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Abstract

Synaptic wiring of neurons in Caenorhabditis elegans is largely invariable between animals. It has been suggested that this
feature stems from genetically encoded molecular markers that guide the neurons in the final stage of synaptic formation.
Identifying these markers and unraveling the logic by which they direct synapse formation is a key challenge. Here, we address
this task by constructing a probabilistic model that attempts to explain the neuronal connectivity diagram of C. elegans as a
function of the expression patterns of its neurons. By only considering neuron pairs that are known to be connected by
chemical or electrical synapses, we focus on the final stage of synapse formation, in which neurons identify their designated
partners. Our results show that for many neurons the neuronal expression map of C. elegans can be used to accurately predict
the subset of adjacent neurons that will be chosen as its postsynaptic partners. Notably, these predictions can be achieved
using the expression patterns of only a small number of specific genes that interact in a combinatorial fashion.
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Introduction

The nervous system of Caenorhabditis elegans has exactly 302

neurons with a simple gross morphology, often having only a

single, unbranched process. Processes run together in parallel

bundles, forming synapses to adjacent processes. The neuronal

bodies and their processes are found in characteristic positions and

similar sets of synaptic connections are seen in different individuals

and among sets of homologous cells (e.g., cells that are bilaterally

symmetrical to each other in the worm’s body) [1]. Furthermore,

most of the neurons are connected to a subset of about 50% of the

neurons that are in physical proximity to them and this subset is

fairly constant from animal to animal [2,3]. These observations

raise the fundamental question in neuroscience: What are the rules

that govern nervous system connectivity and how are these rules

encoded in the genome?

The development of the nervous system can be divided into

three phases: The generation of the correct cells in the right

temporal and spatial locations, the outgrowth of nerve processes,

and the formation of synapses. The first phase is determined by the

lineage of the organism, which positions the neurons at the right

temporal and spatial locations. The second phase depends mostly

on the growth cone which migrates through the animal, spinning

out the nerve process behind it. The third phase depends on short

range communication and is feasible only between neurons that

are in physical proximity. All of these phases show a high degree of

specificity [1,2].

Here, we focus on the third phase in which a neuron ‘‘chooses’’

its synaptic partners from among the neurons that are in physical

proximity to it. A classical hypothesis for this phase with many

empirical proofs is Sperry’s chemoaffinity hypothesis [4–6], which

states that the wiring is ‘‘activity-independent,’’ i.e., that each

neuron links to a postsynaptic target by selective attachment

mediated by specific chemical molecular identifiers. These

molecular identifiers are encoded in the genome [7], label the

neurons, and determine their chemical affinity. Candidate genes

which may constitute the molecular identifiers are the Dscam gene

in drosophila [8] and the Protocadherin (Pcdh) proteins in humans

[9]. In C. elegans, the most unequivocal proof for the existence of

such molecular identifiers was demonstrated for a single neuron

(HSNL) [10], where it was shown that the transmembrane

proteins syg-1 and syg-2, members of the immunoglobulin

superfamily, bind together and guide the neuron to form the

correct synapses.

The relationship between connectivity and gene expression in C.

elegans was recently explored in two studies. Kaufman et al. [11]

was the first study to demonstrate a correlation between gene

expression and neuronal connectivity using a covariation corre-

lation analysis. They also showed that the expression signature of

each neuron can be used to predict its outgoing connectivity

signature using the k-nearest neighbors method, i.e., neurons that

express similar sets of genes tend to choose similar sets of synaptic

partners. A similar result was separately shown for the incoming

connectivity. They used feature selection to find a small set of

genes whose expression carries most of the neuronal connectivity

information. However, their approach does not provide predic-

tions on the way in which these genes interact to mediate synaptic

connectivity.
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In a closely related study, Varadan et al. [12] applied an entropy

minimization approach to identify sets of synergistically interacting

genes whose joint expression pattern predicts the existence of a

synapse with minimum uncertainty. They provide a single rule,

composed of two genes in the presynaptic region and two genes in

the postsynaptic region whose joint expression predicts the existence

of a synapse with minimum uncertainty. This rule achieved

significantly smaller entropy than that expected by chance, but its

predictive ability was not examined in a cross-validation scheme.

A common feature in both of the above studies [11,12] is the

attempt to predict the formation of a chemical synapse between

any pair of neurons in the worm based on the expression pattern

of the genes, regardless of their spatial location. Here, we propose

to integrate the spatial locations of neurons into this prediction

task, by limiting the predictions to pairs of neurons that are certain

to be in physical proximity to each other in the worm’s body (since

they are connected by chemical or electrical synapses). By doing

so, we shift the focus from genes whose expression affects synaptic

connectivity through mechanisms such as lineage, axonal guidance

and neuronal migration to genes whose expression has a role in the

crosstalk of the neurons in the final stage of the chemical synapse

formation when neurons identify their designated partners.

