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Abstract

Cells are crowded and spatially heterogeneous, complicating the transport of organelles,

proteins and other substrates. One aspect of this complex physical environment, the mobil-

ity of passively transported substrates, can be quantitatively characterized by the diffusion

coefficient: a descriptor of how rapidly substrates will diffuse in the cell, dependent on their

size and effective local viscosity. The spatial dependence of diffusivity is challenging to

quantitatively characterize, because temporally and spatially finite observations offer limited

information about a spatially varying stochastic process. We present a Bayesian framework

that estimates diffusion coefficients from single particle trajectories, and predicts our ability

to distinguish differences in diffusion coefficient estimates, conditional on how much they dif-

fer and the amount of data collected. This framework is packaged into a public software

repository, including a tutorial Jupyter notebook demonstrating implementation of our

method for diffusivity estimation, analysis of sources of uncertainty estimation, and visuali-

zation of all results. This estimation and uncertainty analysis allows our framework to be

used as a guide in experimental design of diffusivity assays.

Introduction

Diffusion is essential for the intra-cellular transport of many organelles, proteins and sub-

strates. In the crowded and heterogeneous physical environment of the cell, diffusivity is a

local, spatially dependent characteristic of the space, dependent on factors such as the size of

the particle, and the local viscosity and spatial crowding. These spatial heterogeneities must be

addressed when using diffusion coefficients as readouts of intra-cellular transport and the

physical environment. This intra-cellular diffusion coefficient is often experimentally esti-

mated through two approaches: single particle tracking (SPT) [1–3] and fluorescence correla-

tion spectroscopy (FCS) [4].

In single particle tracking experiments, a live cell is imaged in successive frames, and indi-

vidual punctate objects are tracked to construct a trajectory of time-dependent positions (Fig

1). One of the most common approaches to extracting diffusion coefficient estimates from

SPT is to use mean-squared displacement (MSD). The MSD generically follows the following
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relationship:

MSDðtÞ ¼ hðDxðtÞÞ2i ¼ 2dDta; ð1Þ

where Δx is the step size between frames taken at a time lag of τ, in d spatial dimensions, and D
is the diffusion coefficient. The parameter setting the MSD scaling with time, α, is determined

by the diffusive model. Any temporal scaling with α 6¼ 1 is called anomalous diffusion, with

super- and sub-diffusion models having α> 1 and α< 1, respectively. Intracellular diffusion

has most often been characterized to be sub-diffusive, likely as a result of crowding [3].

For objects undergoing homogeneous isotropic diffusion, the MSD of puncta is a linear

function of lag time (α = 1), with the slope being proportional to the apparent diffusion coeffi-

cient: The averaging in this calculation can be taken on a single or multiple trajectory basis (i.e.

mean of each displacement over time-step τ in a single trajectory or over many trajectories). If

MSD analysis is completed on a per-trajectory basis, this technique allows for spatial resolution

of diffusivity variation; however it relies on the fitting of theMSD(τ) slope. This analysis can

be misleading, as it includes no information about the uncertainty in this estimation beyond

calculation of the error on the mean. As a result, when multiple single-trajectory MSD’s are

plotted together on a log-log plot, it can be easy to interpret non-overlappingMSD(τ) line as

portraying distinct diffusivities, when they could just be representing uncertainty-driven varia-

tions around a single shared value.

In FCS, a laser illuminates a region of a sample containing fluorescently tagged particles

[5]. The characteristic time a fluorescent particle spends in the illuminated region (“dwell

time”) can be calculated from the intensity auto-correlation function. Together with the

length scale of the illuminated region, dwell time gives an estimate of the diffusion coefficient

in this region. The calculation of the diffusion coefficient from these properties is dependent

on the chosen diffusion model; this method is flexible to anomalous diffusion models and

captures small-scale local diffusivities. However, only one local measurement can be made

from each illuminated region, making the assessment of many local regions experimentally

intensive.

