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A B S T R A C T   

Developmental researchers are often interested in event-related potentials (ERPs). Data-analytic approaches 
based on the observed ERP suffer from major problems such as arbitrary definition of analysis time windows and 
regions of interest and the observed ERP being a mixture of latent underlying components. Temporal principal 
component analysis (PCA) can reduce these problems. However, its application in developmental research comes 
with the unique challenge that the component structure differs between age groups (so-called measurement non- 
invariance). Separate PCAs for the groups can cope with this challenge. We demonstrate how to make results 
from separate PCAs accessible for inferential statistics by re-scaling to original units. This tutorial enables readers 
with a focus on developmental research to conduct a PCA-based ERP analysis of amplitude differences. We 
explain the benefits of a PCA-based approach, introduce the PCA model and demonstrate its application to a 
developmental research question using real-data from a child and an adult group (code and data openly avail-
able). Finally, we discuss how to cope with typical challenges during the analysis and name potential limitations 
such as suboptimal decomposition results, data-driven analysis decisions and latency shifts.   

Electroencephalography (EEG) is a widely used time sensitive and 
noninvasive method to measure brain activity. More specifically, to 
enhance the understanding of neuronal and cognitive development 
throughout the lifetime, developmental researchers are often interested 
in event-related potentials (ERPs) as a measure of brain activity occur-
ring time-locked to an event of interest (e.g., the presentation of a 
stimulus). ERPs undergo considerable developmental changes 
throughout childhood; for instance, there are substantial differences in 
amplitudes, polarities, latencies, and topographies of ERPs to auditory 
stimuli between newborns, toddlers, children, and adults (for a review, 
see Wunderlich et al., 2006). Fig. 1 depicts the ERPs to an auditory 
stimulus in two groups of children and an adult group. The children’s 
ERPs are characterized by a dominant positive peak which is followed by 
a negative peak whereas the adults’ ERP shows a prototypical series of 
peaks including two positive and two negative peaks (i.e., 

P1-N1-P2-N2). With increasing age, children’s ERPs develop more and 
more towards the prototypical mature adult ERP. As different cognitive 
functions are associated with different components in the ERP (e.g., 
Luck and Kappenman, 2012), ERPs allow for profound insights into the 
development of cognitive functions and their underlying neuronal 
networks. 

A typical ERP analysis proceeds in the following steps (e.g., Luck, 
2014): After recording a continuous EEG from multiple electrode sites 
during an experiment, the continuous EEG signal is filtered and cleaned 
from frequent artifacts such as eye-movement and blink activity 
(e.g., Chaumon et al., 2015) to reduce the amount of non-neural activity 
in the EEG signal. The EEG signal is then cut into epochs around the 
events of interest and averaged across all repetitions of each event 
separately for each event type (e.g., different stimuli) and electrode site 
per participant. The resulting ERP dataset containing data from each 
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sampling point × participant × electrode × event type combination is 
then subjected to subsequent statistical analyses to identify amplitude, 
latency, polarity, or topographic differences between events. When this 
ERP dataset is further averaged across participants (especially for data 
visualization purposes), the resulting sampling point × electrode ×
event type dataset is referred to as the grand-average ERP (dataset). 
Before statistical inference is conducted, the ERP dataset is typically 
further aggregated to reduce noise and complexity. For instance, ERP 
amplitudes are commonly averaged within specific time windows and 
across specific electrode sites (i.e., region of interest, ROI) to quantify the 
activity of the ERP component of interest. This aggregated amplitude 
measure is then used as dependent variable for statistical inference (e.g., 
via ANOVAs). 

This “traditional” data-analytic approach for ERPs suffers from two 
major, partially related problems: (1) The definition of analysis time 
windows as well as ROIs often proceeds in a relatively arbitrary manner 
(please see Luck and Gaspelin, 2016; for a thorough discussion) or is 
potentially afflicted by double dipping (Kriegeskorte et al., 2009). (2) 
The observed signal at the scalp is a mixture of underlying signals 
generated in the brain. The underlying signals overlap to an unknown 
extent both in the temporal domain (i.e., multiple sources contribute to 
the voltage at a specific sampling point) and in the spatial domain (i.e., 
multiple sources contribute to the voltage at a specific electrode site) – 
making the peaks of the observed signal a poor indicator of the under-
lying signals. Together, these problems can considerably bias estimates 
of amplitude, latency, and topography, especially when these estimates 
are based on the peaks of the observed signal. Therefore, researchers 
interested in ERPs can benefit a lot from using multivariate decomposi-
tion methods. These methods aim to describe the observed ERP data as a 
function of a set of underlying signals and provide objective character-
izations of the time courses of these underlying signals. Here, we focus 
on temporal principal component analysis (PCA) which belongs to a 
class of procedures decomposing the data based on statistical properties 
such as the covariance between the voltages at the sampling points (Dien 
and Frishkoff, 2005; Donchin and Heffley, 1978). Temporal PCA for ERP 
data aims (a) to identify and disentangle the constituent components of 
the ERP and (b) to provide dependent measures for statistical analyses 
which are derived in an objective and transparent way. PCA is partic-
ularly suited for the investigation of ERPs in developmental populations 
reducing problems due to the enhanced noise level (Dien, 2012). 

The overarching goal of this article is to enable the reader to conduct 
a PCA-based ERP analysis of amplitude differences between two age 

groups on his or her own and to cope with specific challenges when 
comparisons between children’s and adults’ ERPs are of interest for the 
research question. To this end, (1) we will introduce the benefits of a 
PCA-based approach using a simplistic simulated ERP for illustrative 
purposes, (2) we will demonstrate a real-data PCA analysis in a step-by- 
step manner using open source software (including example code and an 
open dataset), (3) we will explain the challenges which arise from dif-
ferential ERP structures between age groups and provide recommen-
dations how to cope with them, and lastly, (4) we will briefly compare 
PCA to other decomposition approaches and discuss potential limita-
tions. In the following, we assume that the reader is familiar with es-
sentials of the ERP technique such as its neural origin, typical research 
objectives, and pre-processing pipelines (for more basic introductions, 
see, e.g., Bradley and Keil, 2012; Luck, 2014). In addition, to work with 
the accompanying R code, we recommend that the reader is proficient in 
at least one high-level programming language (e.g., MATLAB, R, or 
Python). 

1. Benefits of PCA-based ERP analyses 

1.1. ERPs versus underlying components 

The observed ERP signal at the scalp reflects simultaneous activity – 
mostly post-synaptic potentials – from a large number of neurons in the 
brain (Nunez and Srinivasan, 2006). Much like a movie is a time series of 
2-dimensional images of a 3-dimensional world, an ERP signal can be 
construed as a time series of the electric potential across the electrode 
grid on the scalp surface – which is only a projection of the 3-dimen-
sional signal in the brain. Because multiple sources can be active at a 
certain point in time and can project to the same electrode sites, the 
signal measured at the scalp suffers from considerable temporal and 
spatial overlap. Furthermore, the source signal is transmitted to the 
sensors via volume conduction through several layers with differential 
resistive properties resulting in the signal at the scalp being “smeared” 
spatially but also temporally because the spatial overlap of source ac-
tivity at the sensors also limits the temporal precision which can be 
achieved in practice (see Burle et al., 2015; for more detailed discussion 
and possible remedies). In addition, ERPs are typically computed by 
averaging over many repetitions of the event of interest assuming strict 
temporal coherence with the event of interest (i.e., no latency jitter). 
Because brain maturation is not necessarily on the same level in children 
of the same age, this can have an even greater impact in developmental 

Fig. 1. Event-related potentials to a to-be-ignored auditory stimulus for two groups of children (left panel: 6–8-year-olds, middle-panel: 9–10-year-olds) and a group 
of adults (right panel). Negative amplitudes are displayed upwards. In the youngest children a broad positive deflection is followed by a large negative deflection. 
This pattern changes typically with age and results in an alternating sequence of positive and negative deflections. 
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studies. Therefore, in sum, ERP data are a spatially and temporally 
imprecise representation of the source activity in the brain (Burle et al., 
2015). The inherent loss of information regarding time courses, 
3-dimensional position and direction of the source signals makes an 
exact reconstruction of the source signal impossible (that is, without 
further information and assumptions – this is typically referred to as the 
inverse problem of M/EEG). To appreciate this state of facts and avoid 
conceptual confusion, we will refer to the ground truth signals at the 
scalp electrodes that would be recovered by a decomposition technique 
under ideal circumstances as ERP components. The term ERP component 
has been used with many different connotations. In a broad sense, we 
define a component as coherent voltage deflection which contributes to 
the observed ERP at the scalp in a replicable way across experiments. A 
component can be characterized based on: the time of its occurrence 
within the epoch, its typical amplitude, its sources in the brain and/or its 
functional interpretation (i.e., its typical behavior under experimental 
manipulations). 

Without further detailed knowledge regarding potential sources in 
the brain and how the signal spreads through brain, skull, and scalp, the 
best that researchers can hope for is to gain knowledge regarding 

functional interpretations of these components. Therefore, a certain 
functional independence, which can, for instance, be established by 
unique sensitivity towards certain experimental manipulations, is often 
considered a defining property of a component (e.g., Luck, 2014b). The 
spatial and temporal superposition of underlying components poses a 
great challenge for researchers who want to interpret the results from 
ERP experiments because it conceals how many components constitute 
the observed ERP and how much each individual component contributes 
to the electric potential at a specific time point and electrode site. That 
is, temporal and spatial overlap biases the functional interpretation of 
the ERP. Consequently, inferences regarding differences in component 
activity between events can be substantially biased when they are based 
on the observed ERP (Luck, 2005a). In the worst case, this might even 
lead to erroneous conclusions regarding functional interpretations and 
underlying processes. 

Fig. 2 illustrates three scenarios which mimic typical ERPs in a 
simplistic manner. These ERPs (upper panel) were simulated so that it is 
known that there are two underlying components (middle panel). Sup-
pose there are two events for which we wish to investigate differences in 
ERPs. Due to the simulated nature of the example, we know that both 

Fig. 2. Illustration of three simplistic ERPs with mild (A) and severe (B & C) temporal overlap of the underlying components. The upper panel depicts the simulated 
ERPs “elicited” by two events (black and green lines); the vertical red lines mark the true peak of the underlying components shown in the middle panel. The lower 
panel depicts the factors estimated by the temporal PCA approach explained in the upcoming sections. The estimated factors (lower panel) resemble the underlying 
components (middle panel) well. Please note that results may be less optimal under more challenging circumstances (e.g., more temporal overlap). 
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components have reverse response patterns to the events: Component 1 
has a more positive response to Event 2 compared to Event 1 whereas 
Component 2 has a more negative response to Event 2 compared to 
Event 1. When the overlap between components is mild (Scenario A), the 
observed ERP reflects the underlying components sufficiently because 
the two peaks of the signal roughly resemble the two peaks of the 
components and the condition effects resemble the reversed pattern of 
the underlying components. However, when the overlap between com-
ponents is large (Scenarios B & C), this is not the case. Although the 
presence of a positive and a negative peak in Scenario B could be 
interpreted as a hint towards more than one underlying component, the 
peaks of the signal are poor indicators of the peaks of the underlying 
components (marked by the vertical red lines). Consequently, any 
analysis of amplitude and latency differences based on the peaks would 
suffer from severe biases. This is especially apparent for Component 1 
for which both its true amplitude difference between Events and its la-
tency deviates considerably from the peak-based measure. Scenario C 
illustrates a case in which peak-based measures are even more fallible 
because the ERP consists of one broad peak instead of two. In this case, 
neither the number of underlying components nor the nature of the 
event effect are as obvious. Solely based on the shape of the ERP, one 
might easily conclude that there is only one component and that its la-
tency rather than its amplitude differs between events. This conclusion 
would severely misrepresent the ground truth and would probably result 
in inappropriate conclusions regarding the functional interpretation of 
the effect. 

The three scenarios in Fig. 2 demonstrate the central limitation of a 
data-analytic approach that is based on the observed peaks of the signal 

(e.g., averaging in a time window of interest): It assumes that the 
observed peaks are valid indicators of number, time course, and 
topography of the underlying components. This is only true when we can 
assume sufficient temporal and/or spatial separation of components. 
This limitation is well-known and severe (Luck, 2014a) because it is 
easily conceivable that many ERP components are never elicited in 
sufficient isolation to investigate them appropriately. In absence of 
sufficient separation, the choice of analysis time windows is arbitrary 
and prone to capitalizing on chance (Luck and Gaspelin, 2016), resulting 
in reduced reliability (and therefore, reduced statistical power) and 
potentially in erroneous conclusions regarding experimental effects of 
interest (Beauducel et al., 2000; Beauducel and Debener, 2003). 