Our study has two complementary goals. First, we wish to

explore whether the gene expression signature of the neurons

carries significant information on the subset of adjacent neurons

that are chosen as their postsynaptic partners. Second, we wish to

find a subset of genes and specific rules of interactions among them

that with high confidence predict the choice of chemical synaptic

partners. We combine the gene expression patterns of neurons

with the neuronal wiring diagram, and apply a probabilistic

learning algorithm for detecting the subset of relevant genes and

their combinatorial logic, while incorporating the physical

proximity of the neurons.

Our results confirm that neuronal gene expression can be used

to accurately predict the choice of synaptic partners and that only

a few genes with specific interaction patterns are sufficient to make

these predictions. We suggest that this small number of genes

imply that there may be a general genetic mechanism that wires

the nervous system of the worm and that deeper understanding of

this mechanism may contribute to the understanding of the

development of nervous systems in higher organisms.

Results

Our goal is to model the dependence of the chemical synapse

formation on the expression patterns of the genes in the neurons.

To this end, we introduce a variable representing the chemical

synapse formation between neurons and try to predict its value

based on a stochastic logical function of the expression of the genes

in both the presynaptic and postsynaptic neurons. We chose a

model that is based on a probabilistic decision tree, which uses the

expression pattern of genes in adjacent neurons to regress upon the

chemical synapse formation variable. This model has two

important virtues which make it suitable for our task. First, it

permits context specific independencies: rather than maintaining a

complete tree with all the possible splits for gene expression levels,

it maintains only the branches which are relevant. For example,

consider a simple mechanism of lock-and-key molecular identifiers

such that only when the presynaptic neuron expresses a lock

molecule and the postsynaptic neuron expresses a key molecule, a

synapse would be formed between them (Figure 1A). However, if a

neuron does not express the lock then it will not form a synapse

onto its neighbors, regardless of the expression of the key. Thus,

the decision tree branch that corresponds to the scenario in which

the lock is not expressed in the presynaptic neuron should not be

split again by the key expression in the postsynaptic neuron

(Figure 1B). In this case, in the context in which the lock is not

expressed in the presynaptic neuron, the formation of a synapse

between adjacent neurons is independent of the expression of the

key in the postsynaptic neuron. This way, the context specific

independencies reduce the number of model parameters to only

those that are relevant, making the model both more intuitive to

interpret and easier to robustly learn from the data.

The second virtue of our model is its probabilistic nature, which

is important given that both the wiring diagram and the available

gene expression patterns are crude and noisy [11]. In addition,

although largely constant, the wiring diagram between animals

displays some variability, which may be a consequence of a

nondeterministic selection of neuronal partners based on their

chemical affinities or a consequence of other mechanisms of

synaptic plasticity such as Hebb law for activity-dependent

synaptic formation [13]. For these reasons, a probabilistic model

seems appropriate, since it can account for the noise and inherent

variability in the problem.

Our probabilistic decision tree is an instantiation of a

probabilistic graphical model, or Bayesian network. Specifically,

we chose the tree-structured conditional probability distribution

(tree-CPD) that was introduced by Friedman and Goldszmidt

[14]. This tree-CPD assigns a conditional probability to every leaf.

Thus, every pair of neighboring neurons is mapped to a single leaf

based on the genes that they express and the probability of synapse

formation between them is obtained from that leaf. For example,

in the tree-CPD of Figure 4F, if the postsynaptic neuron expresses

hmr-1 and the presynaptic neuron does not expresses npr-1, then

the probability of chemical synapse in this direction is 0.92. This

probability is independent of akt-1, glr-1, cdh-3, osm-6, and unc-4,

although these genes affect the probability of chemical synapse

formation in other contexts.

We use both the gene expression signature of the neurons and

the synaptic connectivity network to learn the model. Since many

genes have nearly identical expression patterns, we clustered the

neuronal expression patterns of the 251 genes in the dataset into

133 expression classes, thereby removing redundancies in the

dataset (see Materials and Methods section). Recall that we wish to

focus on the last phase of synaptic connectivity, in which neurons

perform crosstalk with each other in order to correctly choose their

Authors Summary
Synaptic wiring in the nematode Caenorhabditis elegans is
largely invariant between individuals, suggesting that this
wiring is genetically encoded. This is in essence the
chemoaffinity hypothesis suggested by Roger Sperry.
However, proving this hypothesis in model organisms
and detecting the identities of the genes that determine
the presence or absence of synaptic connections is a major
challenge. C. elegans provides a unique opportunity to
examine this hypothesis due to the availability of both its
neuronal wiring diagram and neuronal gene expression
map. In this study we show that the neuronal gene
expression profiles can be used to predict the subset of
adjacent neurons that each neuron will connect to with
good accuracy. We further identify a small set of putative
genes on both sides of the synapses that interact in a
combinatorial fashion and mediate the neuronal partner
selection process. The modular design in which a small set
of components is reutilized throughout the network is
common with other known biological systems and raises
the possibility of a similar design in neuronal networks of
more complex organisms.
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designated synaptic partners. Thus, ideally, we should choose