Like FCS, SPT can be used to probe local diffusivities and is robust to anomalous diffusion

models [6]. But in contrast, rather than providing one diffusivity measurement per illuminated

Fig 1. Single particle tracking. In SPT, a live cell is imaged over a series of time points. Individual punctate objects are localized at each time-step, and

these positions are traced from frame to frame to produce individual time-lapse trajectories.

https://doi.org/10.1371/journal.pone.0221841.g001
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region, SPT allows for as many individual local diffusivity estimates to be simultaneously made

as there are fluorescent particles in the field of view. Dependent on particle density, this advan-

tage allows for the efficient use of spatially dependent diffusivity assays. While SPT offers

many advantages, it relies on finite observations of a stochastic assay, limiting our diffusivity

estimation accuracy.

While powerful analyses from SPT have indicated the complexity of transport in live cells,

the spatial variation of the diffusion coefficient remains poorly characterized. This can be

attributed to challenges in disentangling effects of biological heterogeneity and limited sam-

pling of a stochastic process [7, 8]. To address these challenges, we developed a Bayesian

framework to estimate a posterior distribution of the possible diffusion coefficients underlying

single-trajectory dynamics. This framework generates look-up tables predicting the detectabil-

ity of differences in diffusion coefficients, conditional on the ratio of their values and amount

of trajectory data collected.

Other packages with information theoretic frameworks for trajectory analysis have been

released; for example, the Single-Molecule Analysis by Unsupervised Gibbs sampling

(“SMAUG”) software package [9] also uses Bayesian estimation to characterize diffusive

environments. However, our package is unique because it is intended specifically to provide

lightweight trajectory analysis and prediction that can be used by those with a biological back-

ground to inform microscopy experiment design, without requiring deep statistical or compu-

tational knowledge.

Materials and methods

Trajectory simulation and localization error

We generated sample trajectories with known diffusion coefficients by simulating Brownian

motion of particles in a d-dimensional space. At each time-point and along each spatial dimen-

sion, a step size was drawn from a zero-mean Gaussian N ðm ¼ 0; s2Þ with variance σ2 defined

by the diffusion coefficient: σ2 = h|Δx|2i = 2dDΔt, where d is the number of spatial dimensions,

D is the homogeneous isotropic diffusion coefficient, and Δt is the time-step. At each time

point, a new step size in each dimension was drawn from the normal distribution, to generate

the displacement vector ~Dx. This displacement vector was added to the position~xðtÞ to gener-

ate the next position~xðt þ DtÞ. We recorded the position of the particle at each frame in a

time-series, constructing a trajectory mimicking the data one would get from tracking an

object from time-series images (Fig 2).

To mimic the static localization error inherent in microscopy-generated trajectories in our

simulated trajectories, we added Gaussian error to the locations of simulated particles at each

time point [10]. After each successive location was stochastically chosen based on a model of

Brownian motion, an additional draw from another normal distribution was made to select a

shift in position in each spatial dimension. The variance of this Gaussian localization error can

be tuned to the user’s own specific microscope configuration.

The locations of the simulated particle at each time-point (with and without error included)

are stored in a DataFrame, and these trajectories are digested into frame-to-frame displace-

ments; realistically these step sizes were used to generate the trajectories, making back-calculat-

ing them seem tedious. However, the remainder of our toolkit is designed for analysis of any

trajectory—simulated or tracked from images. Therefore a user can choose to either input

their own image-derived trajectories or use a simulated trajectory to perform estimation of the

unknown diffusivity.
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Bayesian inference of diffusivity

To estimate the diffusivity underlying a single trajectory (and our uncertainty in this estima-

tion), we employ Bayesian inference [11]. This method is focused on generating a “posterior

probability distribution”: the probability that a random variable takes on any of a set of values,

based on provided evidence and a prior distribution. In our case, the random variable is the

diffusivity, and the evidence is the set of step sizes from a single trajectory. The prior distribu-

tion for the variance of a normal distribution with known mean is an inverse-gamma distribu-

tion. This acts as a conjugate prior; that is, a class of distributions for which the prior and

posterior distributions take on the same mathematical form; therefor our posterior will also be

an inverse-gamma function. The inverse-gamma distribution’s probability density function

over diffusion coefficients D> 0 is parameterized by the scale (a) and shape (b):

IGðD; a; bÞ ¼
ba

GðaÞ
ð1=DÞðaþ1Þe� b=D: ð2Þ

The parameters a and b have been used in place of the typical use of α and β respectively, to

disambiguate from the MSD time-scaling parameter α in Eq 1.

