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Abstract: The hepatitis delta virus (HDV) is the smallest known human virus, yet it causes great harm
to patients co-infected with hepatitis B virus (HBV). As a satellite virus of HBV, HDV requires the
surface antigen of HBV (HBsAg) for sufficient viral packaging and spread. The special circumstance
of co-infection, albeit only one partner depends on the other, raises many virological, immunological,
and pathophysiological questions. In the last years, breakthroughs were made in understanding
the adaptive immune response, in particular, virus-specific CD4+ and CD8+ T cells, in self-limited
versus persistent HBV/HDV co-infection. Indeed, the mechanisms of CD8+ T cell failure in persistent
HBV/HDV co-infection include viral escape and T cell exhaustion, and mimic those in other persistent
human viral infections, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), and
HBV mono-infection. However, compared to these larger viruses, the small HDV has perfectly
adapted to evade recognition by CD8+ T cells restricted by common human leukocyte antigen (HLA)
class I alleles. Furthermore, accelerated progression towards liver cirrhosis in persistent HBV/HDV
co-infection was attributed to an increased immune-mediated pathology, either caused by innate
pathways initiated by the interferon (IFN) system or triggered by misguided and dysfunctional T
cells. These new insights into HDV-specific adaptive immunity will be discussed in this review and
put into context with known well-described aspects in HBV, HCV, and HIV infections.

Keywords: hepatitis D virus (HDV); viral escape; CD8+ T cells; CD4+ T cells; T-cell exhaustion;
immune-mediated pathogenesis

1. Introduction

The hepatitis delta virus (HDV) is the smallest known human virus and is a satellite
virus of hepatitis B virus (HBV). It was first discovered in 1977 in patients with severe HBV
infection [1]. Since then, it has been ascertained that HBV/HDV co-infection causes the
most severe form of viral hepatitis [2]. The RNA genome is single-stranded and circular,
with a high guanosine/cytidine content, triggering back-folding through intramolecular
base-pairing and the formation of a rod-like structure [3,4]. Together with two isoforms of
the hepatitis delta antigen (HDAg), which wrap the RNA genome, the ribonucleoprotein
(RNP) complex is formed [5]. The large (L)-HDAg (27 kDa) is generated through RNA
editing at the amber stop codon to code for tryptophan, causing a protein extension of
19 additional amino acids in comparison to the small (S)-HDAg (24 kDa) [6,7]. RNA editing
occurs later during the HDV life cycle, balancing between viral RNA replication and virion
assembly, whereas the latter is triggered through the L-HDAg [8–10]. The human DNA-
dependent RNA polymerase II (DdRP) performs HDV genome replication in a rolling-circle
manner, and thus genome replication is independent of the helper virus [11,12]. However,
for virion assembly, particle release, and cell entry, the RNP requires the envelope of HBV,
consisting of the three hepatitis B surface antigen (HBsAg) isoforms (small, S; medium, M;
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large, L) [13–15]. HBV and HDV enter the host cell via their receptor, sodium taurocholate
co-transporting polypeptide (NTCP) [16]. Recent studies indicate that surface glycoproteins
from HBV-unrelated viruses, such as hepatitis C virus (HCV), could mediate egress of HDV
particles, and thus act as a helper virus for HDV transmission [17]. However, screening of
HCV-positive donors for anti-HDV antibodies and HDV RNA found no evidence of HDV
infection in HCV mono-infected individuals, suggesting that HCV cannot promote HDV
transmission in humans [18,19]. In addition to the well-characterized extracellular spread
of HDV, cumulating evidence suggest that HDV also spreads through cell division in an
HBV-independent manner [20]. Yet, the clinical relevance of cell-division-mediated spread
remains to be determined.

It had been estimated that about 10% of the HBsAg-positive carriers are also HDAg-
positive [21]. Recently, meta-analyses have evaluated the number of patients with chronic
HDV infection more precisely, with numbers ranging from 12 million to 42 or even
72 million people worldwide [22–24]. HDV-infected individuals may be carriers of one out
of eight different genotypes (1–8), mainly determined by the geographical region where the
infection event occurred, except for genotype 1, which is distributed globally [25]. HDV
genotypes differ in their genome sequence by 19–40% and most of them can be further
subdivided into two to four sub-genotypes (a–d), characterized by an intersub-genotype
similarity of >84–90% across the entire genome [26]. HBV/HDV co-infection emerges either
as a simultaneous infection or as a superinfection of a previous HBsAg-positive carrier.
Simultaneous infection can lead to fulminant hepatitis or persistent infection; however, 95%
of patients resolve the infection [27]. In contrast, spontaneous clearance in superinfection is
rare, leading to viral persistence in 90% of cases [28,29]. Chronic HDV infection usually
leads to an accelerated progression to cirrhosis, an increased risk of liver decompensation,
and hepatocellular carcinoma in comparison to HBV mono-infection [30,31]. Until 2020,
the only treatment option for HBV/HDV co-infection was the off-label use of pegylated
interferon (pegIFN)-α. However, sustained virological response was merely achieved in
only 25% of patients [32,33]. Nucleos(t)ide analogues, such as tenofovir and entecavir, are
not effective against HDV, since they only target HBV DNA replication, but not HBsAg pro-
duction. In 2020, bulevirtide (BLV, formerly Myrcludex B) was approved in the European
Union, being the first therapy licensed to treat chronic HDV infection. BLV blocks viral cell
entry via NTCP by mimicking the preS1 receptor binding domain of HBsAg. BLV leads to
a reduction in HDV RNA levels and liver enzymes in the majority of patients; however,
treatment over several years may be necessary for viral clearance, stopping rules still need
to be defined, and treatment costs are extremely high.

Although there are additional novel treatment options for chronic HBV/HDV co-
infection on the horizon (reviewed recently in [34,35]), it is crucial to understand the
interaction of these viruses with the immune system in order to design and monitor future
treatment strategies. A specific focus of this review is the mechanisms that lead to the
failure of the immune system to clear HDV infection. Furthermore, we will discuss the
mechanisms of immune-mediated liver damage.