every ordered pair of neurons that are spatially proximal (such that

a chemical synapse could be created between them) at some stage

of development as an example to learn from. However, lacking

detailed geometric coordinates of the neuronal processes, we use

the connectivity pattern itself to approximate the physical

proximity of any two neurons. Specifically, we define two neurons

as being in the same neighborhood if they are connected by a

chemical synapse in either direction or by an electrical synapse

(gap junction). According to this definition, neurons in the same

neighborhood are certainly close enough to form synapse in either

direction (Figure 2). Our approximation may miss negative

examples in cases where two neurons that are close enough to

form chemical synapse do not form any synapse in either

direction. To further validate that our results are not biased due

to this approximation, we compared them (below) to the results

achieved by applying the same learning process under a more

relaxed assumption according to which two neurons are

considered spatially proximal if they are both connected by an

electrical or chemical synapse to each other or to another neuron

in the network.

To learn the tree-CPD model, we used a Bayesian score [15]

and a two phase tree-CPD construction heuristic [14]. The

Bayesian score exhibits a tradeoff between the fit to the data and

the complexity of the model, a desirable property that prevents

overfitting. The two phase tree-CPD construction heuristic is

designed to prevent the learning process from getting stuck in local

minima by scanning the space of tree-CPDs in a way that allows

temporary reduction of the score (see Materials and Methods

section).

We first tested whether the model learned from this data indeed

demonstrates that the gene expression signature of the neurons has

predictive power regarding the subgroup of adjacent neurons that

will be chosen as the postsynaptic partners of every neuron. We

used the tree-CPD as a classifier which predicts the presence or

absence of a synapse for each ordered pair of neurons, and

extended it by AdaBoost [16], a boosting algorithm designed to

improve the accuracy of classifiers. In general, AdaBoost is an

iterative algorithm that iteratively learns a new tree-CPD on a

reweighed dataset, where the reweighting in each learning

iteration is done in a way that shifts the focus from the correctly

classified examples (easy examples) to the wrongly classified ones

(hard examples). The final classifier is a weighted majority vote of

all of the tree-CPDs that were learned (see Materials and Methods

section). To assess the quality of the classifier, we compared its

accuracy using the standard area under the ROC curve (AUC) for

5-fold cross-validation, to the accuracy obtained for randomized

datasets, in which neurons identities were shuffled [11,12], or in

which the examples signs (presence or absence of a synapses) were

shuffled (see Materials and Methods section).

We find that our boosted tree-CPD classifier predicts the

formation of synapses with an AUC of 0.8460.008, significantly

better than the AUC of 0.7160.005 achieved on the randomized

datasets (Figure 3). The use of boosted decision trees allows us to

Figure 1. Context Specific Independencies Reduce the Complexity of the Model and Make It Easier To Interpret. (A) A complete
decision tree for the simplified example of a lock-and-key molecular identifiers mechanism: only when the presynaptic neuron expresses a lock
molecule and the postsynaptic neuron expresses a key molecule, a synapse is formed between them. (B) A simpler decision tree that captures the
same logic but exhibits context specific independence. In the context in which the lock is not expressed in the presynaptic neuron, the formation of a
synapse between adjacent neurons is independent of the expression of the key in the postsynaptic neuron.
doi:10.1371/journal.pcbi.1000120.g001

Genes in C. elegans Mediate Neuronal Wiring
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achieve high performance with shallow tree-CPDs, compared to

using nonboosted classifiers (Text S1 and Figure S1). This high

performance is independent of the maximal depth of the tree and

requires less than 30 boosting iterations to reach maximal

performance (Figure S2).

The performance obtained for repeating the same experiment

under the relaxed proximity assumption described above was

AUC of 0.7860.01 for the real dataset compared to AUC of

0.6460.008 for the randomized dataset. Although the perfor-

mance on both the real and randomized datasets has decreased

(due to the 10 fold increase in the number of negative examples

while maintaining the same number of positive examples as

before), the significance of the results has remained the same.

These results therefore show that a probabilistic classifier can

predict neuronal connectivity from neuronal expression patterns

with good accuracy, thereby achieving the first goal of our study.

We next asked whether we can identify a set of genes and

specific rules of interactions among them that explain the choice of

chemical synaptic partners with high confidence. The model

learned above provides predictions about such putative genes with

specific interaction patterns. However, the set of these putative

genes and the way they interact may vary for different divisions of

the data into train and test sets, raising the question of how

confident we are in the set of rules that were learned. To examine

the confidence of the rules that were learned, we used a standard

nonparametric bootstrap [17] approach of tree-CPDs, in which at

each bootstrap iteration we learn a tree-CPD on resampled data

and in the end examine the number of times in which a rule was

learned. Thus, after N bootstrap iterations we gather N tree-CPDs,

and the confidence of each rule can then be estimated by the

fraction of tree-CPDs that contain it (we used N = 1000). We

repeated the bootstrap procedure without restricting the maximal

depth of the learned tree, and with different constraints on the

maximal depth of the leaves, from 1 to 6. Figure 4A–E shows the

most confident rules that we learned with a confidence greater

than 0.3. When the maximal depth was allowed to be greater than

5, no high confidence rules were learned. Figure 4F shows how all

of these rules can be concisely combined into one single tree-CPD.