The posterior distribution peaks near the true diffusion coefficient and has a width corre-

sponding to the confidence interval of our estimate, which is largely determined by the trajec-

tory length and magnitude of localization error.

Characterizing the distinguishability of diffusivity posteriors

To characterize our uncertainty on whether trajectories come from regions with different dif-

fusivities, we require a way to quantitatively discriminate between pairs of posterior distribu-

tions. To achieve this, we use the Kullback-Leibler (KL) divergence. The KL divergence acts as

a single-value estimation of how well we can analytically distinguish whether the step sizes

Fig 2. Sample trajectory with and without localization error. A 2D diffusive trajectory with no localization error is drawn for T time-steps. At each

time-step, a cloud of Gaussian uncertainty is drawn; the shape and shading of this cloud demonstrate how likely it is for the position of be measured at

any of the surrounding points rather than in the true position. A sample alternative trajectory is drawn (purple) showing the path we might observe the

particle to take, due to the localization error in measuring the true position as a function of time.

https://doi.org/10.1371/journal.pone.0221841.g002
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from a trajectory came from the diffusivity predicted by one posterior or the other. The KL

divergence of two inverse-gamma distributions p(a, b) and qðâ; b̂Þ is calculated as follows [12]:

KLða; b; â; b̂Þ ¼ ða � âÞCðaÞ þ b̂
a
b

� �
� aþ log

bâþ1GðâÞ
bb̂âGðaÞ

ð3Þ

whereC(a) is the digamma function, defined as the logarithmic derivative of the gamma func-

tion (Γ(a)). Since this metric is not symmetric and we have no preference between distribu-

tions p and q, we use a symmetrized version of the KL divergence

KL ¼ 1

2
KLða; b; â; b̂Þ þ KLðâ; b̂; a; bÞ
� �

.

Code availability

A repository for our source code is publicly available at the Allen Cell Modeling GitHub page

https://github.com/AllenCellModeling/diffusive_distinguishability, conveniently packaged

with ReadTheDocs documentation and a tutorial Jupyter notebook demonstrating usage and

reproducible figure production. This package is registered under DOI 10.5281/zenodo.

2662552.

Results and discussion

Bayesian inference of diffusivity

When the position of a diffusing object is recorded as a trajectory of discrete steps in time, the

sizes of those steps can be mathematically represented as stochastic draws from a distribution

characterized by the diffusion coefficient. Our method for estimating the diffusion coefficient

relies on breaking individual trajectories into frame-to-frame steps, and applying a Bayesian

statistical framework to predict the diffusivity underlying each set of stochastically derived step

sizes. From a single trajectory, this framework provides not only an estimation of the diffusiv-

ity, but also a representation of our uncertainty. While our framework could be adapted to

analyze more complex dynamic models, our current implementation introduces a workflow

for analyzing isotropic homogeneous diffusion; therefore, trajectories with unknown diffusiv-

ity will result in a step-size distribution which is normally distributed, with zero mean and

unknown variance N ðm ¼ 0; s2Þ.

Bayesian inference is built on the use prior and posterior distributions [11]. Our “prior” dis-

tribution is an initial guess at the solution to a problem before using our observations or data

to inform our expectations (i.e. a priori); for instance, if I have no intuition for the solution to

my estimation problem, I would use a flat prior telling my model that I think any solution is

equally likely. We then use our data to narrow down our solution estimation (i.e. a posteriori),
resulting in a “posterior” distribution. In our case, the step size distribution from a single tra-

jectory would be the observations, and the posterior might look like a distribution of diffusivity

values, peaked around some value indicating a likely estimate of the underlying diffusion coef-

ficient. The longer the trajectory is, the more information we can use to narrow down our

answer, leading to a more tightly peaked posterior (discussed in greater detail in the Sources of
posterior estimate error).