1.2. Theoretical introduction to temporal PCA 

1.2.1. The temporal PCA model 
These outlined limitations of peak-based approaches motivated a 

search for better suited analytic approaches for ERPs which explicitly 
acknowledge the mixture of underlying signals. Several multivariate 
analysis methods have been proposed with the purpose of estimating the 
unobserved underlying components based on combined statistical prop-
erties of ERP datasets. Among these methods are Principal Component 
Analysis (PCA), Independent Component Analysis (ICA), Wavelet-based 
decompositions, multimode PCAs, and source reconstruction methods 
(Achim and Bouchard, 1997; Chapman and McCrary, 1995; Dien, 2012; 
Donchin, 1966; Donchin and Heffley, 1978; Groppe et al., 2008; Möcks, 
1988b; Mørup et al., 2006a; Slotnick, 2005). Here, we focus on temporal 
PCA which decomposes the observed ERPs based solely on the statistical 

Fig. 3. Prototypical data structure and decomposition into factor loadings and factor scores. P = Participant, E = Electrode, t = voltage at a specific sampling point 
for a specific observation, F = Factor, λ = factor loading (representing the time course of the activity for each factor), η = factor score (representing the level of 
activity of each factor for a specific observation). The residuals were left out for the sake of comprehensibility; but typically loadings and scores reconstruct the 
participant average data only approximately. 
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associations between the sampling points. We will briefly discuss the 
relationship between temporal PCA and other proposed approaches in 
the last section of this article. 

The aim of temporal PCA is to decompose the observed signal into a 
set of underlying factors summarizing sampling points with a similar/ 
coherent activity pattern across participants, electrodes, and conditions. 
Ideally, one would like to view these factors as estimates of the true un-
derlying components. However, there is no guarantee that the decom-
position is always successful in disentangling all underlying 
components. To avoid any confusion about this fact, we refer to the 
estimated underlying signals as factors and to the ideally recovered 
signals as components throughout this article (deviating from the typical 
use of the term “component” in PCA and ICA). 

The lowest panel in Fig. 2 illustrates a 2-factor temporal PCA solution 
for each scenario. The transparent lines show the grand-average ERP for 
both events and the opaque lines are the factor-wise reconstruction of 
the ERP – summed together, both factors reconstruct the observed ERP. 
When comparing the estimated factors (lowest panels) with the under-
lying components from which the data were simulated (middle panels), 
one can clearly see that temporal PCA was quite successful in recovering 
the underlying components because the factors resemble the compo-
nents very well even under severe temporal overlap (Scenarios B & C). 
Although the decomposition is not always perfect, especially in the 
presence of strong temporal and spatial overlap (Beauducel and Deb-
ener, 2003; Dien, 1998; Dien et al., 2005; Kayser and Tenke, 2003; 
Möcks and Verleger, 1986; Scharf and Nestler, 2018), one should keep in 
mind that a simple peak-based approach would have obscured the na-
ture of the underlying amplitude effects, especially in Scenario C. We 
hope to convince the reader that this data-driven and therefore much 
more objective characterization of the underlying signals makes tem-
poral PCA a valuable tool for ERP researchers. Furthermore, previous 
research indicates that temporal PCA can provide more reliable quan-
tifications of ERPs and more accurate estimates of experimental effects 
(Arruda et al., 1996; Beauducel et al., 2000; Beauducel and Debener, 
2003). How does temporal PCA achieve this decomposition? A 
fully-fledged technical introduction into the mathematical foundations 
of PCA is beyond the scope of this article but bottom-up introductions 
including all necessary mathematical basics are available elsewhere (e. 
g., Gorsuch, 1983; Mulaik, 2010). In the following, we want to provide 
the reader with an intuitive understanding of the PCA parameters, their 
estimation and the central assumptions underlying temporal PCA. 
Temporal PCA typically operates on an individual average dataset (i.e., 
averaged across trials within participants during pre-processing) in 
which each row represents a specific electrode site from an individual 
participant and from a specific experimental condition, and the columns 
contain the sampling points. Each cell defined by row and column re-
flects the mean voltage averaged across trials for a specific participant, 
electrode, condition, and latency. That is, the sampling points are 
treated as variables of interest and electrode sites, conditions, and par-
ticipants are stacked as observations in the rows. Note that this is a 
variation of how PCA is taught in typical statistics 101 courses in which 
variables are answers to items in questionnaires and the observations are 
participants. Fig. 3 illustrates the data structure which enters the 
computation of a temporal PCA. 

The temporal PCA model decomposes the participant average data 
into two sets of coefficients called factor loadings and factor scores, 
respectively (see Fig. 3). Roughly, the factor loadings describe the time 
course of a factor and are fixed across all electrodes, participants, and 
conditions. The factor scores describe the contribution (i.e., level of 
activity) of the factor to the voltage for each observation. Mathemati-
cally, this can be summarized in the fundamental equation of PCA in 
which the voltage at each sampling point is denoted as tij where the 
indices represent any specific observation i and any specific sampling 
point j. The voltage at each sampling point is approximated by a 
weighted linear combination of the factor scores ηki of a fixed number of 
m factors (with k indicating any specific factor). That is, the factor scores 

are multiplied with the respective factor loading of a sampling point and 
summed up: 

tij ≈ λj1⋅η1i + λj2⋅η2i +…+ λjm⋅ηmi (1) 

The factor loadings λjk are weights which describe how much and 
with which sign a specific factor contributes to the voltage at sampling 
point j (“variable” t⋅j): high loadings indicate a strong influence, and zero 
loadings indicate no influence of the factor. The factor scores reflect how 
much a specific factor contributes to the voltage at a specific electrode 
site for a specific participant in a specific experimental condition and are 
usually normalized to have unit variance. The unstandardized factor 
loadings can be interpreted as regression weights indicating by how 
many microvolts the predicted voltage at a sampling point changes 
when the score of the respective factor is increased by 1 standard de-
viation (while keeping all other factor scores constant). The factor scores 
can be directly used as quantifications of a factor’s contribution to the 
observed ERP. That is, they can be subjected to statistical tests, or they 
can be averaged across participants to compute a “grand-average” factor 
score for each electrode and condition, for instance, to illustrate the 
topography of a factor. 

The signs and scales of factor loadings and factor scores are arbitrary 
and some identifying restrictions are necessary (Mulaik, 2010). In the 
context of ERP analyses, some specific conventions regarding the factor 
loadings and factor scores have been established (see also Dien and 
Frishkoff, 2005) in order to have an interpretable relationship between 
the signs of the factor scores and the polarity of the ERP signal: (1) the 
majority of the factor loadings of each factor should be positive, (2) the 
factor loadings are reported in the original unit µV (i.e., unstandard-
ized5), (3) the factor scores are normalized6 (i.e., have unit variance) but 
they are not centered (i.e., they have a non-zero mean), and (4) the mean 
(or intercept) of the voltage at a sampling point is zero when no factor is 
active (i.e., when all loadings and/or scores are zero). This identification 
strategy maintains an interpretable relationship between factor scores 
and raw voltage (see, e.g., Kline, 2016, for a thorough explanation in the 
context of structural equation modeling): That is, for sampling points 
with a positive loading, a positive/negative factor score reflects pos-
itive/negative voltage of the factor at the respective electrode site in a 
specific participant and condition, and a factor score of zero indicates 
that a factor is inactive for a certain observation. 

A very important implication of the model described above is that 
factor loadings are assumed to be constant across participants, elec-
trodes, and conditions whereas the factor scores may vary. This 
assumption is typically referred to as measurement invariance in the 
factor analysis literature and its violation can have severe consequences 
for the performance of temporal PCA (Beauducel and Hilger, 2018; 
Meredith, 1993; Möcks, 1986). In general, equal factor loadings across 
electrode sites can be assumed due to the electrophysiological nature of 
the ERP signal and it is physiologically plausible to describe the ERP 
signal as weighted linear combination of the factors (Nunez and Srini-
vasan, 2006). However, systematic latency differences, latency jitter, or 
even different component structures can make it implausible to assume 
equal time courses across participants, conditions, or groups (see 
Molenaar and Campbell, 2009; for a general discussion). 

Whenever measurement invariance is justifiable, it is preferable to 
analyze data in a combined PCA across all observation, because this 

5 Please note that different terminologies have been used to differentiate 
scaling choices in PCA for ERP data (Dien, 2006, 2012; Dien et al., 2005; Kayser 
and Tenke, 2003, 2005, 2006). For instance, what we call „unstandardized” 
scale has sometimes been referred to as “microvolt” or “covariance-based” 
scale.  

6 Normalization can have different meanings. Throughout this paper, we refer 
to a variable as normalized when it was linearly transformed to have a variance 
of 1 but was not centered to have a mean of 0 to distinguish it from z-stan-
dardization which results in a mean of 0 and a variance of 1. 
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naturally allows for mean comparisons of the factor scores (Beauducel 
and Hilger, 2018; Mellenbergh, 1989; Meredith, 1993; Nesselroade, 
2007; Van De Schoot et al., 2015). When substantially different 
component structures are conceivable, separate PCAs can help to eval-
uate in how far the factor structures differ. The analyst should proceed 
with separate PCAs in case of major differences between component 
structures (e.g., different number of factors, some factors are only pre-
sent in one PCA, strong latency shifts, etc.). Specific examples in which 
conducting separate PCAs might be beneficial include comparisons 
across different modalities (e.g., auditory vs. visual ERPs; see Dien, 
2012; for a similar argument), comparisons across experimental condi-
tions with very different factor structures (e.g., Barry et al., 2016), and 
comparisons between groups with expectably different ERP component 
structures such as children versus adults or patients versus healthy 
controls (e.g., Barry et al., 2014). 

Separate PCAs violate the assumption of measurement invariance 
making it difficult to decide which mean comparisons are meaningful. In 
principle, there are strong theoretical reasons to believe that at least 
some factors from separate PCAs actually represent the same underlying 
component (see Nesselroade and Molenaar, 2016b, 2016a; for a detailed 
discussion). For instance, both adults and children can be expected to 
have a P2 component in their ERPs and a factor representing the P2 
component should occur in the adult as well as in the child PCA. If such 
matching factors can be identified based on theoretical considerations, 
quantitative comparisons between both groups can be conducted. 
Separate PCAs can provide some insights into differential factor struc-
tures (e.g., due to latency shifts), but they must be interpreted with 
caution due to the rotational indeterminacy. Different factor structures 
could either be caused by different component structures or be an arti-
fact of differential rotated solutions. For instance, the P2 component 
could be conflated with a P3 component in one group but not in the 
other (cf. section Challenges). Despite these complications, separate 
PCAs can provide unique analysis opportunities when measurement 
invariance is unlikely fulfilled. This is especially relevant in develop-
mental populations where ERP structures can vary tremendously be-
tween age groups. 

1.2.2. Estimation of the temporal PCA model 
A large and still growing variety of methods exists to estimate the 

factor loadings and factor scores (Conti et al., 2014; Mulaik, 2010; 
Trendafilov, 2014) which differ in many details of their implementation. 
However, some basic tasks for an estimation procedure can be identi-
fied: (1) determination of the number of factors, (2) estimation of the 
factor loadings, and (3) estimation of the factor scores. In the following, 
we will describe how these tasks have been solved traditionally in a 
stepwise manner. 

Determination of the Number of Factors. The most fundamental ques-
tion when estimating PCA is how many factors should be extracted. 
Ideally, the number of factors would coincide with the number of un-
derlying components so that each factor is an estimate of one underlying 
component. Because the number of components is typically unknown to 
ERP researchers, extraction criteria can be used to decide how many 
factors should be extracted (Mulaik, 2010). Most of these criteria are 
based on the overall fit of the model, for instance, the amount of vari-
ance explained by each individual factor or all factors together. Put 
simply, a factor model is estimated with as many factors as sampling 
points in which the factors are sorted in descending order of explained 
variance. The number of factors is then chosen so that each individual 
factor explains a substantial amount of variance. A popular criterion to 
identify substantial factors is the so-called Parallel Analysis (Horn, 1965). 
This procedure compares the variance explained by each factor with the 
variance explained by the corresponding factor from a simulated dataset 

of uncorrelated variables. The rationale behind this is that a substantial 
factor should explain more variance than a factor that was extracted 
from random (white) noise with no underlying factors. 

