genetic studies related to NASH risk factors found that Asians are most susceptible to
MetS and NAFLD, while Hispanics have a higher prevalence than whites, and Blacks natu-
rally have the lowest [14–16]. Singal et al. further suggested that the enzyme patatin-like
phospholipase domain-containing 3 (PNPLA3) is linked to an increased risk of advanced
fibrosis and is an independent risk factor for hepatocellular carcinoma (HCC) among
patients with liver disease and NASH or alcohol-related cirrhosis, respectively [17,18].
Regarding gender, higher levels of estrogen in women have been known to increase their
vulnerability to NAFLD, where the risk of glucose intolerance, insulin resistance, hyper-
lipidemia, and visceral fat accumulation is increased in postmenopausal women [19,20].
Since the recruitment of lipid droplets by HCV proteins is critical for viral replication, liver
steatosis is frequently observed in the livers of HCV-infected patients with a prevalence of
40% to 86% [21]. This is considered higher than in patients with other chronic liver diseases
(19–50%) such as chronic hepatitis B (CHB) infection [22].

The mechanism via which HCV induces steatosis is complex and includes elements
involved in lipogenesis and mitochondrial β-oxidation. In HCV, viral and host factors are
implicated in steatosis; hence, two types of steatosis have been defined: “viral steatosis”
induced by viral proteins and “metabolic steatosis” induced by host/metabolic factors [21].
The etiology and response rates to antiviral treatments vary among the two types and
further correlates with specific genotypes of HCV. In genotypes 1 and 2 of chronic hepatitis
C (G-1/2 CHC)-infected patients, steatosis is mostly associated with host factors (obesity,
diabetes, hypertension, and metabolic syndrome), where the severity of fat accumulation
correlates to the body mass index (BMI) and degree of visceral fat. On the other hand,
steatosis appears to be perpetuated by viral proteins in genotype 3 of chronic hepatitis C
(G-3 CHC)-infected patients, where the degree of fat accumulation is proportional to the
level of HCV replication and viral protein expression [23,24].

The two groups of HCV genotypes also differ in their clearance of steatosis following
a sustained virologic response (SVR) to either interferon (IFN)-based or interferon-free
direct-acting antiviral (IFN-free DAA) treatments. Contrary to metabolic steatosis in G-
1/2 CHC patients, an SVR achieved with interferons significantly resolves viral steatosis
in G-3 CHC patients, while HCV-related metabolic steatosis has been linked to IR, thus
significantly reducing the treatment efficacy of interferon-based therapy [25]. A similar
negative response to DAA treatment was observed in G-1 CHC-infected patients, where
an increase in controlled attenuation parameter (CAP), a marker of liver steatosis, was
reported following viral clearance [26–28].

Understanding the role of steatosis toward the progression of CHC-related dis-
eases could significantly improve current treatments of HCV-related chronic liver disease.
In view of the accumulating knowledge about risk factors and pathogenic features of
NAFLD/NASH, further investigation of the potential ramifications of steatosis in CHC
infection is imperative; accordingly, this paper was aimed at providing an updated review
of the prevalence and risk factors behind steatosis in CHC infections, as well as explore the
impact of steatosis on the disease course and treatment outcomes of CHC.

2. The Impact of HCV-Associated Steatosis on Necroinflammation, Fibrosis, and HCC

The rate of disease progression in CHC patients has been linked to several factors
including age, sex, and alcohol abuse; however, it remains elusive as to whether or not
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steatosis should be considered a factor. Since steatosis is more persistent in patients with
CHC (55%) as opposed to the remaining Western population (20–30%) [29], steatosis in HCV
patients has since been implicated in major hepatocellular injury including severe fibrosis
in various studies [30,31]. A study that included medical records of 603 African Americans
with CHC infection at Howard University Hospital evaluated risk factors associated
with the progression to liver fibrosis [32], where steatosis grade (OR 1.6, p = 0.002) was
independently associated with fibrosis stage (3–4 vs. 0–2). A similar significant correlation
was observed between the grade of steatosis and fibrosis in 180 liver biopsies derived
from CHC patients [30]. In obese patients with NASH, another study discovered that
a high degree of steatosis and inflammation were amongst the recognized risk factors
for fibrosis [33].