The fact that our approach extracted a set of rules with high

confidence and that they can be concisely represented by a single

decision tree demonstrates that we can indeed identify a subset of

genes and interaction rules among them that predict neuronal

connectivity. We next examined the specific set of gene clusters

that were extracted in high confidence rules. Note that each cluster

Figure 2. The Neural Network of the C. elegans Provides Examples for Learning the Patterns of Synaptic Wiring. (A) A standard
schematic of the worm’s head (taken from Wormatlas [43]) with a network depiction of a part of C. elegans’s neural network on the right side of the
nerve ring. Neurons are in their real relative location (data taken from the authors of [44]). (B) An example of a neighborhood of one neuron. The
neuron AIBL introduces all types of combinations of synaptic relations with other neurons. For each such combination one neuron has been chosen
to demonstrate it. For example the neuron RIVL is the representative of the group of neurons that forms only electrical synapses with AIBL. Each cross
on a synapse represents one more additional identical synapse that was observed. The neighborhood of a neuron is defined as the group of neurons
that forms a synapse with it (chemical or electrical synapse in either direction). Neurons that are in the same neighborhood must be in spatial
proximity in the worm’s body. A positive example is created when a neuron ‘‘chooses’’ to be presynaptic to another neuron in its neighborhood and
a negative example is created when a neuron ‘‘chooses’’ not to be presynaptic to another neuron in its neighborhood.
doi:10.1371/journal.pcbi.1000120.g002
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is represented by a single gene but may contain several genes. We

examine all the genes in each cluster since our model cannot

distinguish between them (see Discussion section).

The most confident cluster of genes that affect the chemical

synapses is in the root of our resulting tree (Figure 4F). It is

represented by the hmr-1 gene. This cluster contains two genes that

have a similar expression pattern in the neurons of the worm.

These genes are unc-55 and hmr-1. Unc-55 encodes a nuclear

hormone receptor. It was shown in [18] that unc-55 is essential for

the producing the synaptic pattern that distinguishes ventral D

motor neurons from the dorsal D motor neurons. Hmr-1 gene

encodes two isoforms of a classical cadherin that contain

extracellular cadherin and a highly conserved intracellular

domain. Cadherin superfamily molecules are known to be

involved in many biological processes, such as cell recognition,

cell signaling, cell communication, morphogenesis, angiogenesis,

and possibly even neurotransmission [19]. Furthermore, in

humans, the Protocadherins, which are a subfamily of the

Cadherin superfamily, have been proposed to constitute the

molecular identifiers of Sperry’s chemoaffinity hypothesis [9].

Indeed, this gene is predicted to function as a calcium-dependent,

homophilic cell–cell adhesion receptor. It was also predicted to be

required for mediating cell migrations and for fasciculation and

outgrowth of a subset of motor neuron processes [20].

The akt-1 gene cluster appears in the first level of the resulting

tree in the context where the hmr-1 gene is not expressed. It

contains both the akt-1 and the akt-2 genes which encode an

ortholog of the serine/threonine kinase Akt/PKB that functions to

regulate processes such as dauer larval development and salt

chemotaxis learning [21,22]. In addition, they genetically interact

with the insulin signaling pathway which was shown to be essential

for ensuring that the nervous system is wired correctly during

development in Drosophila [23]. The rest of the clusters that are

part of high confident rules contain only one gene which is also the

representative of these clusters.

In the context where the hmr-1 gene is expressed we find the npr-

1 gene. It encodes a predicted G protein-coupled neuropeptide

receptor that is homologous to the mammalian neuropeptide Y

receptor. Npr-1 affects some aspect of unc-6/netrin-mediated

branching of motor neurons, as strong npr-1 mutations can

suppress abnormal migration of ventral nerve cord neurons

induced by overexpression of unc-6 lacking domain C [24].

As we continue to traverse over the resulting tree, we encounter

the cdh-3 gene next. It encodes a member of the cadherin

superfamily. Unlike the hmr-1 gene it encodes a nonclassical

cadherin (fatlike cadherin) that has a very large extracellular

region. Cdh-3 was shown to affect morphogenesis of tail epithelia

and excretory function [25]. Cdh-4, the only other fatlike cadherin

gene in the C. elegans genome was shown to control axon guidance,

cell migration and pharynx development [26].

Further down the tree, the glr-1 gene encodes an AMPA

ionotropic glutamate receptor subunit. Glr-1 activity is required for

mediating some behavioral responses [27]. Its expression is

dependent on the homeodomain protein encoded by unc-42 [28]

that is required for axonal pathfinding of neurons. In wild-type

worms, the axons of AVA, AVD, and AVE lie in the ventral cord,

whereas in unc-42 mutants, the axons are anteriorly, laterally, or

dorsally displaced, and the mutant worms have sensory and

locomotory defects [29].