Despite its simplicity and rather heuristic nature, Parallel Analysis 
has been shown to perform remarkably well under certain conditions 
and is therefore an extremely popular extraction criterion (Auerswald 
and Moshagen, 2019; Buja and Eyuboglu, 1992; Crawford et al., 2010). 
With respect to applications of PCA to ERP data, two opposing views 
seem to exist in the literature: On the one hand, it has been suggested to 
apply a restricted solution with as many factors as suggested by Parallel 
Analysis (Dien, 1998, 2006). On the other hand, it has been suggested to 
use an unrestricted solution, that is, to extract as many factors as sam-
pling points (Kayser and Tenke, 2003, 2006). Both recommendations 
have influenced researchers applying PCA and both practices can be 
found in published research (e.g., Fogarty et al., 2018; Kieffaber and 
Hetrick, 2005). Restricted solutions have the advantage of parsimony 
because they reduce the number of factors to be considered for inter-
pretation (and statistical tests). Extracting too many factors can result in 
large factors such as slow wave components being split up artificially 
(Wood et al., 1996). However, unrestricted solutions could be preferable 
because effect size estimates converge towards a stable value with 
increasing number of factors (Kayser and Tenke, 2003, 2006). In addi-
tion, the amount of variance explained is of limited relevance in tem-
poral PCA because factors which are active for a shorter amount of time 
always explain less variance (because they load on fewer sampling 
points) – but this does not automatically mean they are also negligible 
from a substantive perspective. 

These seemingly contradictory recommendations can be reconciled 
in the light of recent research on factor extraction criteria. Indeed, 
extracting too few factors (underextraction) goes along with much 
stronger biases than extracting too many factors (overextraction; De 
Winter and Dodou, 2012; Fava and Velicer, 1992; Wood et al., 1996). 
Put simply, when the number of factors is too small, PCA represents 
separate components in conflated factors, but when too many factors are 
extracted, PCA can represent each component correctly as one factor. 
When extracting too many factors, PCA often results in additional small 
factors connecting a few sampling points which are negligible for sub-
stantive purposes (based on their weak loadings and topography). The 
findings of Kayser and Tenke (2003) make a strong case for avoiding 
underextraction: their estimated effects varied dramatically between 
solutions when only a few (e.g., 1–8) factors were extracted. When 
extracting more factors, results stabilized – even when extracting 
extremely many factors (i.e., severe overextraction). Nevertheless, an 
unrestricted solution is both computationally inefficient and makes the 
solution harder to interpret. Furthermore, the use of an unrestricted 
solution poses a massive multiple comparison problem because as many 
factors as sampling points need to be analyzed. A restricted solution with 
fewer factors suffers from this problem to much less extent. Considering 
this, the call for unrestricted solutions could be rephrased to read: Use a 
restricted solution, but when in doubt, prefer solutions with too many factors 
over solutions with too few factors. 

Unfortunately, Parallel Analysis tends to extract too few factors in 
cases of highly correlated factors (Beauducel, 2001; Green et al., 2012; 
Lim and Jahng, 2019). Correlated factors are very common in temporal 
PCA because factors with similar topography are necessarily highly 
correlated (Dien, 2010a; Scharf and Nestler, 2018) – validating concerns 
regarding underextraction expressed in previous research (Kayser and 
Tenke, 2003). The reason for this is that Parallel Analysis is not a 
formally valid test but rather a heuristic for factors beyond the first 
factor (Saccenti and Timmerman, 2017). In the initial solution used to 
determine the number of factors, the variance explained by later factors 
can easily fall below that of random white noise factors when the factors 
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are substantially correlated (Beauducel, 2001). Alternative extraction 
criteria such as the Empirical Kaiser Criterion perform better under these 
circumstances (EKC; Braeken and Van Assen, 2017; Li et al., 2020). 
Therefore, we tend to recommend against relying on Parallel Analysis 
(alone) to determine the number of factors and will consider the EKC in 
our step-by-step guide. 

Estimation of the Factor Loadings. When a decision was made 
regarding the number of factors to be extracted, the final estimates of the 
factor loadings (and scores) need to be obtained. The factor loadings are 
typically estimated from the covariance matrix of the sampling points. 
Eq. (1) implies that these covariances are a function of the factor load-
ings and factor correlations (Gorsuch, 1983; Mulaik, 2010; Muthén, 
2004): 

Σ ≈ ΛΦΛ′ (2) 

Σ is called model-implied covariance matrix of the sampling points, it 
contains the variances and covariances of the sampling points that 
would be predicted based on the factor model. It can be computed from 
the factor loading matrix Λ and the factor correlation matrix Φ. Put 
simply, the PCA model implies that two sampling points should be more 
correlated the more the same factors contribute to their voltage. This 
fact can be utilized to estimate the factor loadings, factor correlations 
and residual variances by minimizing the difference between the model- 
implied covariance matrix and the observed covariance matrix of the 
dataset. Alternatively, the standardized correlation matrix could be used 
but research on PCA for ERPs suggests that the unstandardized covari-
ance matrix is preferable (Dien, 1998; Dien et al., 2005; Kayser and 
Tenke, 2003) because all sampling points are measured in the same 
meaningful unit (i.e., microvolts). 

An important property of the outlined model is its rotational inde-
terminacy. That is, any specific ERP can be reconstructed by an infinite 
set of different factor loadings and factor scores. All these solutions fit 
the data equally well (see, e.g., Fig. 1 in Dien, 1998, for an illustration) 
and can be transformed into another by an operation called rotation 
(Asparouhov and Muthén, 2009; Gorsuch, 1983; Mulaik, 2010; Scharf 
and Nestler, 2019a). Rotational indeterminacy can only be overcome by 
additional assumptions. Typically, an initial or unrotated solution is 
estimated in which a set of restrictions with desirable computational 
properties is applied (e.g., uncorrelated factors which are extracted in 
descending order of explained variance). The unrotated solution is then 
subjected to a factor rotation procedure to obtain a rotated solution 
which is used for substantive interpretations. In the box Some details 
about factor rotation, we provide further details regarding this mathe-
matical operation.  

Factor rotation aims at transforming the initial unrotated solution 
into an alternative rotated solution which optimizes a certain rotation 
criterion. Modern rotation algorithms allow the use of virtually any cri-
terion that can be computed from the factor loadings (Jennrich, 2004b). 
In the context of ERP research, a simple structure rotation criterion is 
typically applied. Simple structure rotation aims to rotate the factor 
loadings so that the voltage at each sampling point is attributed to as few 
factors as possible and so that each factor contributes to a set of sampling 

Fig. 4. Factor-wise reconstruction of the observed ERP in Scenario C. The unstandardized factor loadings (left-most panel) represent the time courses of the factors’ 
activities and are fixed across all participants, electrodes, and conditions. The factor scores (middle panel) vary across participants, electrodes and conditions and 
represent how much and with which sign a factor contributes to the voltage for a specific combination of participant, electrode, and condition. The factor scores can 
be used to analyze condition effects and to illustrate a factors’ topography – by averaging these scores across participants separately for each condition and electrode 
site. By multiplying the factor loadings and scores, the original data can be reconstructed in a factor-wise manner resulting in an estimate of the underlying 
components (cf. right-most panel and right-most low panel in Fig. 2). 
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points as uniquely as possible (Dien, 2010a; Dien et al., 2007; Kayser and 
Tenke, 2003; Thurstone, 1935). Although simple structure rotation has 
difficulty in disentangling factors when temporal and spatial overlap are 
high (Möcks and Verleger, 1986; Wood and McCarthy, 1984), there is 
general consensus that the underlying components can be conceived as 
transient and temporally distinct enough for simple structure rotated 
results to be useful (Dien, 2010a; Dien and Frishkoff, 2005). For the sake 
of completeness, we would like to make the reader aware of two relevant 
alternatives: First, it is possible to rotate towards a user-defined target 
structure in a more confirmatory manner when sufficient previous data 
is available (Arruda et al., 1996; Zhang et al., 2018). Second, there are 
promising recent efforts to apply ERP-specific rotation criteria instead of 
general simple structure rotation (Beauducel, 2018a; Haumann et al., 
2020). 

In the following, we will assume that the user wants to apply a simple 
structure rotation. A variety of rotation techniques exists which differ in 
the technical criterion of simplicity being optimized (Browne, 2001) and 
can be roughly divided into orthogonal rotation methods and oblique 
rotation techniques. Orthogonal rotation assumes that the factors are 
strictly uncorrelated whereas oblique rotation allows the factors to be 
correlated. The factor correlation measures how much the factor scores 
covary across observations (i.e., across participants, electrode sites, and 
experimental conditions). Due to the specific data structure (cf. Fig. 3), 
the factor correlation is a hardly interpretable mix of contributions from 
participants, electrodes and experimental conditions (Scharf and 
Nestler, 2018) and the factors in temporal PCA are necessarily sub-
stantially correlated as a consequence of functional and topographic 
overlap (Dien, 1998, 2010a; Dien et al., 2005; Scharf and Nestler, 2018). 
Therefore, we strongly recommend applying oblique rotation methods in 
PCA for ERP data. Among the oblique rotation techniques, Promax 
(Hendrickson and White, 1964) has long been the gold standard based 
on its good performance in simulation studies (Dien, 2010a). Recent 
research revealed that Geomin (Yates, 1987) and Componentloss rotations 
(Jennrich, 2004a, 2006) may be able to disentangle highly overlapping 
factors that would be conflated by Promax (Scharf and Nestler, 2018, 
2019a). 

To sum up, when estimating the factor loadings, temporal PCA must 
cope with the rotational indeterminacy of the factor model implying that 
an infinite set of factors can fit the data equally well. To resolve this 
indeterminacy, rotation is applied which estimates the factor loadings 
based on the assumption that the components are transient and at least 
to some extent temporally separable. Since solutions from different 
rotation techniques cannot be evaluated by model-fit criteria, substan-
tive/physiological considerations should be made to choose among 
rotated solutions. Recommendations how to detect and improve prob-
lematic results of the rotation step will be discussed later in this article 
(cf. section Challenges). 

Estimation of the Factor Scores. After the factor loadings are estimated, 
the factor scores can be estimated. Several factor scoring methods have 
been proposed in the context of PCA for psychometric applications 
(Hershberger, 2014; Mulaik, 2010).7 We compute scores using the 
Regression method (Thomson, 1938; Thurstone, 1935) following the 
formula provided by DiStefano et al. (2009; Appendix 2): 

η̂ = T S− 1ΛΦ (3) 

Here, T is the raw data matrix, S is the observed covariance matrix of 
the sampling points (and S− 1 is its inverse), and Λ and Φ are the factor 
loading and factor correlation matrix, respectively, as estimated in the 
previous step. In other research contexts, the standardized raw data 

along the correlation matrix instead of the covariance matrix are usually 
used in Eq. 3 which results in standardized factors scores with zero mean 
and a variance of 1. Deviating from this procedure, we use the unstan-
dardized (and non-centered) raw data along the covariance matrix. This 
results in factors scores which obey the restrictions outlined in the sec-
tion on the temporal PCA model, that is, the factor scores are normalized 
with a variance of 1 but have a non-zero mean. 

The factor scores provide a summary statistic for the activity of the 
factors in each observation (i.e., per electrode, condition, and partici-
pant; cf. Fig. 3). The factor scores can be used to reconstruct the data in a 
factor-wise manner, or they can be directly used as dependent measures, 
for instance, they can be subjected to ANOVAs to test for condition ef-
fects. In addition, average factor scores at each electrode site can be used 
to plot the topography of a factor. As a simple intuition, one can imagine 
factor scores as weighted averages of the voltage across the whole epoch 
in which the highest weight is given to the sampling points with high 
factor loadings (or vice versa: peak-based measures can be seen as 
extremely simplistic factor scores, see Beauducel and Debener, 2003; 
DiStefano et al., 2009; Donchin, 1966). 