While more of this correlation between steatosis and fibrosis has been reported in
HCV infections [34,35], there have been contradictory findings where liver fibrosis pro-
gression was associated with other risk factors including older age, higher BMI, periportal
necroinflammation, and ALT and serum ALT elevations, and less so with steatosis [36,37].
On the other hand, some studies have hinted at a higher probability of fibrosis progression
in G-3 [30,38]. This G-3-specific progression in fibrosis could be justified by the aggressive
nature of steatosis in this specific genotype [39,40]. A definitive conclusion regarding this
matter would require further investigation. Even though factors behind fibrosis progres-
sion in CHC are poorly understood [41], IR could potentially be the link [31,42]. Recently,
a study showed that, in HCV, the presence and degree of IR correlate with the fibrosis
stage, whereby IR has been known to perpetuate the fibroinflammatory process. This may
be explained by the expression of proinflammatory and fibrogenic cytokines, as well as
circulating adipokines, which collectively affect both insulin sensitivity and inflamma-
tion, [43–45]. The precise mechanisms behind these findings remain a mystery; however,
the mechanisms via which steatosis and IR differently influence progression of liver fibrosis
have been established, whereby IR manifests as an overproduction of hepatic glucose,
while steatosis is more linked to hepatic inflammation [46].

The association between steatosis and the risk for HCC in CHC has been explored in
numerous studies, as summarized in Table 1.

Table 1. HCV-related steatosis increases hepatocellular carcinoma risk. HCV: hepatitis C virus; IFN: interferon; HCC:
hepatocellular carcinoma; SVR: sustained virologic response; BMI: body mass index; AFP: alpha-fetoprotein; DAAs:
direct-acting antivirals; PR: Pegylated interferon plus ribavirin; ND: not determined.

Study Number of
Patients

Antiviral
Therapy

Antiviral
Response

HCC
Occurrence/Recurrence

(%)
HCC-Related Risk Factors

SVR Non-SVR

Kurosaki et al., 2010
[47] 1279 IFN 393 886 68/1279~5%

High-grade steatosis,
advanced fibrosis, non-SVR,

older age, male sex, high BMI

Tanaka et al., 2007
[48] 266 IFN 266 0 6/266~2.6% Steatosis, older age, fibrosis

Ohata et al., 2003
[49] 161 IFN (71/161) 20 51 71/71~100% Steatosis, aging, cirrhosis, no

IFN treatment

Takuma et al., 2007
[50] 88 Curative

resection ND ND 55/88~63%
Steatosis, fibrosis stage,

surgical procedure outcome,
number and size of tumor

Pekow et al., 2007
[51] 94 Liver

transplantation ND ND 32/94~34% Steatosis, older age, AFP

Ji, D., et al., 2021
[52] 1735 IFN-free DAAs

and PR 1336 399 54/1336~4.4%

NAFLD, older age, higher
AFP level, higher liver
stiffness measurement,

diabetes mellitus
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A study demonstrated that HCC development in CHC-infected patients following a
SVR depended on age (≥55) (p = 0.021), hepatic fibrosis (F3–4) (p = 0.0028), and hepatic
steatosis (grade 2–3) (p = 0.0002) at pre-IFN treatment, where HCC developed within a
period of 10 years. Subsequently, CHC-infected patients with these underlying risk factors
require constant monitoring for HCC development [48]. Similarly, in another study, hepatic
steatosis was among identified risk factors for HCV-associated HCC where the tumor recur-
rence rate was significantly higher in steatosis-positive patients than in steatosis-negative
patients (p = 0.02), [50]. While other studies have reported similar findings, [47,49,51,52], a
genotype-specific risk for HCC has been speculated, where the risk was particularly greater
in G-3 CHC-infected patients. Accordingly, a substantial proportion of patients with this
genotype may potentially be at risk of CHC progression to cirrhosis and HCC, suggesting
that HCV genotype status may be useful as a risk screener [53–55].