2. Innate Immunity

Unlike HBV, HDV is not invisible (“stealth”) to the innate immune system [36–38].
Different mouse models, in addition to cell culture systems and primary hepatocytes (PPH),
have demonstrated that HDV interacts with melanoma differentiation antigen 5 (MDA-
5), resulting in the production of interferon (IFN)-stimulated genes (ISGs) [39–43]. The
exact mechanisms by which MDA-5, the cytosolic RNA sensor of unusually structured
RNA, recognizes HDV RNA is not yet understood. Indeed, HDV replication and RNP
unpacking occurs in the nucleus, and thus HDV RNA should be shielded from MDA-5
detection [43]. Nevertheless, it was demonstrated that HDV infection in vitro and in vivo
leads to an upregulation of type I (IFN-β) and type III (IFN-λ) IFN, and their production was
reduced if downstream signaling molecules of the RIG-I-like receptors were inactivated [42].
Although cellular secreted IFN-β and IFN-λ initiated transcription of ISGs in vitro, HDV
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replication appeared to be resistant to the antiviral attack [43]. Of note, supernatant from
HDV-infected cells was sufficient to inhibit hepatitis C virus (HCV) replication in an HCV
luciferase reporter system [43]. Thus, HDV might have adapted to the IFN-activated state
in the liver by blocking or escaping the IFN system (reviewed in [44]). It even has been
suggested that some innate pathways support HDV replication productivity [40], since
the IFN system induces RNA-editing enzyme adenosine deaminase (ADAR), which is
required for RNA editing to generate L-HDAg, and hence enables viral morphogenesis [45].
It is important to note that MDA-5-mediated production of IFN and ISG induction also
contributes to a cytokine milieu that recruits professional antigen-presenting cells, and thus
enables priming of functional T cells [46].

3. Humoral Immunity

The humoral immune response appears to play a minor role in HBV/HDV co-infection
control, since antibodies against HDAg are presumably not neutralizing [47,48]. The
antibody response against HDAg appears to have a similar pattern compared to the
antibody response against the HBV core antigen (HBcAg) [49]. Upon HDV infection
(irrespective of simultaneous or super-infection), antibodies against the S- and L-HDAg
are detectable in the plasma in the first month after infection [50,51]. Interestingly, no
complete class switch from IgM to IgG antibodies appears; instead, plasma cells produce a
mixture of IgM and IgG anti-HDAg antibodies [49]. Both antibody types can be detected
during acute and chronic HDV infection and their levels decrease gradually after viral
clearance [49,51]. Therefore, anti-HDV antibodies serve rather as a diagnostic tool for a
past or current contact of a patient with the virus, rather than a marker for the course of
the disease [52]. In the past, before routine pan-genomic HDV-PCR analysis was available,
anti-IgM levels served as a marker for disease activity, as association of IgM levels with the
degree of histological inflammation was observed [53–55]. Of note, although evidence of
direct antiviral functions of antibodies is missing, a study from 1990 showed that 41% of
the L-HDAg amino acids were part of an immunogenic epitope when analyzed with serum
from patients with chronic HDV infection [56]. Hence, since only a minority of studies
have examined the diversity, function, and dynamics of the humoral immune response
against HDV, future studies using up-to-date methodology should clarify the role of B cells
and antibodies in HDV infection.

4. Cellular Adaptive Immunity

While a lot was already known about HDV molecular virology in the early 2000s,
only a few studies had assessed the immune response in HDV infection [57]. Still, it
had been assumed that the cellular adaptive immune response, consisting of CD4+ and
CD8+ T cells, would be necessary for HDV clearance, similar to what was suggested by
animal models, as well as data from other hepatotropic virus infections, e.g., HCV and
HBV [58,59]. In addition to that, the general notion that anti-HDV antibodies are not
protective, yet about 90% of individuals with simultaneous HBV/HDV infection clear the
infection spontaneously, indicated that T cells play a critical role in this process [27,60]. Most
of the insights gained on immune responses in HDV infection were from animal vaccination
models, in particular, the woodchuck model. In woodchucks, infectious HDV virions are
produced if the animals are co-infected with the woodchuck hepatitis virus (WHV), which
then serves as a helper virus for particle packing [61–64]. Although DNA vaccination
against HDV induced an antibody response and HDV-specific T cells, identified through
stimulation with HDAg-derived peptides that induced proliferation, HDV infection could
not be prevented [65]. Additionally, vaccination studies in mice with DNA vaccines
induced CD4+ and CD8+ T cell responses [66–68]. Despite the induction of a cellular
immune response in these animals, this seemed not to be a correlate of protection against
HDV challenge. Thus, the immunogenic role of HDAg and its related cellular and humoral
immunity has been debated controversially.
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Preliminary results in patient cohorts suggested that, in chronic HDV infection, no T
cell response is elicited. In a first pilot study by Nisini et al., virus-specific T cell responses
were solely detectable in inactive HDV patients, determined by negative anti-HDV IgM
status [69]. This conclusion was further confirmed in 2004, when Huang et al. detected
HDV-specific CD8+ T cells only in patients who were HDV RNA negative, and thus had
cleared HDV infection [70]. These data indicated that HDV-specific CD4+ and CD8+ T cells
occur only in resolving, but not persistent, HDV infection. However, this conclusion was
challenged in the last 10 years through the investigation of larger patient cohorts and by
applying novel technologies for analysis of virus-specific CD4+ and CD8+ T cells. In the
first of these studies, Grabowski et al. analyzed cytokine production in the supernatant of
HDAg-stimulated peripheral blood mononuclear cells (PBMC) from patients with chronic
HDV infection [71]. By applying this strategy, in 16 out of 17 donors, an HDV-specific
cytokine response was detected, including IL-2, IP-10, and IFN-γ secretion, with IFN-γ
being the strongest cytokine response detected in most of the donors. Accordingly, it
was shown that, in chronic HDV infection, a cellular HDV-specific immune response is
present, and these cells are at least, in part, functional. Albeit no direct link between disease
parameters was observed, the authors detected that patients who did not respond at all
or only to one peptide pool had a tendency towards higher viral loads, suggesting that
cellular immunity contributes to the control of HDV infection [71]. More recently, Landahl
et al. analyzed HDV-RNA-positive and -negative individuals for CD4+ and CD8+ T cells
in response to overlapping peptide (OLP) stimulation [72]. Overall, 53% of individuals had
at least one single-peptide CD4+ or CD8+ T cell response, ranging from 0 to 5 peptides.
Similar to the study by Gabrowski et al., there was no correlation of clinical parameters with
the strength and breadth of the HDV-specicfic T cell response [72]. Moreover, using highly
sensitive tetramer-based methods, Keflakes et al. and Karimzadeh et al. were able to detect
HDV-specific CD8+ T cells ex vivo in chronically infected patients [73,74]. Taken together,
recent studies showed that, indeed, HDV-specific CD4+ and CD8+ T cells are also present
during chronic HDV infection; however, it appears that the detection rate of HDV-specific
T cells is rather low. In the following, the epitope repertoire, the differential role of CD4+
and CD8+ T cells, and their functional characteristics are discussed in more detail.