1.2.3. Factor-wise reconstruction of the ERP 
The factor loadings and scores can be used to provide a factor-wise 

decomposition of the average ERPs. Fig. 4 illustrates how we 
computed the factor-wise reconstruction of the ERP in Scenario C (right- 
most column, lowest-panel in Fig. 2). The left-most panel illustrates the 
unstandardized factor loadings reflecting the time course of the activity 
of the factors. By convention, many software packages return stan-
dardized factor loadings, referring to both the voltages at the sampling 
points and the factor scores in z-standardized units much like stan-
dardized regression weights. Unstandardized factor loadings are scaled 
in µV units.8 For ERP applications, it is preferable to report unstan-
dardized loadings because the original unit of the voltage (i.e., µV) is 
meaningful and interpretable for researchers and unstandardized factor 
loadings thus provide a better link to the original ERP (Dien, 1998, 2012; 
Dien et al., 2005). To compute the unstandardized factor loadings from 
the standardized loadings, the standardized factor loading at a sampling 
point needs to be multiplied with the standard deviation of the voltage at 
the respective time point (Dien, 1998; Dien et al., 1997; Muthén and 
Muthén, 2004).9 

To reconstruct the ERP in a factor-wise manner, the unstandardized 
loadings need to be multiplied with the factor scores (see middle panel 
in Fig. 4). The factor scores in the illustrative example were computed by 
averaging the factor scores across all participants separately for each 
event, that is, these are the grand-average factor scores. Multiplying 
these with the factor loadings results in the factor-wise reconstruction of 
the ERP in the right-most panel of Fig. 4. Similarly, the averaged factor 
scores across participants (per condition) at a specific electrode site can 
be used to reconstruct the ERP at a specific electrode site. The factor- 
wise reconstructions of the ERP provide a dependent variable in the 
original unit µV which is comparable across different PCA solutions, and 
which can be subjected to any further analysis. 

2. Step-by-step analysis of an ERP dataset 

In this section, we proceed with a step-by-step guide through a PCA 
analysis of real ERP data (see Fig. 5 for an overview). Extending previous 
treatments (Boxtel, 1998; Dien, 2012; Dien and Frishkoff, 2005; 

7 In general, the choice of scoring method matters when the factor scores are 
subjected to further statistical analyses (Skrondal and Laake, 2001). However, 
for ERP data, the factors typically explain most of the variance (Dien et al., 
2005) and the choice of the scoring method is therefore of minor importance 
(Scharf and Nestler, 2019b). 

8 More precisely, an unstandardized factor loading of 1 implies that a change 
of the factor score by 1 standard deviation predicts a 1 µV increase of the voltage 
at that sampling point.  

9 As in multiple regressions the relationship between the standardized and 
unstandardized loadings is simply λstand =

sη
st

⋅λunstand (indices left out for read-
ability). As the factor scores are typically normalized (i.e., sη = 1; see below), it 
follows that λunstand = st ⋅λstand. 
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Donchin, 1978), we provide openly available R scripts (R Core Team, 
2020) and an example dataset which can be adapted for further use by 
the reader. Some important code sections are also highlighted in code 
boxes to provide a link between the code and the corresponding expla-
nations. We would like to make the reader aware of the ERP PCA Toolkit 
(Dien, 2010b) which is a MATLAB-based software specifically for PCA 
analyses with a graphical user interface. We did not want the user to 
depend on any commercial software to apply the methods described 
here. Therefore, our choice should rather be interpreted as a decision in 
favor of maximal accessibility rather than against the ERP PCA Toolkit. 
All codes and data are available from GitHub (https://github.com/Flo 
rianScharf/PCA_Tutorial/). 

2.1. Prerequisites 

We assume that the EEG dataset has already undergone basic pre- 

processing such as filtering, artifact cleaning, epoching, and averaging 
across trials within participants. That is, we apply temporal PCA to a 
dataset with an average ERP per electrode site, participant, and condi-
tion in each row. As for any ERP analysis, pre-processing might have 
beneficial or adverse effects depending on the extent to which the signal 
is isolated from noise and/or confounding influences. Systematic in-
vestigations of pre-processing choices in the context of temporal PCA are 
scarce but it is known that re-referencing or centering of the data has 
profound consequences because it can remove variance sources from the 
data. For instance, some variability across participants can be removed 
by applying an average reference within participants (Dien, 2012; Dien 
et al., 2005; Möcks and Verleger, 1985). In addition, one should be 
aware that slow-wave potentials can substantially confound the solu-
tions because it is hard for temporal PCA to disentangle factors which 
are perfectly overlapping (Beauducel, 2018a; Verleger and Möcks, 1987; 
Wood and McCarthy, 1984). Similarly, filtering could affect the PCA 

Fig. 5. Overview of all processing steps and accompanying scripts in our step-by-step guide.  
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solution because high-pass and low-pass filters are known to reduce or 
increase, respectively, the auto-correlation of the signal (i.e., the cor-
relation of the voltage between adjacent sampling points entering PCA; 
Piai et al., 2015). Whether this is beneficial or harmful should depend on 
the extent to which the signal-to-noise ratio is improved (Widmann 
et al., 2015), but we are not aware of systematic investigations in the 
context of the PCA model. 

In the following, we re-analyze an ERP dataset from a passive 
auditory oddball task that was previously reported by Bonmassar et al. 
(2020). A child group (N = 32, 7–10-years, mean 8 years and 10 
months) and an adult group (N = 32, 18–36-years, mean 26 years and 6 
months) watched a silenced video while a sequence of sounds was being 
presented to them. The sound sequence consisted of 80% standard 
sounds and 20% novel sounds (i.e., environmental novel sounds which 
were presented only four times during the experiment). Half of the novel 
sounds was categorized as “emotional” whereas the other half was 
categorized as “neutral”. Participants were instructed to ignore the 
stream of sounds. The authors investigated amplitude and latency dif-
ferences between adults and children regarding multiple ERP compo-
nents. For the sake of comprehensibility, we will focus on the early P3a 
component and ignore the emotional content of the sounds when we 
illustrate each specific analysis step in the application of a temporal 
PCA. Fig. 6 depicts the grand averages across all participants in both 
groups. 

We import the pre-processed ERP data from the file erpdata.Rdata 
(also available as a human-readable file in erpdata.csv). One could also 
import the data from toolboxes such as ERPLAB (Lopez-Calderon and 
Luck, 2014), EEGLAB (Delorme and Makeig, 2004), or FieldTrip (Oos-
tenveld et al., 2011) – or consider conducting the pre-processing in R 
(see the R package eegUtils by Craddock, 2021).    

2.2. Combined or separate analysis of groups? 

First, one should consider whether it is justified to conduct a com-
bined PCA over all available data, that is, measurement invariance can 
be assumed. In the following, we will analyze data from different 
stimulus types in combined PCAs and data from children and adults in 
separate PCAs, demonstrating how the analysis is conducted in any of 
the two cases. Therefore, most of the analysis scripts contain a variable 
to indicate for which group the specific analysis step should be 
conducted.    

Fig. 6. Grand-average ERPs to standards and novels at Cz for children and adults. Very similar to the simplistic illustrations before, the observed ERPs are char-
acterized by a series of peaks with different amplitudes and polarities. Nevertheless, it is hard to tell from the observed ERP which sampling points reflect specific 
underlying components. Note that all novel sounds were analyzed together irrespective of their emotional content. 
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2.3. Estimation of the PCA model 

In the next step, the parameters of the factor model need to be esti-
mated. That is, the number of factors needs to be determined, the factor 
loadings and the factor scores need to be estimated. In this section, we go 
through these steps separately for the adult and child data. The pre-
sented code boxes are taken from the accompanying scripts 02ab_pca.R 
and 02bc_rotation_score.R. 

2.3.1. Determination of the number of factors 
We applied the EKC to determine the number of factors (Braeken and 

Van Assen, 2017). A user-friendly implementation of the EKC is avail-
able from the package EFAtools (Steiner and Grieder, 2020). The cor-
relation matrices of the sampling points need to be computed for adults 
and children separately and are then used to compute the EKC.    

Fig. 7 depicts the variance explained by each unrotated factor in 
descending order and the value of the EKC with which it is compared. 
Remember that the number of factors in the initial unrestricted solution 
is equal to the number of sampling points. That is, there are 500 factors 
in our example. The number of factors m is the number of factors (red 
dots) lying above the EKC reference line. In the child PCA, 21 factors 
were extracted compared to 23 factors in the adult PCA. The number of 
factors is typically high for ERP data (e.g., > 10), which may still be 
challenging to interpret. We recommend reflecting on components of 
interest and their potential time range before the analysis. For instance, 
if the main research question focuses on an N100 component, one would 
focus on factors in a time range around 100 ms. The plausibility of the 
solution cannot be judged at this point. We will discuss how to detect 
potential under- and overextraction when we address common 
challenges. 

2.3.2. Factor loading estimation 
We proceed with the estimation of the factor loadings. We first 

compute an unrotated solution and perform the factor rotation in a 
separate step. We estimate the unrotated solution using a custom10 

version of a function11 from the package psych (Revelle, 2021). We note 
that the estimation of the unrotated model can take some time 
depending on the size of the dataset. To improve computation speed, the 
user can consider reducing the sampling rate. The correlation between 
adjacent sampling points is typically extremely high (e.g., between .97 
and 1 in our dataset) so that reducing the sampling rate would not 

remove much information. However, one should make sure that the 
sampling rate is high enough to represent each theoretically expected 
component with multiple sampling points.    

Before we subject the unrotated loadings to the rotation algorithm, 
we standardize them, that is, we divide the factor loadings by the stan-
dard deviations of the sampling points. It is common to standardize the 
factor loadings before rotation to prevent large factors from dominating 
the results of the rotation step (Asparouhov and Muthén, 2009; Ap-
pendix B; Dien et al., 2005; Grieder and Steiner, 2020; Mulaik, 2010). 
There is evidence that this can lead to better rotation results (Cureton, 
1976; Mulaik, 2010) and that rotating unstandardized loadings is sub-
optimal in the context of ERP data (Dien et al., 2005). The standardized 
unrotated factor loadings are then subjected to factor rotation. We 
applied a Geomin rotation (Yates, 1987) with the rotation parameter ϵ 
set to 0.01.    

The estimation of the rotated solution is done with Gradient Projec-
tion as implemented in the R package GPArotation (Bernaards and 
Jennrich, 2005; Jennrich, 2004b). Gradient projection can be used to 
rotate the factor loadings optimizing any mathematical criterion 
calculated from the factor loadings – enabling researchers to choose 
from a variety of rotation criteria. However, the user must be aware of 
the occurrence of local optima (Hattori et al., 2017; Weide and Beau-
ducel, 2019; Nguyen and Waller, 2022). In simplified terms, Gradient 
projection proceeds as follows: (1) Choose a random rotation matrix for 
a start; (2) Compute the rotated factor loadings for this starting rotation 
matrix; (3) Evaluate the rotation criterion for these intermediate rotated 
factor loadings; (4) Compute a new rotation matrix to achieve a more 
optimal value of the rotation criterion; (5) Re-iterate through steps (2) to 
(4) until the value of the rotation criterion does not change substantially 
any more between iterations; (6) The rotated factor loadings from the 
last iteration are the final rotated solution. This estimation procedure is 
"short-sighted", that is, it tends to pick a solution optimizing the rotation 
criterion in close proximity to the starting value (local) while over-
looking (globally) more optimal solutions “further away”. One might 
imagine a soapbox race car on a street which – on average – descends a 
hill but every now and then there is a minor ascent. If the soapbox car is 
too slow, it may get stuck due to one of these ascents and never reach the 
real valley. This leads to a strong dependence of the solution on the 
random starting value, especially for Geomin rotation (Hattori et al., 
2017). When random starting values are used, it could even be that 
re-running the rotation procedure with the same data yields a different 
result every time. That is, our soapbox car might end up in different 
places depending on our starting point along the hill. 

To increase the probability of finding the global optimum, the 

10 We removed the computation of some fit indices to improve computational 
efficiency for large datasets.  
11 Technically, this function estimates an exploratory factor analysis (EFA). In 

general, the differences between PCA and EFA estimates are negligible for ERP 
data due to the high correlations between sampling points and due to the high 
number of variables (Dien and Frishkoff, 2005; Scharf and Nestler, 2019b; 
Widaman, 1990, 2007). 