Inverse-gamma distribution as diffusivity conjugate prior

In this section, we will step through the process of applying Bayesian analysis to our particular

case. First, we will get introduced to the governing principle of this approach, called Bayes’
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theorem [11], then we will carefully digest this principle into pieces and see how it applies to

our own application.

Bayes’ theorem tells us that the posterior distribution for an unknown variable θ is propor-

tional to the product of the prior distribution p(θ) and the “likelihood function”, or the func-

tion giving the probability of making observation x given the unknown variable p(x|θ).

Mathematically, this is often represented:

pðyjxÞ / pðyÞpðxjyÞ: ð4Þ

How does this apply to the diffusion process we have been exploring? In our problem, we

have taken single particle trajectories and split them into frame-to-frame step sizes. We can

say, then, that our Bayesian “observed variable x” is the step size Δx. We’ve discussed previ-

ously that we expect the step sizes for diffusive trajectories to be normally distributed, with a

mean of zero and an unknown variance. Translating again to the Bayesian framework, we can

say that our unknown variable θ is the variance σ2, and our likelihood function is the normal

distribution of step sizes, i.e. pðxjyÞ ¼ pðDxjs2Þ ¼ N ð0; s2Þ.

The prior is our initial guess of the probability distribution of values for our unknown vari-

able, σ2. To determine the prior distribution for our cases, p(θ) = p(σ2), we consider the mathe-

matical dependence of the normally distributed step sizes on the variance σ2:

pðDxjs2Þ / ð1=s2Þ
be� g=s2

ð5Þ

We see that this dependence looks a bit like a gamma distribution, except that our vari-

able of interest is found in the denominator. This class of function is intuitively called an

inverse-gamma function (IG, Eq 2). We can now say a priori that we expect our estimated

σ2 values to follow an inverse-gamma distribution, and therefore this is the form of our

prior: p(θ) = p(σ2) = IG(σ2).

We have now seen how to place the observed and unknown Bayesian variables in the con-

text of our problem, and explored the Normal and inverse gamma distributions which can be

used as our likelihood and prior distributions, respectively. With these pieces in hand, we can

now find the class of function for our posterior distribution, as the product of our prior and

likelihood distributions (Eq 4). In our case, we find that the product of p(σ2) and p(Δx|σ2) also

has an inverse gamma dependence on σ2. We note that our posterior distribution is a function

of the same class as the posterior—we will come back to this after a brief note.

In this section we have built up a framework for performing Bayesian analysis to estimate a

distribution of variances, but we promised an estimation of the diffusion coefficient. Now let

us recall that the variance of the diffusive step size distribution is directly proportional t the dif-

fusion coefficient (σ2 = 2dDΔt), and therefore, with the inclusion of a multiplicative constant,

this analysis is easily transferred into a Bayesian estimation of diffusivity D, with inverse

gamma prior and posterior distributions IG(D).

In general, when the prior and posterior for Bayesian analysis take the same mathematical

form, the prior is referred to as a “conjugate prior.” The matching of the conjugate prior and

posterior function types dramatically simplifies the statistical method, presenting one advan-

tage of this prior. A second advantage of our prior is that the inverse-gamma distribution acts

a conservative initial “guess,” with any order of magnitude diffusivity is equally likely, before

the introduction of any data. In the Bayesian method of statistical inference, the choice of

prior can bias our results; for instance, if we expect the diffusivity to be around 1 μm2/s, we

might select a prior distribution that is sharply peaked around this value. If the diffusivity is, in

fact, close to this value, that choice of prior would help guide our posterior towards the correct

result. However, if that intuition is incorrect, and the true value lies in the tails outside our
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peaked prior, we will have biased out Bayesian estimator away from the true value, skewing

our results ti be incorrect. As a result, use of an “uninformative” prior such as the inverse-

gamma distribution with scale and shape parameter a, b! 0, treats all posterior results as

being equally likely and helps us to remove our a priori bias from our diffusivity inference. The

distribution and quantity of values in our set of step sizes will then determine the scale (a) and

shape (b) parameters for our posterior inverse-gamma distribution IG(D;a, b).