In as much as G-3 CHC has been linked to an increased risk for HCC, it cannot
be absolutely assumed that viral steatosis is the primary connection; furthermore, this
possibility was ruled out by a study which suggested an absence of steatosis in late
stages of liver disease, which is at the time HCC occurs [38]. In conclusion, the relationship
between HCV and steatosis regarding hepatic complications is largely speculative; however,
accumulating evidence suggests that steatosis, as well as IR, might contribute to progression
of fibrosis or liver disease, thereby altering the natural history of CHC. Moreover, according
to the data reported in Table 1, considering the increased risk for HCC posed by steatosis,
additional surveillance is necessary in HCV steatosis-positive patients, particularly those
with G-3 [53]. Finally, liver steatosis may be considered a risk factor for inflammation,
increased hepatic fibrosis, and liver damage or HCC in CHC patients.

3. Molecular Mechanisms of HCV-Associated Steatosis

Various studies have shown that an excess of lipids in the liver is critical in maintaining
the HCV life cycle. According to several pieces of evidence, HCV might directly cause
lipid accumulation in hepatocytes. Firstly, steatosis is more frequent and severe in G-3
patients, suggesting the direct involvement of HCV viral proteins in the accumulation
of triglycerides in hepatocytes. Secondly, observed within this very same genotype is a
correlation between the degree of steatosis and level of HCV replication in the liver. Lastly,
the response to antivirals among G-3 CHC patients is a major factor, where a significant
reduction in fatty liver has been reported following successful treatment [24,31,39,40].
Consequently, several mechanisms have since been linked to the development of HCV-
associated steatosis, illustrated in Figure 1.

The first mechanism highlights the role of the HCV core protein and NS5A in inter-
fering with lipid metabolism. These proteins inhibit the microsomal triglyceride transfer
protein (MTP), an enzyme responsible for the assembly of very-low-density lipoprotein
(VLDL), thus resulting in the accumulation of triglycerides in hepatocytes leading to steato-
sis [56]. Mitochondrial dysfunction has also been linked to steatosis in HCV patients either
through activation of the sterol regulatory element-binding-protein (SREBP 1c) signaling
pathway or inhibition of retinoid X receptor alpha (RXR-α) and peroxisome proliferator-
activated receptor alpha (PPAR-α); the key regulators of fatty-acid beta-oxidation. The
HCV core protein upregulates SREBP-1c, thereby activating the enzymes sterol CoA de-
hydrogenase 4 (SCD4), acetyl-CoA carboxylase (ACC), and fatty-acid synthase (FAS),
which promote lipogenesis by favoring the production of fatty acids and triglyceride ac-
cumulation in the liver. This protein further inhibits retinoid X receptor alpha (RXR-α)
and PPAR-α, which are transcription factors involved in the regulation of mitochondrial
carnitine palmitoyl-transferase type 1 (CPT-1), a mitochondrial enzyme which catalyzes
the transportation of fatty acids into the mitochondria for β-oxidation [57–60]. As a re-
sult, CPT-1 is downregulated, which leads to mitochondrial dysfunction and activation
of lipid oxidation in peroxisomes and the ER. The resulting end products of peroxidation;
4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), exacerbate the oxidative stress,
leading to steatosis [61].



Biomedicines 2021, 9, 1491 5 of 17Biomedicines 2021, 9, x FOR PEER REVIEW 5 of 18 
 