4.1. CD4+ T Cell Response

The HDV-specific CD4+ T cell epitope repertoire was, so far, only investigated in two
studies using OLP covering HDAg, leading to the identification of 18 different HDAg
regions targeted by CD4+ T cells [69,72]. The entire L-HDAg was immunogenic, albeit with
an accumulation of CD4+ T cell epitopes in the N-terminal region (for a complete list of
fine-mapped epitopes, see review [75]). In both studies, CD4+ T cell responses were weak
and only detectable after antigen-specific culture for 6 or 12 days, except for one patient
with acute HDV infection who displayed ex vivo detectable CD4+ T cells with strong
cytokine production [69,72]. CD4+ T cell responses in this acute super-infected patient
indicate that an initial strong response decreases over time and the CD4+ T cell epitope
repertoire narrows during progression to chronic HDV infection [72]. In this study, in silico
prediction as well as human leukocyte antigen (HLA)-binding assays were performed to
define the HLA restriction of the CD4+ T cell epitopes, resulting in the identification of
14 HLA class II restricted epitopes [72]. Of note, 3 of these 14 epitopes were targeted in
more than one patient. Strikingly, eight patients (four HDV RNA positive and four HDV
RNA negative) recognized HDAg41–60; however, these patients expressed a diverse set
of HLA class II alleles. In line with this observation, in silico prediction revealed that
12 HLA class II molecules display a high (half-maximal inhibitory concertation (IC50)
< 1000 nM) or intermediate (IC50 1000–5000 nM) binding affinity. In in vitro binding
experiments, the epitope could be pinned down to four major histocompatibility complex
(MHC) class II molecules (DRB1*08:02/10:01/11:01//15:02). Notably, Nisini et al. also
detected a T cell response against this HDAg region in three patients with inactive disease
and divergent HLA class II alleles. This promiscuous restriction is not unusual for CD4+
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T cell epitopes, since the binding pocket of HLA class II molecules has an open pocket
and, therefore, tolerates variable peptides [76,77]. These data indicate that HDAg41–60 is
an immunodominant CD4+ T cell epitope due to its promiscuous HLA class II binding.
However, the HDV-specific CD4+ T cell epitope repertoire has only been analyzed in two
studies; thus, larger cohorts should be analyzed in future studies and the remaining CD4+
T cell epitopes need to be fine mapped.

CD4+ T cells have many different functions during viral infections, but they are best
known for providing help to CD8+ T cells and B cells, as well as for recruitment of immune
cells via the secretion of cytokines. Interestingly, unlike in other hepatotropic viral infections,
HBV/HDV co-infection showed the highest percentage of cytotoxic CD4+ T cells in a
comparative study of HBV, HCV, and HBV/HDV mono/co-infected individuals; however,
CD4+ T cells were studied on an antigen-nonspecific level [78]. The role of cytotoxic CD4+
T cells has been best described in human immunodeficiency virus (HIV) infection [79].
These cells have a high degree of perforin expression and share common features with
cytotoxic CD8+ T cells; thus, they are able to kill virus-infected cells [79]. In chronic HDV
infection, these CD4+ T cells displayed the phenotype of terminally differentiated effector
cells, indicated by loss of the co-stimulatory molecules CD28 and CD27. In addition, their
numbers were increased in patients with advanced liver disease [78]. A previous study had
already found that some CD4+ T cells showed cytotoxic potential in specific assays [69].
This phenotype was attributed to either the T helper-1 (TH1) or Th0 CD4+ T cell subset,
as these cells display a cytotoxic activity and produced high amounts of IFNγ, a hallmark
molecule of both subsets (Figure 1A) [69,80,81]. The phenotypic characterization of single-
epitope-specific CD4+ T cells in other hepatic viral infections, such as HBV and HCV, has
elucidated the role of CD4+ T cells in infection control [82–84]. So far, nothing is known
about the functional competence of CD4+ T cells in chronic HDV infection and whether
these cells might display markers of dysfunction or exhaustion. Although CD4+ T cell
epitopes have been fine-mapped and the tools for peptide-loaded HLA class II tetramers are
available, investigations of single-epitope specific CD4+ T cells in HBV/HDV co-infection
are still lacking. Thus, the impact of chronic antigen stimulation on the HDV-specific CD4+
T cell compartment is still unclear. Especially in light of the presence of high amounts of
cytotoxic CD4+ T cells, high-dimensional single-epitope analysis should be performed to
define their role in chronic HDV infection in comparison to other hepatitis virus infections.
CD4+ T cells have a predominantly TH1 phenotype, targeting epitopes mainly in the
N-terminal region of HDAg, which show a promiscuous HLA class II restriction; however,
the role of CD4+ T cells in HDV infection control is still only poorly understood. Studies
assessing the fate and function of CD4+ T cells during antiviral therapy might contribute to
clarifying the impact of CD4+ T cells on infection outcome.