Sources of posterior estimate error

The estimation of diffusivity from a single trajectory is limited by the finite trajectory length

and accuracy in localizing the object at each time point. As a result, careful consideration of

how each of these factors will impact the estimation uncertainty is necessary when construct-

ing an experimental design. To address this, we have constructed a framework for generating

look-up tables predicting the percent error posterior diffusivity estimation conditional on a set

of trajectory lengths and localization errors.

Many methods for estimating diffusivity from a single trajectory rely on the analysis of the

frame-to-frame step-size distribution extracted from that trajectory. However, during a

microscopy experiment, there will always be an inherent limitation to the degree of accuracy

that an object can be localized in each frame. This arises from both static and dynamic sources

of localization error; static localization error occurs due to the inherent limit to spatial resolu-

tion of imaging experiments, while dynamic localization error comes from the non-instanta-

neous nature of capturing an image resulting in object movement during image acquisition

[13]. Since dynamic localization error is most relevant for quicky moving objects, such as

small substrates, we have chosen to simulate and provide example analysis of the effects of

static localization error.

As a result of limitations in spatial resolution, when the object is tracked and trajectories

generated, an inherent limitation in localization accuracy is encoded in the trajectory, and

therefore skews the step-size values being used to infer the diffusion coefficient. To demon-

strate the impact of localization error on SPT, we provide an example simulated trajectory

with varying amounts of localization error applied (Fig 3).

Fig 4 demonstrates the impact of underlying diffusion coefficients and localization errors

on posterior estimates. We provide examples of trajectories in two regions with differing diffu-

sion coefficients, each with and without localization error included in the trajectory simula-

tion. We then plot the posteriors for all four of these trajectories on one set of axes. Our tool

aims to quantify the effects of this localization error on the estimation of diffusivity by generat-

ing trajectories with varying known degrees of localization error and reporting their impact on

the error of the posterior estimation of the known underlying diffusivity.

Diffusive trajectories are composed of successive steps, whose sizes are stochastic draws

from a distribution set by the diffusivity. When only short trajectories are available, we have

only a limited set of draws from this distribution—as a result, the variance of this distribution

is difficult to accurately predict, and the posterior distribution of diffusivity probabilities will

be less accurate and precise. While it would be ideal to simply collect longer trajectories, this is

often experimentally impossible; therefore, we aim to give experimentalists an analysis frame-

work to estimate how accurately they can predict diffusivity given their own limitations in

tracking.

Because our trajectories are simulated, we benefit from the knowledge of the true diffusivity

and degree of localization error, and can therefore precisely quantify the relation between the

error in our Bayesian estimation of diffusivity and the level of localization error. This provides
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a look-up table for experimentalists to predict the accuracy in diffusivity estimation that can be

achieved with their own particular microscopy experiment, shown in Fig 4. We quantify the

error in our estimates as the magnitude of the percent error between the true diffusivity and

the mode of the posterior probability distribution as calculated by the posterior’s scale and

Fig 3. Sample trajectory with and without localization error. A 2D diffusive trajectory with no localization error is drawn for T

time-steps. That same trajectory is then redrawn in increasingly light colors, for increasing levels of localization error. This error is

parameterized in the form of the standard deviation of a Gaussian blur, in microns. This example allows us to visualize the impact

that a range of localization errors would have on the same trajectory.

https://doi.org/10.1371/journal.pone.0221841.g003

Fig 4. Sample trajectories and diffusivity posteriors, with and without localization error. Left: Sample simulated 2D trajectories composed of 100

steps with diffusion coefficientD1 = 0.01 μm2/s andD2 = 0.02 μm2/s. The “Observed” trajectories are generated with localization error 0.05 μm, while

the “True” trajectories have no localization error. Right: Posterior distributions for all trajectories. These posteriors are all inverse-gamma distributions

generated using our Bayesian inference framework.

https://doi.org/10.1371/journal.pone.0221841.g004
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shape parameters:

%error ¼ j100
bþ 1

a
� Dtrue

� �

=Dtruej: ð6Þ

Of course, due to the stochastic nature of diffusive properties, even with all the same simula-

tion parameters, the posterior error will vary from one simulation to the next. In order to cap-

ture the mean effect of each parameter on posterior error, the results in Fig 5 represent the

average percent error for N = 104 replicates of the same simulation parameterization.