The osm-6 gene encodes a protein that is localized to cytoplasm,

including processes and dendritic endings where sensory cilia are

situated. Mutation in this gene causes defects in the ultrastructure

of sensory cilia and defects in chemosensory and mechanosensory

behaviors [30]. It was shown that sensory activity affects sensory

axon development [31] and that disruptions to this activity may

alter neuronal connectivity [32].

Finally, in the last level of our resulting tree we find the unc-4

gene. It encodes a homeodomain transcription factor with

orthologs in Drosophila and vertebrates. A mutation in the unc-4

gene alters the pattern of synaptic input to one class of motor

neurons in the C. elegans ventral nerve cord. It was shown that unc-4

is required for establishing the identity of the A class motor

neurons DA and VA, and is thus required for movement, axon

guidance, and synapse formation [33].

Thus, examining the single tree that contains the rules that were

extracted with high confidence (Figure 4F), we find that its set of

genes or their orthologs in other species have all been previously

implicated as having a direct or indirect role in neuronal

connectivity, which combined with the robustness with which

they are predicted in our tree, increases our confidence in their

role in the process.

Discussion

In this study we performed a systematic search for genes that

mediate the last phase of chemical synaptic partner selection, while

incorporating geometrical constraints on neuronal connectivity.

We demonstrated that combination of expression patterns can be

used to predict chemical synapse connectivity with good accuracy.

We highlight specific genes and provide the combinatorial logic by

which these genes may interact to specify the formation of a

chemical synapse between neighboring neurons.

A key observation of our study is that neuronal wiring can be

predicted by logical combination of a small number of genes. This

finding was partly biased by the search for small decision trees but

the fact that it achieves good accuracy supports its validity. An

Figure 3. Summary of the Prediction Performance as a
Function of the Maximal Depth of the Tree-CPD after 30
AdaBoost Iterations. Standard deviation of the real data was
calculated on 50 iterations of 5-fold cross validation, each time for a
different division of the data to train and test sets. Standard deviation of
the random models was calculated on 50 iterations of 5-fold cross
validation, each time for a different shuffling of the data.
doi:10.1371/journal.pcbi.1000120.g003

Genes in C. elegans Mediate Neuronal Wiring
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Figure 4. The Highest Confidence Rules That Were Learned in Bootstrap of Tree-CPDs. The highest confidence rules that were learned in
bootstrap of tree-CPDs of maximal depth of one (A), two (B), three (C), four (D), and five (E). The confidence of each rule is written in parentheses. (F)
The final, most confident, tree-CPD for the chemical synapse. This tree was constructed by combining the rules from (A–E).
doi:10.1371/journal.pcbi.1000120.g004

Genes in C. elegans Mediate Neuronal Wiring
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alternative design could have used hundreds or thousands of

different genes to achieve the same connectivity, for example, one

gene for each synapse. Our result is supported by the observation

of White [2] that if a neuron is for some reason (mutation or

variation between isogenic individual) created in a slightly different

surrounding than usual with a slightly different set of close

neurons, it creates a different set of synapses. If every synapse was

encoded in the genome independently by an independent set of

genes, this would not be the case. The modular design we find is

similar to other biological systems, such as signal transduction

cascades, where the mapping between signal inputs to the cells and

their response in highly different pathways and cells is carried out

by a small set of core modules [34]. It may be that this modular

design, observed here in the context of neuronal wiring, is more

optimal or evolvable than the alternatives. It also raises the

possibility that the genetic mechanism for neuronal wiring in C.

elegans is rather similar to the mechanism in more complex

organisms, but this hypothesis should of course be reexamined

when similar data becomes available for more complex organisms.

Despite its predictive power, our approach has several

limitations. Currently, both the connectivity network and the

gene expression pattern are crude and noisy [11] and some

important pieces of information are missing. The most prominent

limitation of our model is its inability to infer the causal

relationship between gene expression and synapse formation. In

the absence of temporal or interventional data, our model cannot

distinguish between genes that are responsible for chemical

synaptic specificity and genes that are over- or underexpressed

in either side of a chemical synapse due to its formation. Another

limitation of our model is that it cannot distinguish between genes

that are directly responsible for synaptic specificity and genes that

have only indirect affect on this process within the same gene

cluster. This distinction can sometimes be made manually by

examining the expression patterns of the genes in nonneuronal

cells or by examining the relevant literature.

One of the strengths of our approach is that it can be easily

extended to deal with many types of additional data. For example,

the gene expression in individual cells is measured by GFP

fluorescence or by immunostaining. These levels are of course not

binary (on or off), but they appear as such in the single database

that is currently available [11]. Future large-scale work could solve

this problem by systematic detection of the continuous expression

pattern of genes in a uniform way [35,36]. By minor modifications

to the tree-CPD representation and learning procedure, we can

apply our method to learn nonbinary tree-CPDs and automati-

cally detect the thresholds on the expression level by which a split

should be made.