4.2. CD8+ T Cell Response

Early studies in woodchucks showed that immunized animals had a reduced level of
HDV viremia in the absence of detectable circulating anti-HDV antibodies, indicating that
cytotoxic T cells contributed to viral control [85]. Since these experiments were performed
in woodchucks that have a different MHC class I repertoire than humans, the epitopes
presented are different and, therefore, these results cannot simply be applied to humans.
In order to avoid this limitation, the vaccination model was transferred to mice with
expression of a human HLA class I molecule (HLA-A*02:01) [70]. Huang et al. predicted
potential HLA-A*02:01-binding peptides in silico and used promising candidates for HLA-
A*02 tetramer generation. In transgenic mice infected with an HDV DNA vaccine, 0.9%
of the splenic CD8+ T cells were either HDAg26–34 or HDAg43–51. The results obtained in
the mouse model were verified in patients who were anti-HDV-positive; notably, only in
patients with negative HDV RNA were HDAg26–34 and HDAg43–51-specific CD8+ T cells
detected after PBMC expansion [70].
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Figure 1. (A) CD4+ T cells secrete IFNγ in response to peptide presented by an APC. Some cells are 
cytotoxic CD4+ T cells that are perforin-positive, have a low expression of CD27 and CD28, and a 
varying expression of CD45RA. (B) Mechanisms of viral escape. Upper panel: the hepatocyte is 
infected with prototype HDV; thus, the CD8+ T cell detects cognate peptide and has a phenotype of 
persistent activation. Lower panel: the hepatocyte is infected with variant peptide; therefore, 
peptide presentation is lost due to (i) AA variation in MHC class I binding anchor position, (ii) AA 
variation in TCR interaction region, (iii) AA variation in epitope flanking region, resulting in peptide 
processing failure. As a consequence, the CD8+ T cell does not recognize its antigen anymore and is 
in a phenotypic memory-like state. Dark blue, high expression; light blue, low expression; APC, 
antigen-presenting cell. Created with BioRender.com, 1 December, 2021. 
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Figure 1. (A) CD4+ T cells secrete IFNγ in response to peptide presented by an APC. Some cells
are cytotoxic CD4+ T cells that are perforin-positive, have a low expression of CD27 and CD28, and
a varying expression of CD45RA. (B) Mechanisms of viral escape. Upper panel: the hepatocyte is
infected with prototype HDV; thus, the CD8+ T cell detects cognate peptide and has a phenotype
of persistent activation. Lower panel: the hepatocyte is infected with variant peptide; therefore,
peptide presentation is lost due to (i) AA variation in MHC class I binding anchor position, (ii) AA
variation in TCR interaction region, (iii) AA variation in epitope flanking region, resulting in peptide
processing failure. As a consequence, the CD8+ T cell does not recognize its antigen anymore and
is in a phenotypic memory-like state. Dark blue, high expression; light blue, low expression; APC,
antigen-presenting cell. Created with BioRender.com, 1 December 2021.

For the next 14 years, these two HLA-A*02:01-restricted epitopes were the only CD8+ T
cell epitopes known for HDV. However, in the last years, additional studies were conducted
to broaden the HDV-specific CD8+ T cell epitope repertoire. Two studies used in vitro
expansion of PBMC with OLP libraries of HDAg [72,73]; two international collaborative
studies determined HLA class I-associated viral sequence polymorphisms, followed by in
silico peptide binding prediction to identify novel HDV-specific CD8+ T cell epitopes [74,86].
Indeed, Karimzadeh et al. first screened for HDV peptides with good binding to frequent
HLA class I alleles (in Europe, HLA-A*01, A*02, -A*03, A*24, B*07) or the HLA allele B*27
that has a dominant role in restricting protective CD8+ T cell responses, e.g., in HIV and
HCV infection [87–90]. Strikingly, only two peptides, restricted by HLA-B*27 (HDAg99–108
and HDAg104–112), were confirmed in three patients with resolved HDV infection but in
none of the five patients with chronic HDV infection [86]. In another study by Karimzadeh
et al., HDV viral sequences from 104 patients with chronic HDV infection were analyzed for
HLA-associated sequence polymorphism (HLA footprints) [74]. HLA footprints indicate
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that virus-specific CD8+ T cells restricted by the respective HLA class I allele target the viral
region flanking this HLA footprint, leading to viral evolution that enables viral escape from
the CD8+ T cell response (viral escape will be discussed in more detail below). Overall,
21 HLA-associated polymorphisms were detected; for five of these, corresponding CD8+
T cell epitopes were verified experimentally. Interestingly, most of these epitopes were
restricted by rare HLA class I alleles. The most striking example in this study was the HLA-
B*15:01-restricted CD8+ T cell epitope HDAg170–179; 10 out of 14 HLA-B*15:01-positive
patients with resolved or persistent HDV infection displayed a T cell response against this
epitope [74]. In sum, these two studies point towards an HDV-specific CD8+ T cell epitope
repertoire that is dominated by rare HLA class I alleles.

Next to these viral sequence-based approaches, Landahl et al. and Kefalakes et al. used
an unbiased strategy, leading to the identification of novel HDV-specific T cell epitopes, with
some overlapping the epitopes identified by the sequence-based approach [72,73]. Although
Landahl et al. used a library of OLP with a length of 20 amino acids, they identified CD8+ T
cell responses in 35% of patients, ranging from 0 to 4 positive peptides. In silico prediction
of HLA class I binding suggested that the majority of responses might be restricted by the
HLA-B*07 supertype family (HLA-B*35:01, B*51:01, and B*53:01). Intriguingly, the CD8+ T
cell epitopes accumulated in the C-terminal region of the L-HDAg [72]. In line with this was
the OLP screening by Kefalakes et al., detecting CD8+ T cell responses in 71% of the patients,
mainly mapping to the C-terminal region of HDAg [73]. Four epitopes in the C-terminus
overlapped and were restricted by HLA-B*07, B*35:01, B*52:01, and B*58:01. Additionally,
an HLA-B*18:01 and B*27:05-specific CD8+ T cell epitope was identified, corresponding to
the epitopes discovered by Karimzadeh et al. [74,86]. The detection rate of HDV-specific
CD8+ T cells was increased by applying newer technologies of single-epitope specific
CD8+ T cell characterization with peptide-loaded (p)MHC tetramer technology. Similar to
chronic HBV and HCV infection, the frequency of HDV-specific CD8+ T cells was extremely
low [73,74]. In total, 17 different CD8+ T cell epitopes were described. For most of these
epitopes, epitope fine-mapping and HLA restriction experiments were performed, while,
for a smaller number of epitopes, fine-mapping and HLA restriction were only performed
in silico ([70,72–74,86] and recently reviewed in [75]). Of note, the vast majority of defined
HDV-specific CD8+ T cell epitopes are restricted by HLA-B alleles. So far, almost no
data of patients during acute HDV infection are available; thus, information of the CD8+
T cell repertoire and the breadth of response in this decisive phase of infection is still
missing. More data on HDV-specific CD8+ T cell responses during acute infection are
needed to improve the understanding of spontaneous infection control and guide the way
for immunotherapy in chronic infection.

4.3. Failure of the T Cell Response in Chronic Infection

Some viral infectious diseases are rapidly controlled by the immune system, resulting
in elimination of the virus, whereas other viral infections are not successfully controlled by
the immune systems, resulting in chronic infection. Host as well as viral factors determine
this differential outcome of infection. In particular, cytotoxic CD8+ T cells detect and
eliminate cells with replicating virus. However, if viral infection persists, increasing
inflammation and constant antigen exposure hamper CD8+ T cell functionality. In animal
models of persistent viral infections, as well as in human chronic infections, such as HIV,
HBV, and HCV, two main mechanisms that contribute to the failure of CD8+ T cell response
have been described: T cell exhaustion and mutational viral escape (Figure 1).