 
Figure 1. The effect of hepatitis C virus on liver steatosis development. Red and green illustrate upregulation and down-
regulation, respectively. HCV: hepatitis C virus; MTP: microsomal triglyceride transfer protein; VLDL: very-low-density 
lipoprotein; SREBP- 1c: sterol regulatory element-binding-protein 1c; SCD4: sterol CoA dehydrogenase 4; FAS: fatty-acid 
synthase; ACC: acetyl-CoA carboxylase; PPAR-α: peroxisome proliferator-activated receptor alpha; CPT-1: carnitine pal-
mitoyltransferase-1; 4-HNE: 4-hydroxynonenal; MDA: malondialdehyde; FFAs: free fatty acids; TNF-α: tumor necrosis 
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tochondrial β-oxidation; GLUT-4: glucose transporter type 4. 
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Figure 1. The effect of hepatitis C virus on liver steatosis development. Red and green illustrate upregu-
lation and downregulation, respectively. HCV: hepatitis C virus; MTP: microsomal triglyceride transfer
protein; VLDL: very-low-density lipoprotein; SREBP- 1c: sterol regulatory element-binding-protein
1c; SCD4: sterol CoA dehydrogenase 4; FAS: fatty-acid synthase; ACC: acetyl-CoA carboxylase;
PPAR-α: peroxisome proliferator-activated receptor alpha; CPT-1: carnitine palmitoyltransferase-1;
4-HNE: 4-hydroxynonenal; MDA: malondialdehyde; FFAs: free fatty acids; TNF-α: tumor necrosis
factor alpha; SOCS3: suppressor of cytokine signaling 3; IRS-1: insulin receptor substrate signaling;
Mc. β-oxidation: mitochondrial β-oxidation; GLUT-4: glucose transporter type 4.

The second proposed mechanism involves the strong association between hepatic
steatosis and IR [62]. In hepatic IR, the clearance of glucose in the liver is impaired and is
later compensated for by an increase in insulin production by the pancreas; however, this
leads to not only hyperinsulinemia but also an overstimulation of lipogenesis, ultimately
resulting in steatosis [63]. IR may result from the downregulation of insulin receptor
substrate signaling 1 (IRS-1) due to an excess of free fatty acids (FFAs), tumor necrosis
factor alpha (TNF-α), or suppressor of cytokine signaling 3 (SOCS3) [64], where the HCV
core protein is once again implicated in the enhancement of FFA absorption [65]. This
inhibits glucose uptake by glucose transporter type 4 (GLUT-4), thereby increasing both
blood glucose and insulin levels, leading to steatosis [66]. Although this exact mechanism
in HCV patients remains elusive, the few ideas that have been proposed suggest an
interaction between the HCV core and NS5A protein and other elements involved in
regulating lipid metabolism.

4. HCV-Related Steatosis and Extrahepatic Manifestations

HCV has been implicated in multiple extrahepatic disorders including metabolic
disturbances such as MetS, atherosclerosis, diabetes mellitus, and IR [67–69]. CHC is
commonly associated with steatosis, which is in turn linked to MetS, a host-related factor
known to significantly accelerate progression of liver fibrosis in CHC [70–73]. MetS affects
approximately 33% of the population in the developed world, where 33% of MetS patients
develop NASH [74]. IR is believed to be the key pathogenic factor between NAFLD/NASH
and MetS; evidently, the links between CHC and MetS [75,76], NAFLD and MetS [77],
and NAFLD and CHC have been established. NAFLD and CHC are associated with an
increased prevalence of CVD and T2D [78]. This is not surprising considering that MetS is
an established risk factor for CVD and T2D [79–81]. In confirming the above-mentioned
associations, Leornado et al. demonstrated that fat accumulation and liver fibrosis might
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be common determinants for the development of T2DM and CVD in patients with NAFLD,
HCV, or HIV [78].

Similar complications in NAFLD patients have been confirmed by further stud-
ies [11,82–85]. The high CVD risk in NAFLD patients with MetS could be due to an
increase in fibrosis stage, steatosis grade, or oxidative stress [86], which are collectively
induced by FFAs. HCV infection has similarly been identified as a potential risk factor for
both T2DM- and CVD-related complications [87,88]. HCV core protein upregulates TNF-α
and SOCS3, causing the phosphorylation and ubiquitination of IRS-1/IRS-2, respectively,
preventing it from associating with the insulin receptor and further blocking the activation
of AKT. Since AKT has the responsibility of regulating numerous metabolic functions
including lipolysis, protein and glycogen synthesis, gluconeogenesis, and GLUT-4, the
result is IR [89]. Finally, IR may result in hyperglycemia in T2DM patients, as well as
CVD, through the activation of the intracellular mitogen-activated protein kinase (MAPK)
signaling pathway (involved in pathogenesis of cardiac and vascular disease) [90]. This
mechanism is illustrated in Figure 2.
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Figure 2. Extrahepatic disorders associated with hepatitis C virus. Red and green illustrate upregulation and downregula-
tion, respectively. HCV: hepatitis C virus; TNF-α: tumor necrosis factor alpha; SOCS3: suppressor of cytokine signaling
3; IRS-1: insulin receptor substrate signaling 1; IRS-2: insulin receptor substrate signaling 2; AKT: protein kinase B or
Akt signaling pathway; MAPK: mitogen-activated protein kinase signaling pathway; CVD: cardiovascular disease; MetS:
metabolic syndrome; T2D: type 2 diabetes.