An interesting observation by White et al. [3] is that the neuron

groups AVD, AVE and AVB all have extensive synapses onto

AVA along the cord (each neuron group consists of neurons with

similar morphologies and connectivity patterns and denoted by an

arbitrary three-letter name [3]). However, in the nerve ring,

processes from these cells do not form such synapses even though

they are accessible to AVA (i.e. are adjacent to its processes). One

possible explanation for this is time. It is possible that the genetic

signal for synapse formation is changed at a specific time point

during development and that this change affects only newer

processes. Another possible explanation could be signals that are

localized to specific regions of the cell. Knowing the specific time

each synapse was created and the specific adjacent set of neurons

in conjunction with the specific (preferably, intracellular) expres-

sion pattern of all the genes in the neighborhood at that specific

time would lead to the most comprehensive and complete picture.

All of this data could be easily incorporated into the data instances

from which we learn with relatively minor changes. Such timing

information may also address the problem of cause and effect that

currently cannot be disentangled by our approach. Solving this

problem would lead to the most convincing proof for the

determination of neuronal wiring by gene expression patterns in

C. elegans.

Materials and Methods

Data and preprocessing
This work combines two types of input data: the gene expression

signature of the neurons and the synaptic connectivity network. For

the Boolean single-cell gene expression signature of the neurons we

have used the data provided by Varadan et al. [12]. This data was

extracted from WormBase (http://www.wormbase.org version

WS180), the main public repository of the C. elegans’s genetic data,

using a stringent mining criteria and was manually curated.

The single-cell gene expression data in WormBase was gathered

from many studies that read the GFP levels from transgenic worms

in which a GFP gene was inserted downstream to the promoter of

the investigated gene or stained the worm with a specific protein

antibody in different developmental stages. This data is considered

crude and noisy due to inaccuracies in the gathering process of the

data from the animal and due to its discretization into a Boolean

expression of ‘‘on’’ and off’’.

As a preprocess stage we eliminated all the genes that were

expressed in less than 2% of the neurons since they carry little

information for our computation. In order to avoid instability of the

results due to genes that have very similar expression pattern over

the neurons, the remaining 251 genes were clustered using

hierarchical clustering. First the Hamming distance (the percentage

of neurons that disagree on the expression) between every pair of

expression patterns was calculated, then a nearest neighbors

algorithm was used to construct a linkage tree. This tree was

divided into 133 expression classes by applying a cutoff of 0.8 to the

inconsistency coefficient [37] of its edges. The average Hamming

distance between different genes in the same class was 1.7% and

only 5% of the expression classes contain more than 4 genes. The

typical expression pattern of an expression class that contains more

than one gene was set to be the same as the expression pattern of the

gene that has the minimum average Hamming distance from all

other genes in this class. The final gene set and their assignment to

expression classes are listed in Table S1.

For the synaptic connectivity network we used a version of the

pivotal works of White et al. [3] and Hall and Russell [38] that was

recently compiled by Chen et al. [39]. This version contains the

complete connectivity of 280 nonpharyngeal neurons and it is

publicly available at Wormatlas (http://www.wormatlas.org/). We

have used this synaptic connectivity network to build the set of

weighted data instances from which we learn our model. The weight

of a positive data instance (i.e. data instance for positive example) is

proportional to the number of chemical synapses that were observed

in this direction, whereas the weight of the negative data instance is

set to 1. The biological motivation for the use of weights is that the

number of identical synapses in the same direction is positively

correlated with its invariability between isogenic individuals.

Specifically, some of the small, single synapses are not present in

some individuals and therefore may be less significant [3] while on

the other hand a broad core of connections that are constant in all

the individuals in the population includes most of the strong

synaptic connections containing many synapses [1].

To obtain balance between the weights of the positive and the

negative data instances, the weights of the positive data instances

were normalized such that their sum would equal the sum of
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weights of the negative data instances. As a result, the final data

instances set contained 4574 weighted examples composed of 48%

positive and 52% negative, each carrying 50% of the total weights.

Learning the model
Learning the tree-CPD model from the input data requires two

components. The first is a scoring scheme that measures the

goodness of fit of the model and enables the comparison of two

different models. The scoring method that we used is the Bayesian

score [15]. This score is a standard and a principled way to

tradeoff model complexity and fit to data, thus it relaxes the

necessity of Varadan et al. in [12] to predetermine the number of

expected interacting genes. For detailed explanation about the

Bayesian score and comparison to the maximum likelihood score

which is a scoring method that does not tradeoff model complexity

and fit to the data see Text S2 and Figure S3.

The second component that is required is a search heuristic to

scan the exponentially large model space in order to find the highest

scoring model. We have adopted the approach of Friedman and

Goldszmidt [14] which was inspired by Quinlan and Rivest [40].