F. Scharf et al.                                                                                                                                                                                                                                   



Developmental Cognitive Neuroscience 54 (2022) 101072

12

procedure outlined above should be repeated from many (e.g., 30) 
different random starting points and the globally optimal solution among 
all random starts should be used. With respect to the soapbox car, we just 
restart from different places on the hill and declare the deepest point that 
we have reached in all runs the “global valley”. Even relatively few 
random starts (usually between 30 and 100) can suffice to find the global 
optimum (Hattori et al., 2017). When in doubt, the user can check for 
global optimality by increasing the number of random starts. If the so-
lution does not change after considering (many) more random starts, it is 
very likely globally optimal. We provide a custom implementation of the 
Geomin rotation with multiple starts based on the package GPArotation. 
We set the number of random starts to 30 for computational efficiency but 
we made sure that more random starts (we tested as many as 500) do not 
change the results. The validity of the rotated solution can only be judged 
by careful inspection of the solution and will be discussed later.    

As mentioned before, ordering and signs or the factors are generally 
arbitrary. That is, after rotation, the factors can appear in an arbitrary 
order and can have mainly negative loadings. As the ERP PCA Toolkit 
(Dien, 2010b), we reorder the factors in descending order of variance 
explained. This makes visual inspection easier because large factors (e. 
g., P3 components) tend to appear among the first factors. We also 
reverse the signs of factors with mainly negative loadings so that a 
positive factor score indicates positive polarity at least for sampling 
points with positive loadings. 

2.3.3. Factor score estimation 
Using the original data (and their covariance matrix), the unstan-

dardized rotated factor loadings, and the estimated factor correlations, 
we estimate the factor scores using the regression method (Thomson, 
1935; Thurstone, 1935). We subject the unstandardized original data to 

the factor scoring step (Dien and Frishkoff, 2005). This results in factor 
scores with a non-zero mean and unit-variance. For instance, the first 
factor from the adult PCA has a mean of − 0.20 and a standard deviation 
of 1.   

2.4. Visual inspection of time courses and topography 

Before conducting further analyses of condition effects or group 
differences, it is important to inspect the rotated solution, judge its 
substantive plausibility and interpret the factors based on their time 
courses and topography. We recommend looking at the time courses (i. 
e., the unstandardized factor loadings) first and inspect the topographies 
afterwards. We generated a series of plots (Figs. 8–10) that can be used 
to conduct these steps and provide the code to create them in the scripts. 
We also provide a script 03b_topoplot_selectFactor.R which generates a 
combined plot of time course and topography of a selected factor as a 
service to the reader. All topography plots rely on the package eegUtils 
(Craddock, 2021). 

Fig. 8 depicts the unstandardized rotated factor loadings for the child 
and adult PCA, respectively. As expected, the factor solutions between 
adults and children differ profoundly. The loadings in the child PCA 
were generally higher – reflecting the typically larger ERPs and larger 
variability in children compared to adults. Although major factors were 
extracted in similar time ranges, the relative contributions of these fac-
tors differ considerably between both groups. For instance, Factor 1 has 
much lower peak loadings (e.g., relative to Factor 2) in the adult group 
than in the child group. Finally, a close look reveals that there could also 
be some latency differences (e.g., for Factor 2) between both groups. 

The depicted solutions are quite typical of a PCA solution for ERP 
data. There are often about 8–12 major factors with large peak loadings 
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and many minor factors which explain only a small proportion of the 
variation in the data. In our experience, meaningful ERP components are 
most often represented among the major factors (see also Dien, 2010b, 
2012). The interpretation of minor factors is difficult and often unnec-
essary regarding the actual research questions. These factors could 
represent remaining autocorrelations in the noise, minor latency jitter 
between participants or idiosyncrasies in the ERPs of certain individuals 
among the participants (Dien, 2012, 2018; Möcks, 1986). Unless there 
are specific substantive hypotheses regarding a small but established 
component which must be identified among the minor factors, it is not 
essential to specifically explain the occurrence of every factor in the 
solution. Nevertheless, we want to emphasize again that the extraction 
of minor factors can improve the overall solution and that over-
extraction is typically preferable to underextraction. Even if only a 
subset of the major factors is relevant for further analyses, we recom-
mend to always report the rotated loadings of all extracted factors. This 
ensures that readers (and reviewers) can evaluate the adequacy of the 
conclusions and that potential problems with the rotated solutions can 
be detected (cf. section Challenges). 

To derive substantive interpretations, the topography of the factors 
needs to be considered in addition to the loadings. As in the ERP PCA 
Toolkit (Dien, 2010b), we computed the average factor scores across 
participants at each electrode site, for each stimulus type, and for each 
group and multiplied these scores with the factor loadings. The resulting 
factor-wise reconstructions of the grand-average ERP served as the basis 
for the topography plots. Specifically, we plotted the time courses at the 
electrode site with the maximal factor score and the topography at the 
sampling point with the maximal factor loading. Please note that this 
heuristic is not always optimal (e.g., for bipolar factors) and that the 
automatically chosen electrode site may not always be theoretically 
reasonable. In the following, we focus on the identification of the early 
P3a among the factors in both groups for the sake of comprehensibility. 
In a complete analysis, the topographies of all factors should be 
inspected, and we encourage authors to always make them available in 
the spirit of transparency. The full topography plots for our example 
dataset are available from the online supplement. 

There are several major factors in a typical P300 time range between 
200 and 400 ms in each PCA (highlighted in Fig. 8). Based on the 
loadings alone, these factors are candidates to represent the early P3a. 
Figs. 9 and 10 depict the topographies and reconstructed grand-average 
ERPs for the child and adult PCA, respectively. For both groups, there 
are two factors in the time range between 200 ms and 400 ms with a 
central, positive topography for novel sounds (child PCA: F5 and F6; 
adult PCA: F3 and F5). All remaining candidates are characterized by a 
negative topography which excludes them as early P3a factors (Escera 
et al., 2000). Based on their peak latencies, we labeled the adult factor 
F5 (peak loading at 222 ms) and the child factor F6 (peak loading at 
296 ms) as “early P3a” and the respective other factor as “late P3a”. 
Despite their considerably different latency, we think that comparing 
these factors between groups is substantively justified because it is 
known that the respective components occur later in children compared 
to adults (Riggins and Scott, 2020). While the considerable latency 
differences support the appropriateness of separate PCAs in this case, 
they also demonstrate that detailed substantive reasoning is mandatory 
when matching factors from separate PCAs (Nesselroade, 2007; Nes-
selroade and Molenaar, 2016b). 

In general, researchers must face several challenges when matching 
factors from separate PCAs: (1) the order in which the factors were 
extracted can vary, (2) systematic latency shifts of factors can occur, (3) 
matching factors solely based on visual inspection can be very subjec-
tive, and (4) the number of factors to compare is typically very large. 
Quantitative similarity measures for the factor loadings and topogra-
phies such as Pearson’s correlation or Tucker’s congruency coefficient 

can support the search for matching factors (Lorenzo-Seva and ten 
Berge, 2006). These measures are regularly applied in simulation studies 
to quantify the similarity of loading patterns (De Winter and Dodou, 
2016; Dien, 1998; Scharf and Nestler, 2018, 2019a, 2019b). Therefore, 
we think that they can be helpful to researchers applying PCA as well. 
Specifically, we recommend matching the factors by temporal similarity 
first followed by topographic similarity because factors tend to be more 
distinct with respect to their time courses than to their topographies 
(Dien, 2010a). In our experience, this procedure allows to identify 
clearly corresponding factors very easily. However, we note that factors 
with systematic latency shifts cannot be matched based on temporal 
similarity. In the accompanying scripts, we provide a detailed demon-
stration how Pearson’s correlation can be used to match the corre-
sponding factors from the child and adult PCA (see script 
03a_factor_inspection.R). 

A closer inspection of the contributions of early and late P3a to the 
grand average ERPs (Figs. 6, 9 and 10) underlines the usefulness of the 
temporal PCA approach. Both factors overlap considerably in time and 
space with each other and with the P2 factor and are hardly distin-
guishable based on the grand average ERP alone. That is, there is no 
obvious time-window (or baseline-to-peak relation) that could be uti-
lized to disentangle these factors. Given that these separate factors could 
not even be identified without statistical decomposition, any analysis 
based on the observed waveform would suffer from a considerable risk 
of false conclusions due to the conflation of separable factors. To be 
clear, we do not claim that all such analyses are wrong – to what extent a 
conflation of factors biases the results is highly specific for a given 
dataset – but the risk of missing important features of an ERP is much 
higher without decomposition approaches. 

2.5. Analysis of amplitude effects 

Either the factor scores or a factor-wise reconstruction of the ERPs 
could be used for inferential statistics. In a combined PCA, the choice 
does not matter – at least not for the results of a general linear model (i. 
e., t-tests, ANOVAs, regressions) – because common amplitude measures 
(e.g., peak amplitude or time window averages) are only rescaled factor 
scores. This can be shown very easily: The peak amplitudes of the 
reconstructed ERPs are just the factor scores of the respective factor 
multiplied with the peak factor loading: ̂tpeak = λ(peak)

k ⋅ηk. Similarly, one 
can show that the average reconstructed voltage in a time window is 
simply the average factor loading in that time window multiplied by the 
factor scores: 

t̂ timewindow =

∑

i∈timewindow
λik⋅ηk

length(timewindow)
= ηk

∑

i∈timewindow
λik

length(timewindow)
= ηk⋅λtimewindow,k 

These considerations underline that both approaches are equally 
valid and will eventually lead to the same conclusions in a combined 
PCA. However, in separate PCAs only the analysis of reconstructed ERPs 
ensures a shared scale (i.e., µV) – directly comparing the factor scores 
between children and adults would be problematic because both scores 
were normalized relative to the variability within the respective dataset. 
A natural way to bring them back to a shared scale is the factor-wise 
reconstruction of the ERP. After this rescaling, again, it does not mat-
ter whether the reconstructed peak amplitudes are used or a measure of 
the area under the curve. In the following, we will use the peak of the 
reconstructed ERP t̂ peak as dependent variable in our analyses. We 
generally recommend this approach because it reinstates the original 
unit µV which ERP researchers are most familiar with. We compute the 
peaks of the reconstructed ERPs in the script 04_stat_amplitudes.R: 
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For the sake of simplicity, we conduct further amplitude analyses on 
a single electrode site for each factor, but it would also be possible to 
average across a spatial region of interest instead. It should be noted that 
the electrode site should be chosen a-priori to avoid capitalization on 
chance or “double dipping” (Kriegeskorte et al., 2009; Luck and Gas-
pelin, 2016). For each of the four selected factors, we conducted the 
same statistical analyses: (1) Compute descriptive statistics using the 
package psych (Revelle, 2021), (2) conduct an analysis of variance with 
the between factor “group” and the within factor “condition”, and (3) 
conduct some selected pairwise comparisons of interest. This should be 
read as a basic suggestion; the reader is free to use the (rescaled) factor 
scores for any analysis for which peak-based ERP scores could have been 
used. We demonstrate frequentist inferential statistics using the package 
afex (Singmann et al., 2021) as well as Bayesian inferential statistics as 
implemented in the packages BayesFactor (Morey and Rouder, 2018) 
and bayestestR (Makowski et al., 2019). We report generalized η2 (η2

gen) as 
effect size measure (Bakeman, 2005).    

In the following, we briefly go through the results of these steps for 
the early P3a factor. As illustrated in Figs. 9 and 10 (child PCA: F6; adult 
PCA: F5), the voltage of the early P3a factor at electrode site Cz is 
negative for standard sounds in both groups (Children: M = − 3.58 µV, 
SD = 2.35 µV; Adults: M = − 0.064 µV, SD = 1.60 µV). For novel sounds, 
the voltage was more positive compared to standard sounds (Children: 
M = 3.56 µV, SD = 3.82 µV; Adults: M = 4.52 µV, SD = 2.90 µV). The 
ANOVA revealed a significant main effect of condition, indicating 
generally more positive voltage of the factor for novels, F(1,62) 
= 235.97, p < .001, η2

gen = 0.533. There was also a significant main ef-
fect of group, F(1,62) = 14.68, p < .001, η2

gen = 0.142, and a significant 
group × condition interaction, F(1,62) = 11.26, p = .001, η2

gen = 0.052. 
Both effects were most likely driven by the more negative voltage of the 
factor for standards in children – but we did not follow up on them to 
keep this demonstration simple. Most importantly, both in adults, t 
(31) = 10.15, p < .001, and in children, t(31) = 11.61, p < .001, paired 
t-tests revealed significant differences in the voltage between standards 

and novels. 
To sum up, amplitude differences in the voltage of a specific factor 

can be analyzed either using the factor scores directly or based on the 
reconstructed participant average data. Both yield equivalent test results 
in combined PCAs but the reconstructed ERP approach offers the 
advantage of restoring the original unit µV and enabling comparisons 
across separate PCAs. The factor score based measures can be used for 
any further analysis as a quantification of a factor’s contribution. 