4.3.1. Viral Escape

In HCV and HIV infection, viral escape has been intensively studied [91,92] and
recently reviewed in [93]. Three mechanisms that lead to an abrogated or diminished CD8+
T cell peptide recognition are known: amino acid changes in the region (i) of the binding
pocket of HLA class I molecules, (ii) of the T cell receptor (TCR) interaction region [94], and
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(iii) flanking the epitope, leading to a failure of optimal epitope processing and presentation
(Figure 1B) [92,95,96].

In the case of HDV, the exploitation of the human DdRP should protect the virus
from sequence variation, since the DdRP has a low error rate due to its proofreading
activity [97]. However, for HDV replication, a template switch from DNA to RNA has to
occur, potentially causing a higher genetic diversity [98,99]. Furthermore, the S-HDAg
binds the DdRP, thereby accelerating the translocation of the polymerase on the cost of
fidelity, triggering sloppy template recognition and nucleotide integration [100]. New
data using next generation sequencing have verified earlier results [101] that HDV has a
high complexity, similar or higher than that of other RNA viruses with a mutation rate of
9.5 × 10−3–1.2 × 10−3 substitutions/site/year [101–105]. Analyses of nucleotide polymor-
phisms in five patients with chronic HDV infection revealed that these polymorphisms
were associated with a positive selection, since they occurred in potential immunological
epitope regions [106]. First experimental evidence for viral escape in HDV infection was ob-
tained for the two HLA-B*27-restricted CD8+ T cell epitopes that are located in a relatively
conserved viral region (HDAg99–108 and HDAg103–112). Comparative sequence analyses of
HLAB*27-positive and -negative patients revealed that two amino acid substitutions were
significantly enriched in HLA-B*27-positive patients [86]. This HLA footprint proved to
be functionally relevant in in vitro stimulation experiments and with molecular modeling,
revealing that the structural and electrostatic properties of the bound peptides differed
considerably at the TCR interface. The HDV sequence database generated in this study was
used to define HLA footprints for all HLA class I alleles, not only HLA-B*27, leading to the
identification of novel epitopes [74]. It was demonstrated that HDV variant epitopes were
only partially recognized by CD8+ T cells isolated from HDV-infected patients, indicating
that the virus had escaped detection by these cells. In the case of an HLA-B*18-restricted
CD8+ T cell epitope, only the variant peptide and not the consensus sequence triggered
an IFNγ release. Of note, the consensus sequence with amino acid D47 was enriched
in HLA-B*18-positive patients, while the “variant” E47 was more frequent in HLA-B*18-
negative patients. These data indicate that the E47 variant was the previous prototype
sequence; however, viral escape from the HLA-B*18-restricted CD8+ T cell response led
to the accumulation of the D47 sequence. Most likely, this substitution does not impair
viral fitness, leading to the fixation of this sequence also upon transmission to an HLA-
B*18-negative patient. Thus, viral escape mutations are a driver of viral evolution on a
population level [74]. This is in line with another observation of this study: HDV-specific
CD8+ T cell epitopes were restricted only by rare HLA class I alleles. These combined
findings indicate that HDV has adapted well on the population level to avoid immune
recognition in the context of common HLA class I alleles.

Of note, Kefalakes et al. observed viral escape in 6/11 (54%) analyzed CD8+ T cell
epitopes targeted in the respective patient [73]. It was observed that the mutation rate
is not uniform within the HDV genome [107] and during the course of infection [105].
Homs et al. illustrated that, in chronic HDV infection, the mutation rate decays over the
time elapsed, indicating that HDAg initially displays a high mutation rate to adapt to
the new host and then reaches a “steady state” [105], similar to HCV infection [108,109].
The early viral adaption to the host HLA class I alleles was shown by Karimzadeh et al.
in an HDV super-infection event of an HLA-B*15:01-positive patient. Through Sanger
sequencing, the L-HDAg changes were analyzed longitudinally [74]. Following 71 weeks
after infection, four sequence variations from the initial viral sequence had occurred.
Strikingly, one of the substitutions (S170N) was a bone fide escape variant located in
HLA-B*15:01-restrcited L-HDAg170–179 CD8+ T cell epitope, which was detected in all
HDV-infected HLA-B*15:01-positive patients. As this variation is an experimentally proven
escape mutation, it is tempting to speculate that its appearance during HDV super-infection
could cause a diminished CD8+ T cell response, and thus provokes the failure of viral
clearance, leading to HDV persistence. Single-epitope specific CD8+ T cell characterization
revealed that the loss of cognate antigen recognition triggered phenotypical changes [73,74],
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consistent with findings that were made during viral escape in HCV infection [110,111].
Both studies observed that T-cell-targeting escaped epitopes had a diminished expression
of the activation marker CD38, intermediate expression of PD-1, which is an activation
but also regulatory protein, and a rather high expression of CD127, the receptor of IL-7a
that is important for homeostasis [73,74]. Correspondingly, these CD8+ T cells expressed
a low level of the transcription factor T-bet and Eomes and a high amount of TCF1, a
transcription factor that defines memory-like cells with proliferative potential [112]. This
observation is in line with findings in HCV and HIV infection, where the loss of antigen
recognition mediated by viral escape led to the formation of a T cell subset that is similar to
the memory T cell compartment in acute-resolving infection and that was called memory-
like [110,111,113,114]. In sum, viral escape appears to play a major role in the failure of
HDV infection control, since the race between viral host adaption and antiviral T cell
pressure might determine the outcome of infection.

4.3.2. T Cell Exhaustion

In contrast to other viral infections, T cell exhaustion has so far not been well stud-
ied in HBV/HDV co-infection [115]. T cell exhaustion was first defined in the LCMV
mouse model [116–118], where constant cognate antigen stimulation caused dramatic
changes in the CD8+ T cell phenotype, including metabolic, epigenetic, and transcriptomic
changes [119–122]. Exhaustion was described as a sequential and hierarchical process
from cytotoxic polyfunctional T cells towards a decreasing effector potential and sustained
upregulation and co-expression of different inhibitory receptors [123]. This includes the
loss of versatile cytokine production and proliferation, impaired cytotoxicity and the ex-
pression of inhibitory receptors, in particular, PD-1, CD160, 2B4, Tim-3, and CD39, as well
as the upregulation of specific transcription factors, such as TOX [124–128]. In chronic HCV
infection, virus-specific CD8+ T cells that target conserved (non-escaped) epitopes display a
rather exhausted phenotype, while CD8+ T cells targeting escaped epitopes display a more
memory-like phenotype [111,129]. The role of T cell exhaustion in chronic HBV infection is
a current research focus and might depend on the targeted antigen [126,130–132].