The risk of CVD is further increased in CHC through chronic vascular inflamma-
tion [91], and more timely screening of patients with hepatic steatosis for various extra-
hepatic manifestations could significantly help identify those at high risk and improve
liver disease outcomes in HCV patients. It is imperative for clinicians to identify both
high-risk patients and extrahepatic manifestations of steatosis earlier in the disease course
to improve liver disease outcomes.

5. Molecular Mechanisms of HCV Genotype-Specific Steatogenesis

The effect of steatosis on CHC progression appears to be genotype-specific, where
steatosis is mostly associated with host factors (obesity, diabetes, hypertension, and MetS)
in G-1/2 [23] and viral proteins in G-3 infection [24,39]. Considering the analogy between
HCV steatosis and NAFLD patterns, HCV-related steatogenesis may occur through the
following steps: increased lipogenic substrates, increased de novo lipogenesis, decreased
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oxidation of fatty substrates, and decreased export of hepatic fatty substrates into the
blood stream. Moreover, these NAFLD-like mechanisms of steatogenesis apply to all HCV
genotypes with a few proposed differences where G-3 CHC seemingly amplifies steatogenic
molecular mechanisms associated with NAFLD through significant changes in MTP, PPAR-
α, SREBP-1c, and phosphate and tensin homolog (PTEN) [92]. Contrary to G-1/2, G-3 CHC
patients exhibit significantly reduced MTP and PPAR-α activity, which downregulates
exportation of lipogenesis and β-oxidation, respectively. There is also a possibility that G-3
CHC activates SREBP-1c more efficiently than G-1 through inactivation of PTEN, leading
to de novo lipogenesis [92–95]. These G-3 CHC-magnifying steatogenic mechanisms might
be due to specific differences in the core protein amino-acid sequence in this genotype [96].
On the other hand, the pathogenic mechanisms behind the “metabolic type” of HCV-
associated steatosis remain elusive. However, recent studies have implied that IR, obesity,
and dysregulation of adipocytokines may be among the factors involved [97,98].

Additionally, the effect of oxidative damage on the histological and metabolic features
of CHC are more evident in non-G-3, whereby CHC-infected patients in this group experi-
ence more severe steatosis. As a result, IR and oxidative stress are considered independent
risk factors for steatosis in this group [99]. Furthermore, gene expression analysis from
a study revealed how certain steatogenic pathways involving increased fatty-acid degra-
dation and decreased cholesterol export are significantly induced in G-1 as opposed to
G-3 livers [95]. These genotype-specific steatogenic pathways associated with HCV are
illustrated in Figure 3.
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Indeed, steatosis was observed in 87% of G-3 and 56% of G-1 HCV patients where
the carbohydrate-responsive element-binding protein (ChREBP), a regulator of lipid
metabolism, was found to be significantly expressed in G-1-infected livers. The precise role
of ChREBP in lipid homeostasis remains controversial where, an overexpression of this
protein maintained insulin signaling sensitivity and induced expression of the fatty-acid-
regulating acetyl-CoA carboxylase enzyme while at the same time, knocking down this
gene improved hepatic steatosis and IR in obese mice [95,100].
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6. The Impact of Antiviral Therapy on HCV-Related Steatosis, Extrahepatic
Manifestations, and HCC

