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Immunostimulation is recognized as an important contribution in lung fibrosis in some
animal models and patient subsets. With this review, we illustrate an additional scenario
covering the possible implication of immunoregulation during fibrogenesis. Available
animal and human data indicate that pulmonary fibrosis also includes diverse and
discrete immunoregulating populations comprising regulatory lymphocytes (T and B
regs) and myeloid cells (immunosuppressive macrophages and myeloid-derived
suppressive cells; MDSC). They are initially recruited to limit the establishment of
deleterious inflammation but participate in the development of lung fibrosis by
producing immunoregulatory mediators (mainly TGF-b1 and IL-10) that directly or
indirectly stimulate fibroblasts and matrix protein deposition. The existence of this silent
immunoregulatory environment sustains an alternative mechanism of fibrosis that explains
why in some conditions neither pro-inflammatory cytokine deficiency nor steroid and
immunosuppressive therapies limit lung fibrosis. Therefore, the persistent presence of
immunoregulation is an important parameter to consider for refining therapeutical
strategies in lung fibrotic disorders under non-immunostimulatory conditions.

Keywords: immunosuppression, inflammation, regulatory lymphocytes and myeloid cells, carbon nanotubes, silica
and asbestos
DIVERSE LUNG FIBROTIC DISEASES WITH
DIVERSE MECHANISMS

Repair of damaged tissue is a fundamental biological process that allows the ordered replacement of
dead or injured cells. However, although initially beneficial, the healing process becomes pathogenic
when it is not controlled appropriately, leading to considerable tissue remodeling and the formation
of permanent scar tissue and fibrosis (1). The major site of histopathological lung fibrosis is the
interstitium, which consists of alveolar epithelium, pulmonary capillary endothelium, basement
membrane, and perivascular and perilymphatic tissues. There are now almost 300 distinct injurious
or inflammatory causes of interstitial lung disease that can result in progressive lung scarring. Many
others are referred as idiopathic (i.e. idiopathic pulmonary fibrosis, or IPF) when it arises for no
obvious reason (2). Silicosis is one the oldest recorded interstitial lung disease characterized by
alveolitis and progressive nodular fibrosis (3). This fibroproliferative disorder can be traced back to
ancient Egypt, where it was caused by inhalation of crystalline silica. It is also well known that long-
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Huaux Immunoregulation in Lung Fibrosis
term asbestos fiber inhalation causes asbestosis also comprising
persistent nodular fibrosis (4). Although the incidence of silicosis
and asbestosis has diminished, it continues to be a major cause of
occupational lung disease in exposed workers, particularly in
developing nations (5). More recently, carbon nanotubes (CNT),
which present some of the physical characteristics of asbestos
(long and rigid), also induce granulomatous lung disorder
characterized by persistent immune responses, culminating in
the development of lung fibrosis (6). Additionally, lung
fibrogenic reaction may arise from other exogenous
environmental stimuli such as organic dusts (bacterial, fungal
and avian antigens) (7).

Suppression of chronic inflammation by immunosuppressive
therapy turn off pulmonary fibrogenesis in some sub-groups of
patients (e.g. non-specific interstitial pneumonia). These findings
argue that inflammation represents a major pathological
pathway in lung fibrosis (8, 9). A pathogenesis paradigm
that did not require inflammation and immunostimulation
was, however, proposed since there is little evidence of
inflammation in the histopathological samples obtained from
susceptible ageing individuals developing IPF undergoing
surgical lung biopsy. Treatment with anti-inflammatory agents,
such as steroids or anti-cytokines, seemed to have no effect on
disease progression and outcome (10, 11). These last clinical
observations strongly suggested that inflammation represents an
important but dispensable event and that other mechanisms than
immunostimulation exist or co-exist in pulmonary fibrosis
(12, 13).
THE RELEVANCE OF RELIABLE ANIMAL
MODELS OF LUNG FIBROSIS

It is unanimously recognized that animal models currently
available are particularly useful to discover new pro-fibrotic
mediators and pathological avenues related or unrelated to the
inflammatory concept. The development of experimental models
producing long-lasting lesions akin to those seen in human
fibrosis and defined by progressive and irreversible matrix
deposition has already been the subject of many studies (14).
Presently, chemical insults such as those caused by bleomycin are
widely used to induce fibrotic disease. Many research studies
have focused on changes in inflammatory phenomena after a
single instillation of bleomycin and have yielded similar findings:
the lung injuries caused by bleomycin induce acute recruitment
and activation of inflammatory leukocytes which produce
mediators (cytokines, chemokines, growth factors, and
prostaglandins) activating fibroblast and driving fibrotic
disease. While bleomycin represents the preferred molecule in
this context, the lung fibrosis obtained by an unique dose of this
drug is not systematically progressive and resolves itself over
time after bleomycin metabolization (15).