For example, in a study of the Bacilus subtilis SMC complex [3], with diffusion coefficient

on the order of 0.1 μm2/s, localization error of 0.1 μm and trajectory lengths of approximately

50 frames, this table tells us to expect a diffusivity estimation error of� 15%. A study of

MRNP diffusion in the nucleus [14] with diffusion coefficient also on the order of 0.1 μm2/s,
but with localization errors ranging from 0.01-0.1 μm and trajectory lengths greater than 1000

frames, we can expect a diffusivity error ranging between 5% and 10%, depending on the

experiment’s localization error. For a more specific deep dive into the estimation error

expected for a specific diffusivity, localization error and trajectory length, users can simulate

these results using the“get_dim_error” function of our tool, demonstrated in the Jupyter note-

book tutorial.

In addition, it should be noted that the number of spatial dimensions of the assay (i.e.

whether trajectories are measured in two or three spatial dimensions) as well as the mean-

squared displacement (related to the diffusion coefficient) can impact the relationship

between localization error and Bayesian estimation error. For a more in-depth discussion

and simulation of this, please see the tutorial Jupyter notebook in our project GitHub

repository.

Distinguishability of trajectory diffusivities

With the above percent error analysis derived for simulated trajectories with known diffusivi-

ties, a picture arises of how our estimates of the diffusivity differ from the true values. As a

result, when this technique is applied to experimentally-derived trajectories whose underlying

diffusivities are unknown, we may want to ask ‘how likely is it that two trajectories resulting in

different diffusivity estimates were actually derived from regions with the same diffusivity?’

The biological motivation and analog for this technical question is ‘how heterogeneous is the

physical cellular environment?’

This will depend on the amount of overlap between the two diffusivity posterior distribu-

tions, which is determined by: (1) how different the underlying diffusion coefficients are (how

far apart the theoretical maxima of posteriors are) and (2) how uncertain we are in our estima-

tions (how wide the posterior distributions are). One way to measure the difference between

two distributions is to use the Kullback-Leibler divergence (KL divergence). A KL divergence

of zero indicates that two distributions are identical; one interpretation of this metric is that its

inverse tells you the number of times you can draw samples from one distribution in place of

the other before there is significant information loss.

In order to communicate the distinguishability of pairs of posteriors conditional on their

trajectory parameters, we have created a heatmap look-up table of the KL divergence of poste-

rior pairs, dependent upon the ratio of their underlying diffusion coefficients (i.e. D2/D1), and

the trajectory length. An example of this look-up table heatmap is provided in Fig 6. The com-

plete code used to generate this map is provided in the tutorial Jupyter notebook found in the

GitHub repository for this project. By cloning the repository, users can directly edit this exam-

ple code to recreate this map with a different localization error or different distribution of
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trajectory lengths and diffusion coefficient values. An experimentalist may generate their own

heatmap for trajectories with their specified degree of localization error, and get a table to tell

them how distinguishable differences in diffusion coefficients will be for different lengths of

trajectories that they can collect. This framework could therefore play a valuable role in

Fig 5. Percent posterior estimation error conditional on static localization accuracy and trajectory lengths. The

percent error for a given posterior is measured as the percent error between the true diffusion coefficient used to

generate the trajectory, and the mode of the posterior distribution (or the diffusion coefficient which gives the

maximum value of the probability density function). This heatmap reports the mean percent error magnitude for 104

posteriors generated under each set of trajectory length and localization error conditions, with diffusion coefficients of

(A) 0.01 μm2/s (B) 0.1 μm2/s and (C) 1.0 μm2/s. Please note the difference in heatmap scale bars.

https://doi.org/10.1371/journal.pone.0221841.g005
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describing the feasibility of and requirements for experiments addressing the spatial heteroge-

neity of the intra-cellular diffusive environment.