Steatosis may predict treatment failure in CHC patients; however, this relationship
is less well understood, [31,101]. The IFN-based therapy era was challenged with apply-
ing changes in lipid metabolism and liver steatosis to successful HCV eradication; as a
result, studies have suggested that hepatic steatosis negatively impacts SVR following
treatment [102,103]. Toyoda et al. suggested that steatosis and hepatic expression of genes
involved in innate immunity are among factors associated with resistance to combination
antiviral therapy with Pegylated interferon (PEG-IFN) and ribavirin [104]. The effect that
steatosis has on HCV replication and interferon alpha (IFN-α) antiviral response was
investigated in an infected cell culture model where a possible mechanism was proposed.
In this study, intracellular fat accumulation following treatment with FFAs reduced the
phosphorylation of signal transducer and activator of transcription 1 and 2 (Stat1 and
Stat2)-dependent interferon beta (IFN-β) promoter activation, thereby hindering response
to IFN-α and viral clearance. Furthermore, FFA treatment induced endoplasmic reticulum
(ER) stress response and downregulated the interferon alpha receptor subunit 1 (IFNAR1)
of the type I IFN receptor, which ultimately impaired JAK/STAT signaling, as well as
antiviral response [105].

IFN-free DAAs, which target the viral replicative machinery, have since replaced
IFN-based therapies in HCV treatment, having successfully cured a significant number of
patients, including those at high risk of HCC or with associated conditions such as renal
dysfunction, CVD, and MetS [106,107]. Even though DAAs have significantly increased
the treatment efficacy in HCV-infected patients [108,109], little is available about the mech-
anism behind the effect of hepatic steatosis on SVR following this therapy. What has been
proposed, however, is the effect that DAAs and SVR have on HCV steatosis. Numerous
studies have indicated that HCV infection upregulates SREBP-1c, [110], while downregu-
lating MTP and CPT-1 [111], two elements which promote lipogenesis, as well as secretion
of VLDL-C, and regulation of mitochondrial β-oxidation [60,112]. Therefore, according
to Kawagishi et al., HCV eradication by DAA therapy should successfully downregulate
SREBP 1c while upregulating MTP and CPT-1. As a result, lipogenesis is decreased while
VLDL secretion is increased [113]. This article further demonstrated how HCV eradication
by DAAs influences liver steatosis and atherogenic risk, where a decrease in CAP (a marker
of steatosis) was suggested following SVR with this IFN-free therapy. Results showed that
the overall changes in CAP were significantly elevated at SVR24; moreover, these changes
were negatively correlated with baseline values of steatosis, whereby, in patients with
severe steatosis at baseline, CAP values were decreased while those with lower baseline of
steatosis experienced elevation of CAP. Since the impairment of VLDL secretion as a result
of downregulation of MTP has been known to cause hypocholesterolemia and decreased
triglyceride levels in HCV patients [114], successful treatment with DAAs might lead to
elevation of LDL-C and triglycerides [115,116]. A summary of the response to IFN-based
and IFN-free DAAs in HCV-associated steatosis is illustrated in Figure 4.

Similarly, in another study, patients with liver steatosis experienced elevated LDL-C
and triglyceride levels accompanied with elevated sdLDL-C (small dense low-density
lipoprotein cholesterol) at SVR24 [113]. In contrast, LDL-C levels in patients with non-SVR,
remained unchanged following DAA treatment. Indeed, a positive correlation between
sdLDL-C and NAFLD has been previously reported in patients diagnosed with NAFLD,
suggesting the prospect of sdLDL level as a new biomarker of NAFLD [117], and possibly
an even better predictor of CVD than LDL-C [118,119]. Hashimoto et al. further reported
that total cholesterol levels following an SVR with DAA treatment were significantly
increased in the ledipasvir/sofosbuvir group (87.45 to 122.5 mg/dL; p < 10−10) than in the
daclatasvir and asunaprevir group (80.15 to 87.8 mg/dL; p = 0.0056) [116]. Whether or not
this increase in serum LDL-C concentrations post DAA treatment relates to the specific
combination of the DAA therapy or a decline in HCV core protein remains unclear.
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The impact of steatosis on HCV genotypes has been investigated in several studies
with varying results. While several studies have suggested no connection between steatosis
and SVR in genotype [31,120], others have insisted that a lack of steatosis could significantly
predict SVR in these patients [121]. Initially, G-3 HCV infection was considered the most
challenging to treat during the IFN era [22]; however, this concept seemed to differ in
patients with steatosis, where a significant reduction in steatosis after a SVR from IFN-
based treatment was observed in patients with G-3 HCV, along with no change in either
G-1- or G-3-infected patients without a SVR [24]. Similarly, in another study including 1428
naïve patients, the presence of steatosis after IFN therapy was associated with a lower SVR
(p < 0.001), while steatosis was significantly reduced in G-3 HCV patients who achieved a
SVR [31]. Regarding the varying presentation of liver steatosis and virological response to
therapies among G-1 and 3, Meissner et al. suggested that, since steatosis in G-1 patients is
not primarily mediated by HCV (which is the case for G-3), achieving a SVR regardless of
the type of therapy might not solve the already increased fibrosis progression perpetuated
by metabolic factors [115].