3. Challenges in developmental studies 

In the previous sections, we have introduced the PCA model and its 
potential merits for ERP researchers and we have provided a step-by- 
step guide through a PCA-based analytic approach demonstrating how 
amplitude effects can be analyzed. In this section, we want to address 
several common challenges and discuss how the data-analyst can cope 
with them: (1) How can the visual inspection be used to reveal subop-
timal decomposition results and what can be done about it? (2) How can 
“double dipping“ be avoided? (3) Further considerations on measure-
ment non-invariance: What are possible reasons for different results 
from separate PCAs? What should one do when quantitative compari-
sons seem unreasonable? (4) How can PCA be used to analyze longitu-
dinal data with multiple measurement occasions for each participant? 
(5) How can separate PCAs be used to investigate latency differences? 

3.1. How to detect and handle suboptimal PCA results 

Careful visual inspection of the PCA solution is essential to make the 
substantive decision whether a specific PCA solution is “reasonable”. The 
most likely reasons for suboptimal solutions are under- or overextraction 
of factors and difficulty of the rotation method in disentangling highly 
overlapping factors. A very common symptom are conflated factors 
(Scharf and Nestler, 2019a), that is, factors occur in the solution which 
seem to be a mixture of established (sub-) components. The likelihood of 
this happening increases with temporal and spatial overlap. To illustrate 
this, Fig. 11 contrasts the loadings from the adult PCA presented before 
(23 factors) with a suboptimal solution with only 8 factors. The 
extraction of too few factors forces PCA to conflate separable compo-
nents into a single factor. In this case, the early and late P3a factors from 
the left panel (Factors 3 and 5) are conflated into a single factor in the 
right panel (Factor 1). The reason for this is that both factors overlap in 
time and have very similar topographies. Such a conflation of prominent 
separate components is a clear warning sign that the solution is not 
optimal and is often also recognizable in the topographies which are also 
a mixture of the conflated factors’ typical topographies. 

In general, temporal PCA tends to err in the direction of conflating 
factors which should be separated rather than splitting factors artifi-
cially (but see Wood et al., 1996). The spatial and temporal overlap 
which make it hard to identify these factors by visual inspection of the 
original ERP also make it hard to separate them based on statistical 
properties of the data. Although conflated factors cannot always be 
treated successfully, there are some systematic steps researchers can try 
to improve suboptimal solutions: (1) Try to increase the numbers of 
random starts and iterations for the rotation algorithm in case the sub-
optimal solution was due to a local optimum of the rotation criterion. (2) 
Investigate whether the solution improves when the number of factors is 
increased to rule out underextraction. (3) Adapt the rotation procedure. 
Promax has been the gold standard for a long time, but alternative 
rotation techniques such as Geomin and Componentloss rotation can 
sometimes achieve better results (Scharf and Nestler, 2019a). Alterna-
tively, some rotation techniques have a tuning parameter that can be 
changed. For instance, increasing the Geomin ϵ improves the ability of 

F. Scharf et al.                                                                                                                                                                                                                                   



Developmental Cognitive Neuroscience 54 (2022) 101072

15

the rotation to separate overlapping factors (but at the risk of splitting 
other factors artificially). (4) When none of the above options is viable, 
the assumptions of PCA may simply not fit the present purpose and 
alternative decomposition methods could help (see below).12 

3.2. How can “double dipping” be avoided? 

Although such data-driven adaptations of the analysis procedure can 
improve the physiological plausibility of the decomposition, one must 
be aware of the considerable risk of “double dipping” (Kriegeskorte 
et al., 2009). Technically, data-driven adaptations of the analyses pre-
sent a case of selective inference in which statistical tests are applied 
after the statistical “model” has been chosen based on the same dataset 
(Benjamini, 2010; Kriegeskorte et al., 2009; Luck and Gaspelin, 2016). 
Strictly speaking, any post-hoc model modification is potentially prob-
lematic and may inflate the type I error rate – be it a change of the 
number of factors or a change of the rotation method. A simple and 
effective strategy to avoid this is a strict separation of the model speci-
fication step from the statistical inference step. Preregistrations can be 
used to decide on the parameters for PCA before beginning the analysis 
and to make all deviations from the original analysis scheme trans-
parent. A preregistration of a PCA-based analysis should at least contain 
the following aspects:  

(1) How are the data pre-processed and cleaned?  
(2) Which subsets of the data are submitted to combined versus 

separate PCAs?  
(3) How is the number of factors determined?  
(4) Is the analysis based on standardized data (i.e., a correlation 

matrix) or unstandardized data (i.e., a covariance matrix)?  

(5) Which rotation technique is applied? (if applicable, including the 
values of rotation parameters and standardization scheme of 
loadings during rotation)  

(6) How will a substantive interpretation of the factors be derived?  
(7) How will factors from separate PCAs be matched?  
(8) How will statistical inference be conducted? Which electrode 

sites/ROIs will be included in the analysis for each presumed 
factor? 

To increase the objectivity of interpretations, we also encourage 
groups of cooperating researchers to interpret the results independently 
in a first step and to discuss deviating interpretations in a second step. 

Even for very experienced researchers, it is hardly possible to 
anticipate all characteristics of ERP data with sufficient accuracy to al-
ways make ideal a-priori choices. Instead of avoiding modifications at all 
costs, we think that it is important to make transparent which decisions 
were made post-hoc. Ultimately, each exploratory modeling decision 
increases the need for confirmatory replication studies to establish the 
robustness of the findings. If the sample size is sufficient, researchers 
may consider data splitting (i.e., tuning analysis parameters in one half 
of the data and conducting statistical inference on the other half). Data 
splitting is an effective, easily implemented and non-parametric method 
to assure the validity of statistical inference after model selection 
(Rinaldo et al., 2019; Wasserman and Roeder, 2009), although we 
acknowledge that sufficiently large samples are hard to collect in a 
developmental context. Nevertheless, replication studies and studies 
trying to manipulate certain factors in isolation are essential next steps 
to validate the decomposition results (Widmann et al., 2018). Alterna-
tively, when many analyses have been tried out, it may even be best to 
make their results transparent and to show which of the results is sen-
sitive towards specific data-analytic choices (Steegen et al., 2016). In 
sum, none of these threads for replicability is specific to temporal PCA; 
peak-based analyses suffer from the very same issues, and the same 
strategies can (and should) be applied to maximize the chance of 
replicable findings. 

3.3. Further considerations on measurement invariance 

As we have seen, equality of the factor loadings across all observa-
tions is arguably one of the most questionable assumptions of the 

Fig. 7. Variance explained by each factor in the initial solution for adults and children. Note. Remember that the factors are extracted in descending order of variance 
explained in the initial solution. The dots in the figures illustrate the variance explained by each factor in the initial solution for all factors (so-called Scree-Plot). 
There are 500 factors in the initial solution (as many as sampling points in the epoch), but we cut the plot at 40 factors to focus on the comparison with the 
reference line (blue line) for the EKC. The number of factors is marked by the last factor lying above the reference line (additionally marked by the vertical line). The 
red dots are above the reference line, the black dots are below the reference line. For the child PCA, the EKC indicates that 21 factors should be extracted, compared 
to 23 factors in the adult PCA. 

12 Some readers may wonder whether a peak-based measure could be used 
alternatively. In theory, this could work when the temporal overlap is low and 
the prior knowledge on the component structure is very precise. However, we 
doubt that such detailed knowledge is commonly available. Therefore, we 
rather recommend the use of decomposition methods with different assump-
tions or incorporating prior knowledge in a suitable decomposition framework 
(e.g., Huang, 2020; Huang et al., 2017). For instance, there have even been 
attempts to utilize prior knowledge on condition effects during factor rotation 
(Beauducel and Leue, 2015). 
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temporal PCA model. Apart from differences between groups, systematic 
latency shifts may also occur between experimental conditions (Barry 
et al., 2016) or between participants resulting in additional factors 
(Möcks, 1986). We recommend the use of separate PCAs whenever 
measurement invariance is questionable. Specifically, developmental 
researchers should conduct separate PCAs for different age groups 
because the evidence for fundamentally different component structures 
between different age groups is strong (Wunderlich et al., 2006). With 
respect to experimental conditions, separate PCAs should be conducted 
when substantial latency differences are expected. Otherwise, separate 
PCAs can be conducted to check for unanticipated latency shifts. In the 
presence of very strong latency jitter, PCA might not be an appropriate 
analysis model and alternative decomposition methods might be 
considered (see below). 

When separate PCAs reveal different factor patterns, this may either 
be an artifact of the rotation step or indicate genuinely different 
component structures. That is, measurement non-invariance does not 
inevitably imply different component structures (see Welzel et al., 2021; 
for a similar discussion in the context of psychometric data). For 
instance, PCA may conflate certain factors in one group but not in the 
other. This possibility can hardly be ruled out using a single dataset, 
although isolated cases of conflated factors could be identified as out-
lined in the previous section. Nevertheless, measurement 
non-invariance can be a hint towards qualitative differences between 
the groups and there is no guarantee that separate PCAs map as well as 
in our example dataset – and it is therefore not a failure of the analyst if a 
specific factor from one group cannot be matched with any factor from 
the other group. For instance, it is well-known that babies have very 
different ERPs from school children and adults (Wunderlich et al., 2006) 
and it would not be surprising if separate PCAs in these groups yielded 
very different results. Quantitative comparisons may be unreasonable in 
such situations, and we suggest that potential explanations for the 
qualitative differences should be discussed instead of enforcing a 
quantitative comparison of fundamentally different entities. 

3.4. Longitudinal designs 

In the present article, we focused on an example of a cross-sectional 
temporal PCA in which independent age groups were compared. How-
ever, developmental researchers could also use longitudinal designs 
with repeated measurement occasions for the same group of partici-
pants. Two specific challenges occur in the context of longitudinal de-
signs: First, researchers should reflect on the plausibility of 
measurement invariance across measurement occasions, and second, 
they need to account for the dependencies between measurements oc-
casions from the same participant. With respect to the first challenge, 
temporal proximity between measurement occasions is crucial. 
Assuming that the main driver of different factor structures is cognitive 
and neuronal development, the plausibility of measurement invariance 
largely depends on the time lag between measurements. For instance, 
when ERPs are recorded from a group of children twice within one week, 
it is unlikely that fundamental development has taken place in these 
areas, and one would expect to observe the same factor structure across 
both measurement occasions. However, if the time lag between mea-
surements would be a year or longer, substantial developmental changes 
could have occurred and all considerations on measurement invariance 
from the previous sections apply. 

When measurement invariance can be assumed, researchers can 
conduct a combined PCA across all measurement occasions. Impor-
tantly, for statistical inference, the measurement occasions need to be 
considered a within-person factor, essentially in the same way as we did 
it with stimulus type in our example. When measurement invariance 
cannot be assumed, researchers could combine separate PCAs with so- 
called target rotations (for an overview, see Browne, 2001). For 
instance, a separate PCA with simple structure rotation could be applied 
for the first measurement occasion. For the second measurement 

occasion, this rotated loading matrix could serve as a target for the 
rotation – aiming for as similar factor structures as possible. We think 
this approach is most reasonable when the time lag is substantial but not 
too large. In this case, factor structures may still be relatively similar 
with some specific changes (e.g., latency shifts of certain factors). In 
such cases, target rotation could help to uncover the nature of the 
developmental changes. More recent approaches to longitudinal ana-
lyses such as latent growth models can be applied in the context of 
exploratory structural equation models (Asparouhov and Muthén, 2009; 
Marsh et al., 2009, 2013, 2014; Morin et al., 2013; Scharf and Nestler, 
2019b) including a more general approach to rotate towards a similar 
factor structure between multiple measurement occasions (Marsh et al., 
2017). Please note that further methodological evaluations of these 
approaches are necessary because we are not aware of any previous 
applications of these recently developed methods to ERP data. 