Comparison with MSD analysis

Given a single trajectory, let us compare what we could learn of the underlying diffusivity

through MSD analysis and our Bayesian framework. In MSD analysis, the trajectory would be

Fig 6. Look-up table for posterior KL divergence, conditional on diffusivities and trajectory lengths. Heatmap displaying the average KL divergence

of diffusivity posteriors. For each entry in the heatmap, two trajectories of the same length (x-axis) are produced, with differing underlying diffusivities

with the ratioD2/D1 (y-axis). A posterior is estimated for each, and their KL divergence is calculated as a measure of the distinguishability of the

underlying diffusivities. As this process is stochastic, this is repeated 104, with the average being the value reported in the heatmap.

https://doi.org/10.1371/journal.pone.0221841.g006
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split into step sizes associated with every possible lag time (that is, the mean of the squared dis-

placement for all step sizes between frames τ = 1, 2, 3. . . frames apart. The diffusivity can be

calculated by fitting the MSD using Eq 1, often using a loglog plot. This provides a single pre-

diction of the average diffusivity over the course of the trajectory. In contrast, our Bayesian

framework outputs a probability distribution of diffusivity values; the diffusivity giving the

highest probability can be extracted to give a single-values diffusivity estimation, but the distri-

bution as a whole offers the appealing advantage of giving a quantitative measure of our confi-

dence in this estimate.

This confidence interval offers an added benefits over MSD analysis. Through posterior

visualization and the KL divergence analysis described in the previous section, this Bayesian

estimation framework provides us with a straightforward visual and quantitative way to diag-

nose how likely it is that diffusivity estimates from two trajectories are actually describing

regions with different physical properties. In the case of MSD, comparison of single-trajectory

diffusivity estimates is done by plottingMSD(τ) for each trajectory on the same log-log plot

and comparing their intercepts. This methodology fails to capture information about uncer-

tainty, and may lead to the false conclusion that each trajectory is taken from a region with a

unique diffusivity. In many cases Bayesian posterior analysis will reveal significant overlap

between these trajectories’ posteriors, indicating the analyzed trajectories do not mark the

region as having heterogeneous diffusivity. One interpretation of the KL divergence is that its

inverse tells you the number of observations you can make using one distribution in place of

the other, before the information loss becomes significant. For instance, if posteriors from tra-

jectories A and B have a KL divergence of 0.01, I could use 100 measurements from posterior

A to describe posterior B before I start to significantly misinterpret posterior B; this means that

these distributions are extremely similar and their diffusivities might be considered to be the

same. If posteriors A and B have a KL divergence greater than one, the numbed of observations

before significant information loss would be less than or equal to one, telling me that using

even a single measurement from one distribution in place of the other will cause a mischarac-

terization; the trajectories used to generate these distributions have distinct diffusivities.

Application to spatially dependent diffusivity characterization

In the introduction of this paper, we discussed the importance of analysis techniques that

acknowledge the heterogeneity of cellular environments. The single-trajectory dependence of

this tool offers a framework to build on for characterizing variations in the diffusivities felt by

trajectories recorded in different cellular regions. By mapping the diffusivity estimates from

each trajectory (value most probable from posterior distribution) to the spatial region where

the tracked substrate was localized, the user can build up a spatial mapping of the diffusivity.

While frameworks exist for spatial mapping of the physical properties of cells, such as nanor-

heology of injected particles [15] and SMAUG [9], these techniques respectively require an

extensive and invasive experimental design or in-depth knowledge of computational Bayesian

inference. Our tool offers an approachable framework for experimental design of studies to

probe the spatial variation of physical properties of the cell.

Framework limitations

As we have discussed, the presence of localization error and the finite nature of trajectories

will contribute to the uncertainty in any analysis of single particle trajectories. Here, we discuss

several other important limitations to be considered when using this software package.