There are reports where a significant elevation in CAP levels following DAAs was
reported to be genotype-specific [26,28]. In the latter reports, this elevation was observed
in G-1/2, suggesting that this particular group may potentially be more susceptible to
a decreased response to both IFN-based and IFN-free DAA treatment regimens. Other
studies have also hypothesized that the differences between G-1/2 and G-3 in their response
to DAA therapy could be due to transcriptional alterations in pathways involved in both
lipid and inflammation metabolisms [95]. In this study, they further discovered a significant
difference following treatment with DAAs among the genotypes in the altered liver gene
expression, where 2151 genes were differentially expressed with a >1.5-fold difference
between them.

A successful outcome following DAAs was reported in a retrospective clinical study
where liver biopsies of patients before and after DAAs were examined to measure steatosis
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and fibrosis. DAA treatment managed to decrease steatosis and hepatic inflammation
in most patients, except for a few with bridging fibrosis before treatment who either
suffered persistent lymphocytic portal inflammation, decompensated cirrhosis, and HCC or
developed cholangiocarcinoma post treatment. Consequently, HCV-infected patients who
either have advanced fibrosis at treatment initiation or steatosis should be closely monitored
for liver-related complications. Underlying NAFLD has, therefore, been associated with
increased incidence of HCC in CHC patients following a SVR by DAAs [52]. A reduction in
liver steatosis was also reported by Kobayashi et al. in a study involving 57 patients with
CHC who achieved a SVR following DAA treatment [122]. In this study, the assessment
of liver stiffness and steatosis based on transient elastography (TE) and CAP revealed a
significant increase in total cholesterol and LDL-C levels, as well as a decrease in CAP
levels from baseline to SVR48, particularly in steatosis-positive patients. As a result, it was
suggested that liver steatosis is reduced in patients with a SVR following DAA therapy.

In addition to steatosis improvement, DAAs have been associated with a reduction
in IR, thereby significantly decreasing the occurrence of two major extra-hepatic mani-
festations of CHC: T2DM and CVD. While investigating the effect of SVR on severity of
carotid atherosclerosis in HCV patients undergoing DAA treatment, Petta et al. reported a
decrease in the carotid intimal–medial thickening, 9–12 months post SVR [123]. Similarly,
HCV clearance among 2204 HCV-infected patients was independently associated with a
reduction in CVD (OR, 4.716; 95% CI: 1.832–12.138; p = 0.001) [124]. Interestingly, Di Minno
et al. suggested a link between SVR and improvement in endothelial function where the
flow-mediated dilation (FMD), a cardiovascular (CV) risk marker, was improved 12 weeks
after DAA treatment [125]. While numerous studies have indeed confirmed an improve-
ment in CV events due to DAA-induced SVR [126–128], others argue that DAAs may exert
a cardiotoxic effect particularly in HCV-infected patients whose left-ventricular function
is impaired [129]. Chen et al. further emphasized that HCV eradication by DAAs may
negatively impact lipid metabolism, thereby significantly increasing LDL-C and central ar-
terial stiffness, which are significant predictors of hypertension and CVD [130]. On another
note, virus eradication with DAA regimens is linked to an improvement in parameters
of glucose metabolism and IR [131,132]. As a result, a decrease in diabetes rates has been
reported in HCV patients following DAA treatment [128]. The direct mechanisms via
which HCV reverses the altered glucose and lipid homeostasis remain unsolved; however,
HCV eradication was shown to be a major contributor in numerous studies.