This discrepancy led researchers to explore other models and
discover new pathological avenues not apparent in the acute
bleomycin-induced fibrosis model, which mainly (if not
exclusively) supports that inflammation drives fibrosis.
Frontiers in Immunology | www.frontiersin.org 2
Multiple instillation of bleomycin has previously been shown
to recapitulate the epithelial remodeling and fibrosis progression
in the lungs of patients with IPF (16). Indeed, a repetitive alveolar
epithelial injury caused by repetitive intratracheal injections of
bleomycin is now proposed as the initial and major event that
triggers a series of repair pathways that are in some way aberrant,
leading to inappropriate fibrosis. Repeated injuries prevent
epithelial cell regeneration, re-epithelialization and epithelial
structure restauration and lead to a sustained disruption of
alveolar epithelial morphology and fibrogenesis in injured
alveoli. This experimental approach thus represents an
ultimate model to address mechanistic questions on epithelial
remodeling (17).

Murine models of univocal chronic lung responses and
progressive fibrotic lesions using inorganic particles (crystalline
silica, asbestos and CNT) are well known to cover severe fibrotic
respiratory disorders in exposed human. Instillation of mineral
particles into mouse and rat lungs results in the development of
fibrotic nodules that resemble lesions which develop in humans.
Rodents exposed to silica particles present alveolar fibrotic
nodules, increased pulmonary lymphoid tissue and enhanced
numbers of macrophages in the broncho-alveolar lavage fluid.
Interestingly, silica, asbestos and CNT are retained in the lung
and the response is characterized by a persistent and progressive
fibrosis (18). Based on findings on particle-induced pulmonary
fibrosis in mice, it has been recently proposed a new hypothesis
that the fibrotic response may result from an exaggerated and
persistent immunoregulating responses instead of or along with
inflammation. This new concept have been confirmed in human
silicosis but also in other animal models and patients. These
results, summarized hereafter, may explain how lung fibrosis can
develop in absence of immunostimulation.
HISTORY OF IMMUNOREGULATING
SURVEILLANCE

The quality, magnitude, and persistence of immune reactions
results from the balance between immunostimulating and
immunoregulating responses. The basic mechanism of
immunoregulation comprises an interconnecting system
involving diverse anti-inflammatory and immunosuppressive
cytokines, lymphocytes and myeloid cells. There is now
evidence that this sophisticated immunoregulatory systems is
crucial in maintaining immune homeostasis and resolving
persistent inflammation. Immunoregulatory alterations are often
implicated in the pathogenesis of several inflammatory diseases
such as infection, allergy, and autoimmune disorders. Conversely,
uncontrolled and exacerbated immunoregulation is strategically
exploited by cancer cells to survive, proliferate and escape
detection by anti-tumor effector T lymphocytes (19). A well-
knowledge of immunoregulation now serves for future strategies
of diagnosis and treatment. The following sections are devoted to
describe (i) historical aspects of immunoregulatory mechanisms
(Figure 1) and (ii) matching evidence supporting a deranged
immunoregulation in pulmonary fibrogenesis (Figure 2).
August 2021 | Volume 12 | Article 690375
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TGF-b1 and IL-10 as Master
Immunoregulating Cytokines

The most striking and non-redundant function of TGF-b1 is to
regulate the immunostimulatory and inflammatory responses by
orchestrating immunoregulation (20, 21). Indeed, in 1993,
Kulkarni and Karlsson demonstrated that mice deficient for
the gene encoding TGF-b1 die rapidly from a multi-systemic
inflammatory syndrome related to deleterious T cell
autoreactivity (22) (Figure 1). To become active, mature TGF-
b1 must be released from the LAP (latency-associated peptide), a
process referred to as TGF-b1 activation (23). The best-
characterized mechanism of TGF-b1 activation imply
conformational changes in the latent TGF-b1 molecule
involving interaction of latent TGF-b1 with integrin aVb8 and
GARP (glycoprotein A repeats predominant protein or LRRC32)
(21). The binding of the active TGF-b1 peptide to its receptors
leads to a series of signaling events that are mainly mediated by
Frontiers in Immunology | www.frontiersin.org 3
SMAD2/3/4 complex that binds SMAD response elements
located in the promoter regions of many genes involved in the
immunoregulatory responses (21).