Since HDV infection displays similar dynamics concerning viral escape compared to
HCV infection, it is conceivable that CD8+ T cells targeting epitopes in conserved regions
display an exhausted phenotype, and thus T cell exhaustion contributes to CD8+ T cell
failure. However, the analysis of CD8+ T cells not affected by viral escape mutations
has been difficult, as the majority of detectable CD8+ T cells target epitopes subjected to
viral escape. Yet, the studies by Karimzadeh et al. and Kefalakes et al. indicate that T
cells directed against the prototype antigen have a more chronically activated phenotype,
indicated by the expression of higher levels of CD38, PD-1, and a decreased expression of
CD127, as well as lower levels of TCF-1 and the pro-survival factor BCL-2 [73,74]. Moreover,
a previous report could rescue the HDV-specific CD8+ T cell response by applying IL-12
rather than blocking of the inhibitory receptors PD-1 and CTLA4 [133]. This indicates that
HDV-specific CD8+ T cells might not be efficiently activated or are in a state of exhaustion
that cannot be easily restored by checkpoint inhibition. In conclusion, the exact contribution
of CD8+ T cell exhaustion to HDV persistence needs to be further investigated, ideally
with HDV-specific CD8+ T cell epitopes that are not prone to viral escape in the majority
of patients.

4.4. Hypothesis of Factors That Influence the HDV-Specific CD8+ T Cell Repertoire

Strikingly, all HDV-specific CD8+ T cell epitopes identified in chronic and resolved
patients so far were restricted by HLA-B alleles, except for the two HLA-A*02-restricted
epitopes already identified in 2004. There might also be a bias towards HLA-B-restricted
epitopes in other viral infections [134–136], likely due to the fact that HLA-B alleles are the
most polymorphic HLA class I alleles; however, the almost exclusive restriction of HDV
epitopes by HLA-B alleles could also point towards a functional relevance. It has been
implied from analysis of PBMC in HIV, CMV, and EBV infection that T cells restricted by
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HLA-B alleles have a decreased T cell receptor (TCR) avidity towards the antigen, together
with a phenotypical profile of reduced effector potential in comparison to HLA-A-restricted
T-cells [137]. However, these data are conflicting with previous studies that detected a
higher functional avidity of HLA-B-restricted responses, which correlated with a superior
cytokine profile, rapid target cell lyses, and more efficient eradiation of infection [138–140].
T cells with a higher avidity are more susceptible to activation-induced cell death and
the higher degree of stimulation could induce T cell exhaustion [141,142]. Additionally,
T cells with a higher avidity cause more immunological pressure; thus, epitopes targeted
by these cells might be more prone to viral escape [143–145]. The HDV genome is highly
flexible, tolerating many sequence variations. Thus, it appears that HDV can rapidly adapt
to its host to avoid elimination by cytotoxic T cells, which might affect the gene pool
of HDV on a population level. Hypothetically, former HLA-A-restricted T cell epitopes,
which had a higher TCR avidity, could have caused a stronger immunological pressure
than HLA-B allele-restricted T cells, and hence these epitopes underwent viral escape,
the variations were fixed, and the epitopes were lost from the repertoire. An alternative
explanation might be that viral escape occurs at a similar frequency in HLA-A- and HLA-
B-restricted epitopes, but the escape on a population level from HLA-B alleles is more
difficult, as these have a larger inter-human diversity concerning allele loci and HLA
supertypes [146]. Consequently, immunological pressure on HLA-B-restricted epitopes
is often lost after viral transmission, since expression of the corresponding HLA-B allele
is infrequent in the subsequent host. However, HLA-A alleles are less diverse, with the
majority of the European population being either HLA-A*01, -A*02, or -A*03 positive, thus
viral escape in these epitopes is more likely fixed in the population, leading to loss of the
respective epitopes.

Additionally, it needs to be considered that HBV and HDV replicate in the same
hepatocyte; thus, presented epitopes on the HLA complexes derive from both HBV (core,
polymerase, surface, and X) and HDV (HDAg) proteins. Which peptides are presented
and their half-life on the HLA complex depend on different factors, including proteasomal
processing, TAP transportation, and HLA binding affinity, as well as the quantity of the
respective protein available for peptide processing [147–151]. Thus, peptides might have
a high HLA affinity, but, if they are not well cleaved from the protein and transported
into the endoplasmic reticulum (ER), another peptide will be the predominately presented
one. Thus, hepatocyte detection and elimination depend on the presented epitope and
the functionality of CD8+ T cells targeting the epitope. A recent study indicated that, in
HDV-infected liver samples, transcription of genes that are involved in peptide processing
(TAP2) are upregulated in comparison to HBV mono-infection and uninfected livers [152].
Furthermore, the biased epitope presentation might already determine T cell priming and,
therefore, influence the CD8+ T cell repertoire. To this end, no studies have investigated and
compared the HBV-specific CD8+ T cell epitope repertoire in HBV mono- vs. HBV/HDV
co-infection. For HBV and HDV, HLA-A*02:01 and B*35:01 epitopes have been well
described [70,73,131]; thus, with the help of in silico tools, the peptide processing and
presentation on the HLA class I complexes can be compared (Table 1). These data suggest
that, in the case of HLA-A*02:01 epitopes, the HBV-derived core18–26 will dominate the
pool of presented epitopes, since it has a good processing efficiency combined with a
high HLA class I affinity. This might result in a decreased presentation of HDV-derived
epitopes and, therefore, HDV-specific CD8+ T cells might not be activated or not even
induced. In contrast, in the case of HLA-B*35:01, the in silico prediction would rather
indicate a bias towards HDV-derived epitopes (Table 1). Certainly, the amount of protein
available for processing might have an additional impact on peptide presentation. It was
suggested that, in woodchuck infected livers, up to 6 million copies of the HDAg per cell
can be found [153]. Albeit similar data for HBV-infected livers are missing, it is known that
the most abundant protein in HBV-infected cells is HBsAg, followed by HBcAg and the
polymerase. Hence, HDAg likely competes with HBsAg and HBcAg for peptide processing
and presentation. Interestingly, one study observed a correlation of detected HDV-specific
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T cell response with decreasing HBV viral load [72]. It is tempting to speculate that a
decrease in HBV particle production, and thus HBV protein translation, could lead to an
increase in HDV-derived epitope presentation and, therefore, increased T cell detection.
Nevertheless, a study examining the immunopeptidom of hepatocytes co-infected with
HBV and HDV could elucidate the impact of protein quantity, as well as processing of
peptides, and thus the impact on distribution of immunodominant CD8+ T cell epitopes in
HBV/HDV co-infection.