3.5. Analysis of latency effects 

Apart from the analysis of amplitude differences between conditions, 
ERP researchers are often interested in latency differences between 
groups or conditions. Some methods have been proposed which are able 
to provide individual factor-wise latency estimates for participants (e.g., 
Möcks et al., 1988; Tuan et al., 1987) but these methods have not been 
widely adopted to our knowledge. In a combined PCA, latency differ-
ences are mostly concealed due to the strict measurement invariance 
assumption, but extreme latency differences may result in split-up fac-
tors representing different latencies. Separate PCAs can be used to detect 
latency differences assuming that none of the solutions is affected by 
rotation artifacts such as conflated factors – but they do not quantify the 
uncertainty of the estimated latencies. In the original analysis, we 
adopted an established Jackknife approach to test for latency effects 
(Kiesel et al., 2008; Miller et al., 1998; Ulrich and Miller, 2001). Instead 
of applying this resampling approach to the observed ERP, we applied it 
to the factor loadings re-estimating the rotated loading for each 
re-sampled dataset (Bonmassar et al., 2020). Systematic evaluations of 
the utility of this approach are not yet available but we provide an 
implementation and documentation of this approach as a supplement in 
the GitHub repository for any interested reader. In sum, despite the 
aforementioned and other methodological efforts to lift this limitation 
(De Munck et al., 2004; Ouyang et al., 2017; Truccolo et al., 2003), using 
temporal PCAs to analyze latency effects remains challenging and no 
validated wide-spread solution is available so far. 

4. Comparison with alternative decomposition methods 

The challenges described above demonstrate that PCA is a data- 
analytic approach with strengths and weaknesses as any other 
approach (Delorme et al., 2012; Dien et al., 2007). Since the original 
proposal of PCA decompositions for ERP data (Donchin, 1966; Donchin 
and Heffley, 1978), its usefulness has been demonstrated many times 
(Chapman and McCrary, 1995; Dien, 2012; Dien et al., 2003; Dien and 
Frishkoff, 2005). But there have also been lively debates regarding its 
weaknesses (Achim and Marcantoni, 1997; Beauducel and Debener, 
2003; Collet, 1989; Dien, 1998; Dien et al., 2005; Donchin, 1989; Kayser 
and Tenke, 2003, 2005; Möcks, 1989; Möcks and Verleger, 1986; Wood 
and McCarthy, 1984). The term variance misallocation has been coined 
by Wood and McCarthy (1984) to describe the fact that condition effect 
estimates based on PCA can be biased. The reason for this is that the 
loading estimates can be biased which is a result of a partial mismatch 
between the goal of the rotation technique and the ground truth (Möcks 
and Verleger, 1986). Specifically, orthogonal rotations must be avoided 
because they always estimate uncorrelated factors which is not appro-
priate (Dien, 1998, 2010a; Dien et al., 2005; Scharf and Nestler, 2018). 
In addition, when the ground truth is characterized by components with 
high spatial and temporal overlap, especially in the presence of 
slow-wave components, simple structure rotation can by definition not 

F. Scharf et al.                                                                                                                                                                                                                                   



Developmental Cognitive Neuroscience 54 (2022) 101072

17

achieve perfect separation but will conflate, for instance, slow-wave 
components with other components (Scharf and Nestler, 2018, 2019a; 
Verleger and Möcks, 1987). ERP-specific rotations and estimation al-
gorithms could further reduce this problem (Beauducel, 2018b; Hau-
mann et al., 2020) but more experience is needed with applications of 
these methods for further evaluation. 

Despite this methodological progress and the wide-spread use of 
decomposition methods such as ICA for artifact removal (e.g., Chaumon 
et al., 2015), the use of decomposition techniques during the actual 
quantitative analysis step is sometimes met with skepticism. Some of 
these concerns have been expressed in popular introductory treatments 
for ERP analysis (Luck, 2005b).13 Therefore, we would like to put some 
arguments made there into perspective: 

The PCA technique, in particular, is problematic because it does not 
yield a single, unique set of underlying components without addi-
tional assumptions (see, e.g., Rösler and Manzey, 1981). That is, PCA 
really just provides a means of determining the possible set of latent 
component waveshapes, but additional assumptions are necessary to 
decide on one set of component waveshapes (and there is typically no 
way to verify that the assumptions are correct). (Luck, 2005b, p. 22). 

It is true that the PCA model needs restrictions to identify the model 
parameters. However, this is not a property of the method itself but 
rather of the inverse problem in ERP research. We try to make inferences 
regarding the functional significance of components (or even the sources 
in source localization analyses) from the limited information provided 
by the ERP observed at the scalp. From a mathematical perspective, this 
problem is ill-posed. That is, the ERP signal at the scalp does not contain 
sufficient information to recover the ground truth uniquely. Conse-
quently, it is impossible to infer the components without additional 
assumptions or additional knowledge (e.g., co-registered fMRI). 
Importantly, mean amplitudes in time-windows, peak- or area-based 
measures make even more restrictive assumptions: All these measures 
can be conceived as extremely simplistic factor scores (e.g., with rect-
angular factor loadings in case of mean amplitude time-windows) 
assuming that the voltage in the analyzed time-window is uniquely due 
to one factor, that is, that there is zero temporal or spatial overlap with 
other components (DiStefano et al., 2009; Donchin and Heffley, 1978). 
Because these methods are simply naïve scoring methods, it is not sur-
prising that they suffer from even worse variance misallocation than 
PCA (Beauducel and Debener, 2003). The appropriateness of simple 
structure rotations is certainly up to discussion in many contexts but we 
see it as an advantage of PCA that we can explicitly name and discuss 
this assumption rather than simply making it implicitly by using naïve 
scoring methods. 

Another common concern is that decomposition techniques fail in 
the presence of latency shifts and latency jitter:  

[A]ny correlation-based method will have significant limitations. 
One limitation is that when two separate cognitive processes covary, 
they may be captured as part of a single component even if they 
occur in very different brain areas and represent different compu-
tational functions.  […] Another very important limitation is that, 
when a component varies in latency across conditions, both PCA and 
ICA will treat this single component as multiple components (Luck, 
2005b, p. 22).  

It is true that temporal PCA tends to conflate components which 
overlap temporally, spatially and/or functionally (i.e., when they have 
the similar condition effects; but see below for potential solutions). It is 
also true that latency jitter can result in artificial additional factors 
(Möcks, 1986) and that a combined PCA cannot represent latency shifts 
but, as we have demonstrated, separate PCAs can be used to improve this 
situation to some extent. In the context of exploratory structural equa-
tion models, measurement invariance can even be tested formally 
(Asparouhov and Muthén, 2009; Putnick and Bornstein, 2017; Scharf 
and Nestler, 2019b). Furthermore, for measures based on the observed 
ERP it is by no means clear whether ERP differences are due to ampli-
tude differences or latency shifts as is apparent even in a simplistic 
example such as Scenario C in Fig. 2. PCA offers a much more objective 
way to disentangle these scenarios than visual inspection of observed 
ERPs. An additional advantage of PCA-based analyses is that we know 
the direction in which PCA tends to err and we know the symptoms: 
Conflated factors and artificial “jitter-factors” are well-documented 
(Möcks, 1986; Verleger and Möcks, 1987) and it is possible to inspect 
the PCA solution for these signs of suboptimal solutions – offering much 
deeper insight into the potential component structure. 

Ultimately, researchers must decide – based on their knowledge on 
the subject matter – which assumptions can be made and, hence, which 
analytic method is appropriate. In that sense, we agree with (Luck’s 
2005b, p.22) conclusion that PCA “[ does] not provide a magic bullet for 
determining which components an experimental manipulation in-
fluences” but neither do the “traditional” approaches which are based on 
the observed ERP. Hence, we strongly advocate that researchers care-
fully reflect on the assumptions and make them explicit. To support 
these reflections, we briefly want to make the reader aware of some 
further decomposition methods and when they could be helpful. A 

Fig. 8. Unstandardized Factor Loadings after Geomin (0.01) Rotation in both 
PCAs. Each colored line represents the factor loadings of a factor. Higher factor 
loadings implicate that the factor contributes more to the voltage at a sampling 
point. Thus, one can conceive the loadings as a representation of the time 
course of a factor’s activity. Please note that the factors are numbered by the 
amount of variance they explain – not by their temporal order. Thicker lines 
were used to highlight factors in the typical P300 time range. This plot can be 
created using the script 03a_factor_inspection.R. 

13 We would like to emphasize that we merely take these quotes as an example 
to illustrate the presence of such concerns. Although we tend to disagree in this 
specific matter, this should not be taken as a criticism of the remainder of this 
chapter which contains many valid and important recommendations for ERP 
research. 
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Fig. 9. Topographies and reconstructed ERPs for the first six factors from the child PCA. Each row represents a factor in the rotated solution. The left-most column 
depicts the contribution of the factor to the grand-average ERP (transparent lines) at the maximum electrode (marked by white dot). The other columns present the 
factors’ topographies separately for all conditions. Please note that the extrapolated topography becomes unreliable outside the area covered by electrodes and tends 
towards extreme values due to the simplistic biharmonic interpolation. This plot is created in the script 03b_topoplot_allFactors.R. 
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Fig. 10. Topographies and reconstructed ERPs for the first six factors from the adult PCA. Each row represents a factor in the rotated solution. The left-most column 
depicts the contribution of the factor to the grand-average ERP (transparent lines) at the maximum electrode (marked by white dot). The other columns present the 
factors’ topographies separately for all conditions. Please note that the extrapolated topography becomes unreliable outside the area covered by electrodes and tends 
towards extreme values due to the simplistic biharmonic interpolation. This plot is created in the script 03b_topoplot_allFactors.R. 

F. Scharf et al.                                                                                                                                                                                                                                   



Developmental Cognitive Neuroscience 54 (2022) 101072

20

detailed treatment of these methods is beyond the scope of this intro-
ductory tutorial, but we strongly encourage the reader to explore them 
following the familiarization with the temporal PCA approach. 

Instead of the sampling points as in temporal PCA, the electrode sites 
can be treated as variables in a spatial PCA (Dien, 2010a; Dien et al., 
2004, 2007; Dien and Frishkoff, 2005). Spatial PCA assumes equal 
topographic weights across participants, time points, and conditions but 
allows the time courses to vary. Whereas measurement invariance of the 
topography is clearly plausible in many situations (Delorme et al., 
2012), spatial PCA requires the use of special rotation techniques 
because factors typically contribute to the voltage at all electrode sites. 
These rotation techniques (e.g., Infomax) are closely related to inde-
pendent component analysis (ICA; Dien et al., 2007), and they aim to 
extract factors which are as stochastically independent as possible 
instead of rotating towards a simple structure (for mathematical in-
troductions and tutorial treatments, see, e.g., De Lathauwer et al., 2000; 
Groppe et al., 2008; Huster and Raud, 2018; Makeig et al., 1996; Stone, 
2004). Please note that there is an ongoing debate regarding the use of 
restricted versus unrestricted solutions for spatial decompositions as 
well (Artoni et al., 2018). 

A further noteworthy analytic approach is to combine spatial and 
temporal PCA. That is, first, a temporal PCA is applied, followed by a 
spatial PCA on the temporal PCA results in a second step. This is called 
temporospatial PCA or spatiotemporal PCA when the PCAs are con-
ducted in reversed order (Dien, 2010a; Dien et al., 2004; Spencer et al., 
2001). The main idea is to complement the strengths of both approaches: 
Temporal PCA benefits from the fact that many of the factors are 
temporally separable but it fails to separate factors with identical time 
courses but separable topography. Spatial PCA suffers from the strong 
spatial overlap and could conflate factors with identical topography but 
separable time courses. A combination of these approaches could 
therefore considerably reduce the risk of conflating factors. In addition, 
spatial PCA offers an aggregated quantification across all electrodes 
which uses more of the available information compared to factor scores 
from single electrodes or averages across regions of interest. Alterna-
tively, a trilinear decomposition of the ERP dataset has been proposed as 
an advancement of the PCA model which acknowledges the role of 

electrode sites and sampling points as measurement occasions instead of 
treating one or the other as “observations” (Achim and Bouchard, 1997; 
Cong et al., 2015; Möcks, 1988b, 1988a; Wang et al., 2000). There have 
even been proposals how latency shifts can be directly acknowledged 
within such a model (Harshman et al., 2003; Harshman and Lundy, 
1994; Mørup et al., 2008, 2011). Apart from modifications of the PCA 
model to ERP data, it has been suggested that PCA can also be helpful 
when conducted on typical transformations of ERP data such as scalp 
current density (Kayser and Tenke, 2015b, 2015a), time-frequency de-
compositions (Barry et al., 2019), or wavelet-transformations (Mørup 
et al., 2006b). 