The cytokine interleukin-10 (IL-10) was originally described
as a ‘cytokine synthesis inhibitory factor’ (CSIF), which was
produced by mouse T helper 2 (Th2) clones and inhibited
cytokine production by activated Th1 clones (24). IL-10
reportedly inhibits nuclear factor-kB (NF-kB) activation and
expression of the most inducible cytokines and chemokines that
are involved in inflammation. The anti-inflammatory activities
of IL-10 also include induction of IL-1 receptor antagonist (IL-
1ra) (24) and soluble p55 and p75 TNF receptor production,
indicating that IL-10 induces a shift from production of pro-
inflammatory to anti-inflammatory mediators (25). IL-10
strongly inhibits cytokine production and proliferation of
CD4+ effector T cells via its down-regulatory effects on APC
function. IL-10 also induce the differentiation of naive Th cells
in a subset of regulatory T cells which are defined by their
FIGURE 2 | Timeline: historical progression of immunoregulation in particle-induced lung fibrosis.
FIGURE 1 | Timeline: historical progression of immunoregulation in the literature.
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ability to produce high levels of IL-10 and TGF-b1 (26). The
IL-10-related potent immunosuppressive functions and its
proximity to TGF-b1 are perfectly illustrated by the work of
Kuhn and colleagues demonstrating that IL-10 deficient mice
suffer from chronic enterocolitis characterized by extensive
inflammatory reactions and aberrant expression of major
histocompatibility complex class II molecules (27) (Figure 1).

M2/Immunoregulatory Macrophages and
Type 2 Like Immune Response
During the 1990s, Gordon and colleagues demonstrated that
IL-4 and IL-13 induced an “alternative” form of activation in
macrophages beside the “classically” polarized macrophages (28,
29) (Figure 1). In 2000, Mills and colleagues identified the
fundamental M1/M2 polarization axis of macrophages and
proposed that M1/inflammatory macrophages are necessary to
eliminate infectious organisms and tumor cells while M2/
immunoregulatory macrophages are implicated in repair
process and wounds. Importantly, the uncontrolled M1 and
M2 activation is associated with tissue injury and cancer
progression, respectively (30, 31).

The so-called M2 phenotype express anti-inflammatory and
immunosuppressive mediators such as IL-10 and TGF-b1,
specific chemokines (CCL17 and CCL22, C-C motif), the
subclass B scavenger receptor (CD 163), and the mannose C
receptor type 1 (CD206 or MRC1) (32). The TGF-b1- and IL-10
producing M2 macrophages are thus intimately involved in the
regulation of immune responses. Transcription factors such as
IRF4 and STAT6 are required for M2 macrophage activation and
differentiation. These different stimuli are likely to initiate during
Th2-like responses (33). Th2 responses and cytokines (mainly
IL-4 and IL-13) induce the differentiation of M2 macrophages.

The model categorizing macrophages (or T helper cells) in
only two divergent groups M1 vs M2 (or Th1 and Th2) does not
cover the intrinsic heterogeneity of macrophages (and T
lymphocytes) now identified and described in diseases. A
consensus now refers to M1-like or M2 like-subpopulations for
avoiding oversimplified categories and highlighting the diversity
and versatility of macrophages (34). M2-like macrophages
possessing various functions, characteristics and deleterious
activities are well known to be crucial in asthma, interstitial
lung diseases and cancer (35, 36).