Table 1. MHCI binding predictions were made on 2 November 2021 using the IEDB analysis re-
source Consensus tool [154], which combines predictions from ANN aka NetMHC (4.0) [155–157],
SMM [158], and Comblib [159]. For all values, higher scores indicate higher predicted efficiency,
whereas a smaller MHC IC50 predicts a better binding. The processing score combines the proteaso-
mal cleavage and TAP transport predictions. The total score combines the proteasomal cleavage, TAP
transport, and MHC binding predictions. The sequences highlighted in grey show the best candidate
for the indicated MHC class I complex.

Protein AA
Position Sequence HLA-

Allele
Proteasome

Score
TAP

Score
MHC
Score

Processing
Score

Total
Score

MHC IC50
[nM]

HBcAg 18 FLPSDFFPSV A*02:01 1.44 0.12 −0.59 1.56 0.97 3.9
HBVpol 455 GLSRYVARL A*02:01 1.53 0.37 −2.08 1.90 −0.18 121
HDAg 26 KLEDLERDL A*02:01 1.30 0.45 −3.68 1.75 −1.92 4734
HDAg 43 KLEDENPWL A*02:01 1.54 0.45 −2.06 1.99 −0.07 114.3

HBVpol 173 SPYSWEQEL B*35:01 1.54 0.38 −2.36 1.92 −0.44 229
HDAg 192 QGFPWDILF B*35:01 1.27 1.10 −2.76 2.37 −0.38 571
HDAg 194 FPWDILFPA B*35:01 0.66 −0.34 −1.20 0.32 −0.88 15.7

5. Immunopathogenesis in HBV/HDV Co-Infection

HBV/HDV co-infection causes the most severe form of viral hepatitis, leading to an
accelerated progression to liver cirrhosis [2]. Liver biopsies revealed that, in HBV/HDV
co-infection, the degree of liver damage is almost twice as high as it is in HBV or HCV
mono-infection due to the occurrence of severe lobular inflammation and necrosis [160].
Since HDV induces an interferon response, it was suggested that the increased cytokine
levels might lead to a higher degree of liver inflammation, resulting in a more severe course
of infection in comparison to chronic HBV mono-infection. Furthermore, early experiments
in transgenic mice expressing HDAg in their hepatocytes led to the conclusion that HDAg
itself is not cytotoxic, since mice did not show signs of liver pathology during the studied
period of 18 months [161,162]. Recent analysis of mice infected with adeno-associated
vectors (AAV) carrying replication-competent HBV and HDV genomes challenged this
initial observation and raised the hypothesis that HDAg itself, in particular, S-HDAg, could
contribute to liver damage even in the absence of T cells [163,164]. Usai et al. described this
as part of a bimodal mechanism leading to liver inflammation, which involved, as a second
mechanism, tumor necrosis factor (TNF)-α. In the same mouse model, they demonstrated
that the inhibition of TNFα signaling via the agonist etanercept significantly reduced
ALT serum levels, whereas no improvement was observed if infected mice had a gene
knockout (KO) for signaling of type I and type II IFN (IFNα/βR KO, IFNγR KO, MAVS
KO) [164]. Moreover, Suárez-Amarán et al. observed that TNFα transcription is induced in
the liver of AAV-HDV-infected mice independent of the adaptive immune response and
likely independent of MAVS signaling [42]. In line with this is the finding that, in Huh7
and HEK293 cells, L-HDAg interferes with the TNFα–NF-κB signaling axis by promoting
different steps of the pathway [165]. TNFα is an inflammatory cytokine contributing to
liver inflammation and, if enduring, this leads to liver fibrosis and eventually cirrhosis
(reviewed in [166]). Strikingly, TNFα correlates with HDV-RNA levels, as well as disease
progression in chronic HDV-infected patient serum [167]. Besides TNFα, transforming
growth factor (TGF)-β is a major regulator of liver fibrosis and cirrhosis [168]. In cell culture
models, it was described that the TGF-β-c-Jun-induced signaling cascade is boosted by
L-HDAg [169]. However, TGF-β serum levels were reduced in chronic HBV/HDV co-
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infected and HBV mono-infected patients in comparison to healthy controls, including also
later disease stages [167]. Moreover, L-HDAg was also attributed to induce oxidative stress,
which, in turn, also activates NF-κB and STAT-3, leading to a dysregulation of inflammation,
apoptosis, and invasion contributing to cirrhosis and HCC formation [170,171]. Altogether,
the abovementioned pathways trigger a cellular immune mechanism, including innate and
adaptive responses (Figure 2A).
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Figure 2. A variety of molecular and cellular pathways contribute to liver inflammation in HBV/HDV
co-infection, causing liver cirrhosis. (A) L-HDAg can interact with different signaling pathways in
a direct or indirect manner, resulting in amplified cytokine responses. This results in an increased
activation of the transcription factors STAT-3, c-Jun, and NF-κB and transcription of genes contributing
to inflammation. (B) HDV induces ISGs, including proteins involved in the antigen presentation
pathway. In consequence, compared to HBV mono-infection, more HBV epitopes are presented on the
cell surface, resulting in an increased activation of HBV-specific CD8+ T cells and general lymphocyte
recruitment. (C) Increased numbers of NK and MAIT cells are detected in HBV/HDV co-infected
livers, as well as increased numbers of HDV-specific CD8+ T cells. CD8+ T cells have a tissue resident
phenotype. MAIT, NK, and CD8+ T cells are in an effector state indicated by degranulation and
activation molecule expression, among them NKG2D, which recognizes its ligand MIC-A/B on
infected hepatocytes. Created with BioRender.com, 1 December 2021.

Viral infections require a balance of attacking virus-producing cells and, at the same
time, maintaining tissue function. A recent study by Tham et al. highlighted another
aspect of HDV modulation of the liver environment [152]. Mediated by the HDV-induced
IFNβ and IFNλ signaling, an upregulation of genes involved in antigen processing and
presentation in primary human hepatocytes infected with HDV and in neighboring cells
was detected. This observation was transferred to patient biopsies, in which an upregulation
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of genes involved in antigen processing was measured. In vitro experiments then proved
that the upregulation of antigen-processing machinery resulted in a higher efficiency of
HBV epitope presentation in HBV/HDV co-infected cells in comparison to HBV mono-
infected cells, which could promote T cell recognition of infected cells [152]. However, it
was suggested that, since HBV-specific CD8+ T cells have a reduced effector function, the
upregulation of HBV-derived epitopes does not lead to viral clearance, but rather CD8+
T cell activation, resulting in increased cell infiltration, and thus sustained inflammation
(Figure 2B) [152].