According to this approach, the tree is learned in two phases. In the

first phase, the tree is grown in a top-down fashion, starting from the

trivial empty tree and growing till the maximal tree is learned. In

each step of this phase, we split one leaf of the tree using the variable

that induces the best scoring tree. During this process there might be

some splits that will reduce the score of the tree, but we do not stop if

it happens, since further growth of the tree might compensate for

this temporary reduction of the score. In the second phase, we trim

the tree in a bottom-up manner. We start from the leaves and climb

to the root, checking for each inner node of the tree if the

replacement of the subtree rooted at it with an empty tree will

increase the score. If it does, we trim the tree at that node and

continue. The downhill splits we are willing to take during the first

phase prevent the learning process from getting stuck at every local

minima of the search space, like most of the greedy search heuristics

for learning decision trees [14].

We have used the standard boosting algorithm AdaBoost

introduced by Freund and Schapire in 1995 [16] to improve the

classification accuracy of the tree-CPD. The main idea of

AdaBoost is to change the weights of the training data according

to the success in their classification. In each round, the weights of

incorrectly classified examples are increased so that in the next

round, the tree-CPD has to focus on the hard examples. The final

combined classifier is a weighted majority vote of all the tree-CPDs

from all the iterations. A pseudocode that summarizes this

procedure is given in Protocol S1. An important advantage of

AdaBoost compared to other methods such as neural networks

and support vector machines is that it works well without fine

tuning and no sophisticated nonlinear optimization is necessary. It

also tends not to overfit the data [41,42]. In fact, Adaboost in

conjugation with decision trees was described as the best ‘‘off-the-

shelf’’ classifier in the world [41].

Evaluating the model
The performance of the model was measured using a standard

5-fold cross-validation scheme. In this procedure, we randomly

partitioned the data into five equal parts. We then made some

small adjustments to the partition in order to eliminate

dependencies as described below and learned a model on each

of the five subsets of four parts and tested its performance on the

held out subset. The final performance estimator is an average of

the performance of the five estimators obtained.

To avoid dependencies between the train and test sets that

might bias the results, the partition of the data into train and test

sets must consider the symmetries of the connectivity diagram of C.

elegans since symmetrical neurons tend to form similar connections

[1] and often express similar sets of genes. The main symmetry

axis in the worm is the left–right axis and the secondary symmetry

axis which appears especially in the pharynx is the dorsal–ventral

axis. Thus, for some neurons there is even a 6-fold symmetry! In

addition, for several neurons (especially for motorneurons) there is

longitudinal duplication throughout the ventral and dorsal cord.

The nomenclature of the neurons suggested by white et al. [3]

captures these symmetries. E.g. the IL1 group of neurons consists

of the symmetrical neurons: IL1DL, IL1DR, IL1L, IL1R, IL1VL

and IL1VR. The last two letters show the symmetry where D, V,

L, and R stand for Dorsal, Ventral, Left, and Right, respectively.

To eliminate the dependence of the train and test sets, Kaufman

et al. [11] used only the neurons from right side of the worm.

However, this approach does not eliminate dependencies of the

dorsal–ventral symmetry axis and the amount of data that remains

for learning is reduced significantly. We have used a different

approach, in which if (X,Y) is an example in the train set than

every pair of (X9,Y9), (X9,Y) and (X,Y9) will also be in the train set,

where X9 and Y9 are neurons that were assigned by white et al. to

the same group of neurons as X and Y, respectively. This

approach uses all the data and eliminates the bias that might be

caused by the known symmetries.

Prediction accuracy of the model was measured by the standard

area under the receiver operating characteristic (ROC) curve. The

ROC curve plots the fraction of true positives versus the fraction of

true negatives for a binary classifier, while its discrimination

threshold varies. The area under the ROC curve (AUC) is a

measure that intuitively can be interpreted as the probability that

when we randomly pick one positive and one negative example,

the classifier will assign a higher score to the positive example than

to the negative one.

Statistical significance of the prediction performance was

calculated against two empirical null distributions: the shuffled

expression and the shuffled connectivity distributions. The first

was constructed by repeating the prediction procedure 50 times,

each time with neuronal identities reshuffled. This empirical null

distribution was used in previous studies [11,12]. The motivation

behind this test is to evaluate whether the prediction accuracy

obtained for the real data can be attributed to real dependence

between the expression profiles of the neurons and synaptic

connectivity, or if it is a result of the properties of the input data

such as the number of different expression patterns, the degree

distribution of the network, etc. Indeed, the best AUC that was

achieved for this empirical null distribution was 0.63 (Figure 3).