Regulatory T Cells
Regulatory T cells were initially described by Gershon et al. in the
early 1970s and were called suppressive T cells because they
practiced immune suppression (37). Unfortunately, despite the
importance of these studies there was extensive skepticism in the
immunological field about the existence of these cells, and
suppressive T cells left the centre stage of immunology for
decades. However, in 1996, Sakaguchi and colleagues rehabilitated
the concept of “suppressive T cells”, now renamed “regulatory T
cells” (38) (Figure 1). CD4+ Foxp3+ regulatory T cells (T regs)
constitute a thymus-derived sub-population of CD4+ T
lymphocytes that constitutively express the transcription factor
Foxp3 (forkhead box P3), required for their development and
Frontiers in Immunology | www.frontiersin.org 4
their anti-inflammatory and immunosuppressive function (39,
40). T regs are developed in the thymus (naturally occurring T
regs; nT regs) or are differentiated from naive T cells in the presence
of TGF-b1 following T-cell receptor stimulation (induced T regs; iT
regs) (41). These lymphocytes are crucial to maintain tolerance by
downregulating undesired immune responses to self and non-self-
antigens (42, 43). Absence or defective function of regulatory T cells
is correlated with the development of immuno-pathologies such as
auto-immune diseases (e.g. psoriasis and rheumatoid arthritis) and
asthma. In contrast, their accumulation is associated with tolerance
and implicated, for instance, in the development of cancer (44).
Several mechanisms have been proposed to explain
immunosuppressive functions of T regs. These include secretion
by T regs of immunosuppressive cytokines, cell-contact-dependent
suppression and functional modulation. Most in vivo studies
indicate that T regs mediate immunosuppression by producing
IL-10 and TGF-b1 (45). The strong immunosuppressive activity T
regs is also related to their capacity to regulate the polarization and
function of effector T lymphocytes (T eff, i.e. Th1, Th2, and Th17).

B Regs
The historical description of the new B-cell subtype named
regulatory B-cells (B regs) dates back to 1974. In a mouse
model of eczema, adoptive transfer of total splenocytes had a
suppressive effect, whereas adoptive transfer of splenocytes from
which B-lymphocytes were removed had no effect (46). In 2003,
the regulatory role of B cells was shown in a mouse model of
experimental autoimmune disease and this regulatory role was
attributed to the ability of B cells to produce IL-10 (47)
(Figure 1). B cells have been shown to restore homeostasis,
possess important immunosuppressive functions and play a key
role in disease control and immune tolerance (48, 49). IL‐10‐
producing B cells produce anti‐inflammatory IgG4 and activate
Treg cells. By promoting M2-like macrophage polarization, B
regs cells also reduce auto‐reactive Th1 and Th17 cell responses
and limit damaging inflammatory responses. In contrast, B regs
impair cytotoxic T‐cell and NK cell responses to tumor cells and
thereby promote progression of cancer (50). Beside IL-10, the
exact mechanism by which B regs act in vivo remains unclear. A
close contact between B-lymphocytes and the T lymphocytes,
notably through the CD40-CD40L pathway are required (51, 52).

Myeloid Derived Suppressive Cells
MDSC were first identified by Van Ginderachter and his team in
2008. They detected a discrete myeloid-derived suppressor cell
subpopulations with T cell-suppressive activity invading tumors.
Thus, it was suggested that this MDSC population is responsible
for down-regulating immune responses related to tumor
progression and metastasis (53) (Figure 1). MDSC are now
defined as heterogeneous and immature myeloid cells
generated from the bone marrow and active in cancer
development and inflammation regulation (54). Under normal
physiological conditions, MDSC are rapidly differentiated into
mature granulocytes, macrophages and dendritic cells. However,
the differentiation of these cells into mature myeloid cells is
blocked in chronic pathologies such as cancer (54). Two
categories of these cells can be observed, one with granulocyte
August 2021 | Volume 12 | Article 690375
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morphology and the other with monocyte morphology (55).
MDSC suppress CD8, CD4 T cell activities and NK cell activity
by inducing a suppressive environment (56). Several different
mechanisms of action have been identified to explain the strong
immunosuppressive activity of MDSC involving direct cell
contacts and/or the production of several released mediators
(54). MDSCs have the ability to induce differentiation and
expansion of regulatory T cells by producing cytokines such as
IL-10 and TGF-b1 or via CD40 (57). These cells can also deprive
T cells of amino acids essential for their activity such as arginine,
which is necessary for lymphocyte activation. Arginase, highly
expressed by MDSCs, metabolizes arginine to urea and
ornithine. Indoleamine-2.3-dioxygenase (IDO), an enzyme that
catalyzes tryptophan, an essential amino acid for T cells, might
also be involved in the immunosuppressive mechanisms of
MDSC (54).
THE DISCOVERY OF
IMMUNOREGULATION IN PARTICLE-
INDUCED LUNG FIBROSIS