This framework is currently only implemented for the analysis of pure diffusion, however

anomalous diffusion (particularly sub-diffusion) is commonly reported in the analysis of
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biological trajectories. Users could adapt the package to analyze trajectories undergoing anom-

alous diffusion by editing our Bayesian estimation code. We have described how our conjugate

prior and posterior model have been selected specifically to analyze a normal distribution of

step sizes with zero mean; because the step size distribution is dependent upon the diffusion

model, the class of function used for the prior and posterior will also be dependent upon the

diffusion model. To modify this framework for other diffusion models, users would therefore

select new prior and posterior distributions, and require a new equation for calculating the KL

divergence for a pair of distributions belonging to this mathematical function class (i.e. a

replacement for Eq 3). However, it is important to note that as the diffusion model becomes

more complex, selection of a prior and posterior can become very challenging, limiting the

scope of the framework.

Realistic intra-cellular transport is additionally complicated by the presence of active trans-

port and flow. Furthermore, the affects of confinement and characterization of the physical

properties of the cytoplasm (i.e. elasticity) can further complicate intra-cellular dynamics. As

these factors are not considered in the current implementation of our framework, they will

contribute to the error in the analysis of experimentally derived trajectories.

Application to fractional Brownian motion trajectories

Many research studies have demonstrated intracellular transport to be sub-diffusive (i.e. α< 1

in Eq 1), with α = 0.75 in crowded cellular environments such as an actin lattice or the cyto-

plasm [3]. In particular, these trajectories have ergodic MSD’s and velocity autocorrelations

which are anti-correlated at short timescales; this behavior is characterized by the sub-diffusive

model of fractional Brownian motion (FBM). FBM trajectories are parameterized by the Hurst

coefficient H, defined asH = α/2; thus, FBM trajectories with H = 0.375 provide a more com-

plicated, but more realistic representation of intracellular transport than the simpler model of

pure diffusion used in the results presented so far. However, its application in this Bayesian

estimation tool would require the use of a much more complicated prior and posterior; while

our tool is built to be robust to varying priors and posteriors, we understand that defining

these distributions for more complex models of motion can be challenging. To test how accu-

rately this simpler diffusion model can be used to predict the diffusivity of more realistic FBM

trajectories, we applied the existing, pure-diffusion based Bayesian analysis to FBM-generated

trajectories withH = 0.375 and calculate the error in the estimated diffusivity, presenting the

resulting posterior error heat-maps as in Fig 7. These FBM trajectories are produced using

publicly available simulator written by Christopher Flynn (https://pypi.org/project/fbm/). It is

important to note that for this sub-diffusive behavior, there is no longer a single diffusion coef-

ficient defined for the trajectory; instead, the diffusion coefficient must now be defined for a

given time lag (τ in Eq 1). For the results presented here, we analyze the error in the effective

diffusion coefficient defined for α = 1 second. We find that the error in the estimated diffusiv-

ity for these more biologically relevant trajectories are nearly identical to those reported for the

purely diffusive trajectories; we therefore believe that despite that complexity of experimentally

derived intracellular trajectories, this analysis tool remains a suitable for experimental diffusiv-

ity estimation.

Conclusion

Heterogeneity of diffusive dynamics may majorly impact the transport of essential cellular sub-

strates but remains largely uncharacterized. To shed light on the feasibility of resolving spatial

from stochastic drivers of diffusive heterogeneity in trajectory data, we developed a framework

for predicting our ability to detect differences in diffusivity under different experimental
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Fig 7. Percent posterior estimation error conditional on static localization accuracy and trajectory lengths for

fraction Brownian motion. The percent error for a given posterior is measured as the percent error between the true

diffusion coefficient used to generate the trajectory, and the mode of the posterior distribution (or the diffusion

coefficient which gives the maximum value of the probability density function). Trajectories for this figure are

simulated using fractional Brownian motion with Hurst coefficientH = 0.375 (or α = 0.75) This heatmap reports the

mean percent error magnitude for 104 posteriors generated under each set of trajectory length and localization error

conditions, with diffusion coefficients of (A) 0.01 μm2/s (B) 0.1 μm2/s and (C) 1.0 μm2/s. Please note the difference in

heatmap scale bars.

https://doi.org/10.1371/journal.pone.0221841.g007
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regimes. Our framework is intended to inform the design of experiments characterizing the

spatial dependence of diffusivity on sub-cellular location.
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