This AUC is significantly above the 0.5 score that a pure random

guess would achieve. This means that even if there was no real

relation between gene expression and chemical synapse formation,

it is possible to find a model that is this good just by chance due to

the properties of the input data. To better understand this, think

of the extreme case of a starlike network in which there is one

neuron that is postsynaptic to all other neurons in the network and

that there are no other synapses in the network. If, after the

shuffling of the identities of the neurons, this single neuron

expresses a gene X that no other neuron expresses (it is not

unreasonable if there are enough, different, gene expression

patterns) then the rule: ‘‘if a neuron expresses gene X than it will

be postsynaptic to every other neuron in its neighborhood’’ will

have strong evidence in both the train and the test sets, regardless

of the partition of the examples into train and test. As a

consequence the classifier that is learned on the train set will

achieve AUC that is greater than 0.5 on the test set, even though

the identities of the neurons were shuffled.
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The second distribution was constructed by repeating the

prediction procedure 50 times, each time with the signs of the

examples reshuffled, while maintaining the same amount of

positive and negative examples for each neuron. In other words,

each neuron chooses to create a chemical synapse to a random

subset of the neurons in its neighborhood while the size of this

random set is equal to the number of neurons it chooses in the real

data. The motivation behind this distribution is to test whether or

not each neuron chooses to form synapses with a subset of its

neighboring neurons based on their gene expression profile. The

significance of the result with respect to this second empirical null

distribution is generally lower (Figure 3), since much of the relation

between gene expression and synaptic connectivity from the real

data is maintained due to the limited shuffling (there is a

correlation of ,0.6 between the real data and each shuffled data

from this distribution).

To evaluate the confidence of the rules that we learned we used

a nonparametric Bootstrap. According to this method, we

generated many resampled versions of the data and learned a

model from them. This way we collected many reasonable models

for the real data. The confidence of a rule is the percentage of

models that agree with it. Each resampled version of the data was

generated by resampling the data instances with replacement for m

times, where m is the number of data instances in the data,

therefore it is expected to contain about 63.2% of the data

instances and the rest are duplicates. A pseudocode that

summarizes this procedure is given in Protocol S2.

The confidence of complex rules tends to be smaller relative to

simpler rules due to several reasons: First, the deeper the tree-

CPD, the larger the search space is and the probability to learn

exactly the same rules in different bootstrap iterations decreases.

Second, decision trees are inherently unstable [41], i.e. slight

perturbation of the data may lead to a different learned tree

especially when the tree is deep. Third, the gene expression data is

highly correlated. Although we aggregated highly correlated gene

expressions into expression classes there still exists correlation

between these expression classes. Closely related expression classes

may switch roles in tree-CPDs that are learned on different

resampling of the data.

Supporting Information

Text S1. Comparison between the Performance of Boosted and

Nonboosted Tree-CPDs.

Found at: doi:10.1371/journal.pcbi.1000120.s001 (0.03 MB

DOC)

Text S2. The Bayesian Score and the Maximum Likelihood

Score.

Found at: doi:10.1371/journal.pcbi.1000120.s002 (0.06 MB

DOC)

Protocol S1. Pseudocode for Boosting Tree-CPD Using Ada-

Boost.

Found at: doi:10.1371/journal.pcbi.1000120.s003 (0.07 MB

DOC)

Protocol S2. Pseudocode for Confidence Evaluation Using

Nonparametric Bootstrap.

Found at: doi:10.1371/journal.pcbi.1000120.s004 (0.03 MB

DOC)

Figure S1. Summary of the Prediction Performance as a

Function of the Maximal Depth of the Tree-CPD without

Boosting. The depth of a tree-CPD with unconstrained maximal

depth is determined automatically by the Bayesian score and the

tree-CPD constructing heuristic. Standard deviation of the real

data was calculated on 50 iterations of 5-fold cross validation, each

time for a different division of the data to train and test sets.

Standard deviation of the random models was calculated on 50

iterations of 5-fold cross validation, each time for a different

shuffling of the data.

Found at: doi:10.1371/journal.pcbi.1000120.s005 (0.17 MB TIF)

Figure S2. The Prediction Performance of a Boosted Tree-CPD

with Maximal Depth of 2 as a Function of the Number of

AdaBoost Iterations. Standard deviation of the real data was

calculated on 50 iterations of 5-fold cross validation, each time for

a different division of the data to train and test sets. Standard

deviation of the random models was calculated on 50 iterations of

5-fold cross validation, each time for a different shuffling of the

data. Similar results are obtained for different maximal depths of

tree-CPD (data not shown).

Found at: doi:10.1371/journal.pcbi.1000120.s006 (0.21 MB TIF)

Figure S3. Classifier Learned with Bayesian Score Is Less Prone

to Overfitting Than Classifier Learned with Maximum Likelihood

Score. Comparison between the performance on the train and test

sets of tree-CPD classifier that was learned using the maximum

likelihood score (left) and to that was learned using the Bayesian

score (right) as a function of the maximal depth of the leaves. The

performance is measured as the percentage of correctly classified

examples. Standard deviation was calculated on 50 iterations of 5-

fold cross validation, each time for a different division of the data

to train and test sets.

Found at: doi:10.1371/journal.pcbi.1000120.s007 (0.26 MB TIF)

Table S1. Assignment of Genes to Expression Classes.

Found at: doi:10.1371/journal.pcbi.1000120.s008 (0.03 MB XLS)
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