Inorganic particle-induced lung fibrosis consists of an
uncontrolled inflammation of the respiratory system tissues
characterized by a chronic macrophage and neutrophil
infiltration that ultimately causes fibrosis (58). Based on the
widespread study of Piguet and colleagues published in 1990 in
Nature, it is accepted that silica particles activate intracellular
signaling pathways that culminate in the production of the pro-
inflammatory mediator TNF-a, which is crucial in driving
alveolitis and lung fibrosis (59). Additionally, a recent and
pivotal study demonstrated that silica activate caspase-1 in a
NALP3 inflammasome-dependent manner leading to the
processing and secretion of the pro-inflammatory cytokine
IL-1b. Evidence demonstrate that IL-1b initiates a cascade of
reactions leading to inflammation and uncontrolled fibrosis (60).
These observations support the concept that inflammation and
sustained expression of inflammatory cell-secreted pro-fibrotic
cytokines participate in the etiology of fibroproliferative diseases
associated to inorganic particles.

The interconnection between inflammation and fibrosis was,
however, questioned when active TGF-b1 was pointed as a key
pro-fibrotic factor in response to particles. In silicosis and
asbestosis, TGF-b1 expression has been found to be increased
in lung tissues from patients with accelerated fibrotic disease
progression (7) (Figure 2). The crucial activity of TGF-b1 during
fibrogenesis has been unanimously recognized in the
experimental studies using silica-, asbestos- and CNT-treated
mice (6, 61–63). TGF-b1 is a major profibrogenic cytokine by
delaying epithelial wound healing and expanding mesenchymal
compartment (64). While the activity of TGF-b1 on fibroblasts is
undisputed and not anymore debated, these observations
intrigued immunologists because the presence of this powerful
immunosuppressive cytokine (see above) was not in line with the
IL-1/TNF-related immunostimulation axis.
Frontiers in Immunology | www.frontiersin.org 5
Additional data challenged the inflammatory concept. IL-10,
another potent immunoregulatory cytokine, has also fibrogenic
activities in responses to fibrogenic particles. To examine the
immune responses over the whole course of the pathological
process induced by fibers and particles, validated experimental
models in mice and rats with contrasting sensitivities were
developed (65). By comparing these models and using deficient
mice, it was newly discovered that IL-10 produced by particle-
activated macrophages limit neutrophilic inflammation but is a
key mediator implicated in the fibrotic lung response to silica by
controlling the balance between pro- and anti-fibrotic mediator
production (respectively TGF-b1 and prostaglandin E2) (65–68)
(Figure 2). IL-10 is also a prevailing inducer of type-2 immune
responses in particular M2-like and Th2-like pro-fibrotic cells
(69, 70). The fibrogenic activity of macrophage-derived IL-10 and
M2-like macrophages is not limited to silicosis (71, 72). Indeed,
these macrophages are also implicated in the fibrotic lung
response induced by asbestos and CNT (6, 73, 74) (Figure 2).

The little evidence of inflammation in the histopathological
samples obtained from silicotic patients undergoing surgical lung
biopsy (75) consolidate the pathogenesis paradigm that did not
require inflammation. In contrast, high levels of IL-10 in BAL or
serum were detected in patients with silicosis and asbestosis in
the absence of clear inflammatory reaction (73, 76). Treatment
with anti-inflammatory agents, such as corticosteroids, seemed
to have no effect on outcome of these fibrotic diseases (75, 77,
78). These human observation are in accordance with several
animal data indicating that steroid and numerous anti-
inflammatory strategies reduce particle-induced lung
inflammation but not IL-10-TGF-b1 expression and lung
fibrosis in sensitive animals (79, 80). At this time, it was thus
suggested that these two immunoregulatory cytokines are the
major event that triggers a series of repair pathways that are
aberrant and lead to inappropriate fibrosis under non-
inflammatory conditions.