Indeed, achieving a SVR with DAAs has proven to be a significant turning point in
CHC infections; however, unforeseen increases in HCC recurrence and/or occurrence
rate among HCV patients treated with DAA combination have led to the efficacy of this
regimen being questioned [133,134]. Another study specifically proposed that early HCC
occurrence may be correlated to the use of sofobusvir (SOF)-based therapy without ribavirin
(RBV) [135], emphasizing the protective role of RBV on HCC onset [136]. According to
Kobayashi et al., this may be partly explained by RBV’s inhibitory effect on regulatory
T (Treg) cells, thereby assisting HCV-specific CD8+ T cells in eliminating HCV-infected
hepatocytes [137].

In summary, while it has been proposed that hepatic steatosis negatively impacts
SVR following IFN-based treatment through defective JAK/STAT signaling, better IFN-
free DAAs have significantly improved steatosis. Since significant changes in steatosis
have been particularly linked to G-3 HCV-infected patients who achieved a SVR, further
understanding the underlying molecular pathways between different HCV genotypes
might improve the treatment success of both IFN-based and IFN-free DAAs. An assessment
on whether or not interventions specifically aimed at reducing the degree of steatosis should
be considered as a means to improve antiviral efficacy. In addition, a SVR following DAAs
significantly reduces the risks of CVD and T2DM (by improving endothelial function and
glucose metabolism or IR), as well as HCC, particularly with the use of ribavirin. Patients
undergoing SOF treatment without RBV require monitoring.
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One of the limitations of this review is that despite having shed light on the effect
of DAAs on HCV steatosis, the impact that HCV steatosis has on the efficacy of antiviral
therapies remains a mystery. Moreover, the exact molecular mechanisms underlying the
latter event, as well as those behind DAA restoration of the altered glucose and lipid
metabolism, remain unsolved. In order to monitor steatosis, as well as maximize the
efficacy of DAA therapy in CHC patients, these issues need to be addressed.

On the other hand, this review highlighted that, in as much as HCV steatosis and
metabolic abnormalities are acknowledged risk factors for accelerated fibrogenesis, im-
paired treatment response to IFN therapy, and development of HCC, their clinical associ-
ation with the improved DAAs demands further investigation. We were able to provide
an up-to-date overview on the effect of DAAs and SVR on HCV steatosis among different
genotypes, as well as propose significant changes in steatosis markers which could be useful
therapeutic targets towards improving the efficacy of antivirals. This review went further
to suggest that transcriptional alterations in pathways that are genotype specific could very
well explain these changes, an aspect of this field that we believe is under-investigated.
Lastly, interventions aimed at reducing the degree of steatosis in HCV-infected patients as
a means to improve treatment efficacy have been neglected; therefore, this review hopes to
present an opportunity to explore that aspect in future studies.

7. Conclusions

This review illustrates a significant relationship between CHC infection and hepatic
steatosis through a combination of both viral and metabolic factors, further revealing a
significant association with both hepatic and extrahepatic manifestations. The presence
of NAFLD/NASH, otherwise known as MAFLD, has proven to be a significant marker
of progressive liver disease and virologic response to HCV treatment, where the severity
and frequency is significantly greater in G-3, while G-1 is associated with a poor response
to both IFN-based and IFN-free DAA therapy. The severe consequences resulting from
steatosis presence in CHC including increased risk of hepatic fibrosis and/or HCC, as well
as decreased virologic response to antiviral therapy, all stress the urgency of investigating
the complex derangements in host insulin and lipid metabolism. This will be extremely
useful in devising specific therapies for HCV-related steatosis in CHC infection, particularly
in G-3 patients.
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