In sum, a variety of methods has been proposed to address certain 
limitations of the temporal PCA explained in this article or to adapt it to 
other use cases. All these methods are either direct modifications of the 
outlined approach or they estimate a very similar mathematical model. 
In that sense, the reader could see the temporal PCA approach as an 
entry point to the world of decomposition methods. The limitations of 
peak-based methods have been acknowledged for a long time. We are 
convinced that a basic understanding of decomposition methods is 
crucial for ERP researchers and that it will contribute to further progress 
in the field of developmental cognitive neuroscience. We hope that this 
tutorial and the provided code encourage the readers to apply this 
method to learn more about the development of the brain. 

5. Conclusion 

We set out from the fact that observed ERP data are a mixture of 
latent signals and that ignoring this issue can considerably bias sub-
stantive conclusions drawn from ERP data. Decomposition methods 
such as temporal PCA aim to model the latent signals. Although there are 
common challenges one must be aware of, temporal PCA is an effective 
tool for ERP researchers, especially in a developmental context where 
the noise level is typically high and the comparability of the ERP signals 
from different age groups is always at stake due to maturational 
changes. Extending previous tutorial treatments, the analytic procedure 
outlined here explicitly acknowledges that ERPs differ systematically 
between children and adults. We conclude that the use of decomposition 

Fig. 11. Comparison of the reported solution with two suboptimal solutions. The left-hand panel contains our reported solution. The right-hand panel contains a 
suboptimal solution. The thicker lines highlight the factors mentioned in the text. In the right-hand panel, early and late P3a (Factors 3 and 5 in left panel) are 
conflated into a single factor. 
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methods in ERP analysis can substantially improve research on the 
development of neuronal network activity underlying cognitive 
functions. 
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Möcks, J., Verleger, R., 1986. Principal component analysis of event-related potentials: a 
note on misallocation of variance. Electroencephalogr. Clin. Neurophysiol. / Evoked 
Potentials 65 (5), 393–398. https://doi.org/10.1016/0168-5597(86)90018-3. 

Molenaar, P.C.M., Campbell, C.G., 2009. The new person-specific paradigm in 
psychology. Curr. Dir. Psychol. Sci. 18 (2), 112–117. https://doi.org/10.1111/ 
j.1467-8721.2009.01619.x. 

Morey, R.D., Rouder, J.N., 2018. BayesFactor: Computation of Bayes Factors for 
Common Designs. https://cran.r-project.org/package=BayesFactor. 

Morin, A.J.S., Marsh, H.W., Nagengast, B., 2013. Exploratory structural equation 
modeling: an introduction. In: Hancock, G.R., Mueller, R.O. (Eds.), Structural 
Equation Modeling: A Second Course, second ed. Information Age Publishing, Inc,. 

Mørup, M., Hansen, L.K., Arnfred, S.M., Lim, L.H., Madsen, K.H., 2008. Shift-invariant 
multilinear decomposition of neuroimaging data. NeuroImage 42 (4), 1439–1450. 
https://doi.org/10.1016/j.neuroimage.2008.05.062. 

Mørup, M., Hansen, L.K., Herrmann, C.S., Parnas, J., Arnfred, S.M., 2006a. Parallel 
Factor Analysis as an exploratory tool for wavelet transformed event-related EEG. 
NeuroImage 29 (3), 938–947. https://doi.org/10.1016/j.neuroimage.2005.08.005. 

Mørup, M., Hansen, L.K., Herrmann, C.S., Parnas, J., Arnfred, S.M., 2006b. Parallel 
Factor Analysis as an exploratory tool for wavelet transformed event-related EEG. 
NeuroImage 29 (3), 938–947. https://doi.org/10.1016/j.neuroimage.2005.08.005. 

Mørup, M., Hansen, L.K., Madsen, K.H.2011. Modeling latency and shape changes in trial 
based neuroimaging data. Conference Record – Asilomar Conference on Signals, 
Systems and Computers, 439–443. doi: 10.1109/ACSSC.2011.6190037. 

Mulaik, S.A., 2010. Foundations of Factor Analysis, second ed. CRC Press. 
Muthén, B.O. , 2004. Mplus Technical Appendices. 〈https://www.statmodel.com/downl 

oad/techappen.pdf〉. 
Muthén, B.O., Muthén, L.K., 2004. Technical Appendices. Muthén& Muthén, Los 

Angeles.  
Nesselroade, J.R., 2007. Factoring at the individual level: some matters for the second 

century of factor analysis. In Factor Analysis at 100: Historical Developments and 
Future Directions (pp. 249–264). 

Nesselroade, J.R., Molenaar, P.C.M., 2016a. A Rejoinder. Multivar. Behav. Res. 51 (2–3), 
428–431. https://doi.org/10.1080/00273171.2015.1101368. 

Nesselroade, J.R., Molenaar, P.C.M., 2016b. Some behaviorial science measurement 
concerns and proposals. Multivar. Behav. Res. 51 (2–3), 396–412. https://doi.org/ 
10.1080/00273171.2015.1050481. 

Nguyen, Hoang V., Waller, Niels G., 2022. Local Minima and Factor Rotations in 
Exploratory Factor Analysis. Psychological Methods. https://doi.org/10.1037/ 
met0000467. In press.  

Nunez, P.L., Srinivasan, R., 2006. Electric Fields of the Brain: The Neurophysics of EEG, 
second ed. Oxford Univ. Press 〈https://katalog.ub.uni-leipzig.de/Record/0000 
771752〉. 

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: open source 
software for advanced analysis of MEG, EEG, and invasive electrophysiological data. 
Comput. Intell. Neurosci. 2011, 1–9. https://doi.org/10.1155/2011/156869. 

Ouyang, G., Hildebrandt, A., Sommer, W., Zhou, C., 2017. Exploiting the intra-subject 
latency variability from single-trial event-related potentials in the P3 time range: a 
review and comparative evaluation of methods. Neurosci. Biobehav. Rev. 75, 1–21. 
https://doi.org/10.1016/j.neubiorev.2017.01.023. 

Piai, V., Dahlslätt, K., Maris, E., 2015. Statistically comparing EEG/MEG waveforms 
through successive significant univariate tests: how bad can it be? Psychophysiology 
52 (3), 440–443. https://doi.org/10.1111/psyp.12335. 

Putnick, D.L., Bornstein, M.H., 2017. Measurement invariance conventions and 
reporting: the state of the art and future directions for psychological research. Dev. 
Rev. 41, 71–90. https://doi.org/10.1016/j.dr.2016.06.004.Measurement. 

R. Core Team, 2020. R: A Language and Environment for Statistical Computing (4.0.1). 
https://www.r-project.org/. 

Revelle, W. , 2021. psych: Procedures for Psychological, Psychometric, and Personality 
Research. 〈https://cran.r-project.org/package=psych〉. 

Riggins, T., Scott, L.S., 2020. P300 development from infancy to adolescence. 
Psychophysiology 57 (7), 13346. https://doi.org/10.1111/psyp.13346. 

Rinaldo, A., Wasserman, L., G’Sell, M., 2019. Bootstrapping and sample splitting for 
high-dimensional, assumption-lean inference. Ann. Stat. 47 (6), 3438–3469. https:// 
doi.org/10.1214/18-aos1784. 

Rösler, F., Manzey, D., 1981. Principal components and varimax-rotated components in 
event-related potential research: Some remarks on their interpretation. Biological 
Psychology 13, 3–26. https://doi.org/10.1016/0301-0511(81)90024-7. 

Saccenti, E., Timmerman, M.E., 2017. Considering Horn’s Parallel Analysis from a 
random matrix theory point of view. Psychometrika 82 (1), 186–209. https://doi. 
org/10.1007/s11336-016-9515-z. 

Scharf, F., Nestler, S., 2018. Principles behind variance misallocation in temporal 
exploratory factor analysis for ERP data: insights from an inter-factor covariance 
decomposition. Int. J. Psychophysiol. 128, 119–136. https://doi.org/10.1016/j. 
ijpsycho.2018.03.019. 

Scharf, F., Nestler, S., 2019a. A comparison of simple structure rotation criteria in 
temporal exploratory factor analysis for event-related potential data. Methodology 
15 (Supplement 1), 43–60. https://doi.org/10.1027/1614-2241/a000175. 

Scharf, F., Nestler, S., 2019b. Exploratory structural equation modeling for event-related 
potential data—an all-in-one approach? Psychophysiology 56 (3), e13303. https:// 
doi.org/10.1111/psyp.13303. 

Singmann, H., Bolker, B., Westfall, J., Aust, F., Ben-Shachar, M.S. , 2021. afex: Analysis 
of Factorial Experiments. 〈https://cran.r-project.org/package=afex〉. 

Skrondal, A., Laake, P., 2001. Regression among factor scores. Psychometrika 66 (4), 
563–575. https://doi.org/10.1007/BF02296196. 

Slotnick, S.D., 2005. Source localization. In: Handy, T. (Ed.), Event-related Potentials: A 
Methods Handbook. MIT Press, pp. 149–166. 

Spencer, K.M., Dien, J., Donchin, E., 2001. Spatiotemporal analysis of the late ERP 
responses to deviant stimuli. Psychophysiology 38 (2), 343–358. https://doi.org/ 
10.1017/S0048577201000324. 

Steegen, S., Tuerlinckx, F., Gelman, A., Vanpaemel, W., 2016. Increasing transparency 
through a multiverse analysis. Perspect. Psychol. Sci. 11 (5), 702–712. https://doi. 
org/10.1177/1745691616658637. 

Steiner, M.D., Grieder, S., 2020. EFAtools: an R package with fast and flexible 
implementations of exploratory factor analysis tools. J. Open Source Softw. 5 (53), 
2521. https://doi.org/10.21105/joss.02521. 

Stone, J.V., 2004. Enzymatic digestion of proteins in gels for mass spectrometric 
identification and structural analysis. Indep. Compon. Anal.: a Tutor. Introd. Chapter 
11, 11. 

Thomson, G.H., 1935. The definition and measurement of “g” (general intelligence). 
J. Educ. Psychol. 26 (4), 241–262. https://doi.org/10.1037/h0059873. 

Thomson, G.H., 1938. Methods of estimating mental factors, 246–246 Nature 141 
(3562), 246. https://doi.org/10.1038/141246a0. 

Thurstone, L.L., 1935. The Vectors of Mind: Multiple-factor Analysis for the Isolation of 
Primary Traits. University of Chicago Press. https://doi.org/10.1037/10018-000. 

Trendafilov, N.T., 2014. From simple structure to sparse components: a review. Comput. 
Stat. 29 (3–4), 431–454. https://doi.org/10.1007/s00180-013-0434-5. 

Truccolo, W., Knuth, K.H., Shah, A., Bressler, S.L., Schroeder, C.E., Ding, M., 2003. 
Estimation of single-trial multicomponent ERPs: differentially variable component 
analysis (dVCA). Biol. Cybern. 89 (6), 426–438. https://doi.org/10.1007/s00422- 
003-0433-7. 

Tuan, P.D., Mocks, J., Kohler, W., Gasser, T., 1987. Variable latencies of noisy signals: 
Estimation and testing in brain potential data. Biometrika Vol. 74 (Issue 3), 
525–533. 〈https://academic.oup.com/biomet/article-abstract/74/3/525/238523〉. 

Ulrich, R., Miller, J., 2001. Using the jackknife-based scoring method for measuring LRP 
onset effects in factorial designs. Psychophysiology 38 (5), 816–827. https://doi. 
org/10.1017/S0048577201000610. 

Van De Schoot, R., Schmidt, P., De Beuckelaer, A., Lek, K., Zondervan-Zwijnenburg, M., 
2015. Editorial: measurement invariance. Front. Psychol. 6 (July), 10–13. https:// 
doi.org/10.3389/fpsyg.2015.01064. 
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