Albeit experiments in an AAV-HDV mouse model indicate that leukocytes are re-
cruited to the pathogenic liver, liver function was not restored if T and B cells (Rag1 KO
mice), NK cells (α-NK1.1), or macrophages (clodronate-loaded liposomes) were depleted in
infected animals [164], suggesting that liver damage in HDV infection is not caused by the
cellular arm of immune response. Nevertheless, a recent study analyzed, for the first time,
liver-infiltrating immune cells in liver biopsies from 24 chronic HBV/HDV co-infected
patients [160]. Thereby, the degree of activation of the innate populations of natural killer
(NK) cells and mucosa-associated invariant T (MAIT) cells in the blood and in the liver was
studied in addition to the analysis of HDV-specific and bulk CD8+ T cells. The analyses
revealed that there is an enrichment of MAIT, NK, and HDV-specific CD8+ T cell in the
liver in comparison to the circulation. However, MAIT and NK cells were reduced in the
liver and blood in comparison to uninfected controls, similar to previous observations that
indicated that MAIT cells are functionally impaired, leading to subsequent loss of MAIT
cells in the blood, which could contribute to HDV-associated liver pathology [172]. Corre-
spondingly, liver-resident cells were activated and, most likely, although only indicated
by the degranulation-associated molecule CD107a, had a high degree of effector potential
expanding also to bystander nonspecific CD8+ T cells [160]. This included an increased
expression of the activating receptor NKG2D on MAIT, NK, and CD8+ T cells. Furthermore,
the expression of NKG2D of intrahepatic CD8+ T cells was positively correlated with
CD107a expression, and thus degranulation that correlated with liver enzyme activity and
aspartate aminotransferase-to-platelet ratio index score. The authors, therefore, concluded
that there is a general antigen-nonspecific activation of the resident memory CD8+ T cells
contributing to disease stage and inflammation [160]. The increased expression of NKG2D
on liver-infiltrating CD8+ T cells was also observed in chronic HBV and HCV infection, and
likewise correlated in HCV infection with a higher activity of liver enzymes and a greater
histological severity of liver injury [173,174]. Whereas NKG2D acts as a direct activator on
NK cells, triggering cytotoxicity and cytokine secretion [175–177], Kennedy et al. demon-
strated that it is a co-stimulatory molecule acting in synergy with the TCR on HBV-specific
CD8+ T cells, similar to other viral infections [174,178]. Consequently, the sole expression
of NKG2D on CD8+ T cells in the liver would not directly lead to more hepatocyte death,
at least in HBV [174]. The question arising is, might there be a difference in NKG2D ligand
expression in HBV mono- in comparison to HBV/HDV co-infection, resulting in an in-
creased liver pathology in co-infection? The ligand of NKG2D is MHC class-I-related chain
(MIC)-A/B that is induced by cellular stress, viral infection, and IL-15 [179,180]. Conversely,
to HBV, HDV is sensed by the innate immune system and induces IFNβ and λ, which could
lead to an increased expression of MIC-A/B on hepatocytes, as well as an increased IL-15
secretion in the liver, inducing NKG2D expression on lymphocytes [174,181]. Kefalakes
et al. observed in in vitro experiments in an HDV-producing cell line (HuH7-END) that
HDV-positive cells compared to HDV-negative cells upregulate MIC-A/B, indicating that
HDV-infected hepatocytes might be a target of NKG2D-expressing cytotoxic cells [160].
Unfortunately, they did not compare MIC-A/B levels in an analogous infection system
of HBV mono-infected cells. However, similar experiments were conducted in HepG2
cells, indicating that HBV downregulates MIC-A/B expression, potentially through HBsAg,
which, in turn, activates miRNAs inhibiting MIC-A/B mRNA translation [182,183]. On the
other hand, an increased expression of MIC-B was detected on HCV-infected hepatocytes,
although this was not a definite observation [174]. Therefore, a hypothesis could be that,
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in HBV mono-infection, MIC-A/B is reduced; thus, infiltrating lymphocytes have a re-
duced activation and, hence, a diminished lysis of infected hepatocytes, whereas additional
infection with HDV triggers a surface increase in MIC-A/B, leading to accelerated liver
damage (Figure 2C). Nevertheless, a comparative study of HCC tissue samples (including
healthy liver sections in the same patient) from HBV-, HCV-, and HDV-infected patients
did not state and, hence, observe a significant differential expression of MIC-A/B in dis-
tinct viral infections [184]. Consequently, as this is the only comprehensive analysis of
patient liver samples, it will be important that future studies will assess the expression
level of NKG2D ligands on hepatocytes of hepatitis patients in order to elucidate the role of
NKG2D-mediated liver pathology. Altogether, it is evident that increased liver pathology
in CHD cannot be attributed to one mechanism but is the sum of many dysregulated
pathways that need to be studied in depth, especially in liver samples of patients, to further
clarify the picture.

6. Conclusions

A lot of effort has been made in the last five years in order to elucidate the mechanism
behind HDV-associated severe liver pathology and adaptive as well as innate immune
factors contributing to this. Yet, there are still many open questions concerning especially
the role of HDV-specific CD8+ and CD4+ T cells. With the recent report of liver samples
from CHD patients, the assumption was raised that liver pathology is caused by an antigen-
unspecific manner of liver-resident CD8+ T cells [160]. Future studies have to focus on this,
together with the aspect of the interplay between HBV- and HDV-specific CD8+ T cells and
the potential effects of increased viral protein epitope presentation [152]. Moreover, it will
be of great interest how BLV inhibiting HBV and HDV extracellular spread will influence
the liver homeostasis and if liver functionality will be repaired. Notably, immunological
studies of chronic HBV/HDV co-infected patients were almost exclusively performed
in Europe and North America, hence in the background of HDV genotype 1 infection.
Consequently, the described epitopes and virus-specific T cells to date were all derived
from genotype 1 HDV infections. It will be exciting to see if viral evolution to avoid immune
recognition will be also detectable in genotypes that are not globally distributed, but rather
endemic in the context of the respective dominant HLA alleles in those regions.
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