According to the concept that inflammation is responsible for
fibrogenesis and given their ability to dampen inflammatory
responses, CD4+ regulatory T lymphocytes (T regs) were first
supposed to slow the progression offibrosis (81). Indeed, it is well
recognized that T regs, by restraining effector T cell responses
and inducing tolerance through the production of TGF-b1 and/
or IL-10, control lung inflammatory disorders (82). However,
CD4+ Foxp3+ regulatory T cells are persistently recruited during
long-term responses to particles (69, 83) (Figure 2). T regs
purified from the lung of silica-treated mice highly express
fibrogenic mediators, stimulate fibroblast proliferation in vitro
and increase lung collagen deposition upon transfer into naive
mice. Interestingly, the effects of T regs on fibroblast proliferation
recapitulate the main function of PDGF as a primary mitogen for
fibroblasts during lung fibrosis. The stimulatory effect of T regs
on fibroblasts in vitro and in vivo was completely abolished by a
PDGF receptor inhibitor (imatinib mesylate). It is thus likely that
the role of T regs is to increase tissue fibroblast numbers, and
consequently, amplify the subsequent fibroblast activation and
collagen deposition (83). The pro-fibrogenic functions of T regs
also comprise a stimulatory activity on Th2-like pro-fibrotic cells
August 2021 | Volume 12 | Article 690375
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(69). In contrast to what it is thought, T regs thus participate in
the fibrogenesis and are able to aggravate lung fibrosis induced
by fibrogenic particles (i.e. silica and asbestos) in absence of
inflammation (74). Finally, Xin and colleagues also observed a
clear balance between inflammatory Th effector cells (Th1 and
Th17) and T regs in mice treated with silica (84, 85).
Neutralization of T regs-immunosuppressive activity resulted
in enhanced lung inflammation and Th17 accumulation further
demonstrating that T regs are initially recruited to control
inflammatory responses (85, 86).

Based on the immunosuppressive profile of silica-treated mice,
other immunosuppressive populations among lymphocytes have
been investigated. Regulatory B lymphocytes (B regs), another
immunosuppressive cell population (see above), also accumulate
and participate in granuloma formation and fibrosis development
by producing lung IL-10 in mice treated with silica. A heightened
accumulation of inflammatory T effector cells (Th1 and Th17) but
limited pulmonary fibrosis were observed in B reg-depleted mice
treated with silica (87) (Figure 2). IL-10-producing B regs were also
noted in silicotic patients in absence of inflammatory reaction (76).
B regs exacerbate fibrogenesis by stimulating T regs functions and
polarization via the release of IL-10 (88). These findings indicated
that the accumulation and polarization of immunoregulatory
lymphocytes is a central event during particle-induced
pulmonary fibrosis with limited immunostimulation.

Finally, M-MDSC are also progressively and specifically
accumulated during the development of pulmonary fibrosis.
Indeed, a close relationship between the accumulation of
MDSC, pulmonary immunosuppression and lung fibrosis was
clearly found in mice treated with silica or CNT (89, 90)
(Figure 2). Beside M2-like macrophages and T regs,
immunosuppressive MDSC also expressed TGF-b1 conferring
to these myeloid cells the capacity to down regulate T effector cell
activity (91). In order to define their role in fibrosis, lung MDSC
were purified from silica-treated mice and co-cultured with naive
lung fibroblasts. MDSC stimulates lung fibroblasts to release
tissue inhibitor of metalloproteinase and collagenolytic activity
by expressing TGF-b1. They contribute to lung fibrogenesis by
inducing a non-degrading collagen microenvironment (89).

The persistent accumulation of immunoregulatory
macrophages, lymphocytes and myeloid cells in the lung during
the progressive establishment of experimental silicosis is consistent
with studies on tuberculosis (92) and lung cancer (93) that often
affect the silicotic patients. Indeed, these cells control neutrophilic
inflammation and anti-tumor T effector lymphocytes dedicated to
microorganism and tumoral cell elimination. However, authors
found that human silicosis is accompanied by a reduced number
of blood regulatory T cells and speculated that the absence of these
regulatory cells may explain the occurrence of autoimmune diseases
(e.g. systemic scleroderma, rheumatoid arthritis and systemic lupus
erythematosus) (94, 95). These conflicting results highlight the
possible limitations of the mouse models. Injection of silica in
mice does not fulfill all conditions encountered in patients with
silicosis (infection, cancer and autoimmune diseases). Moreover,
experimental models used to study the effects of silica are relatively
short compared to human silicosis. These contradictory results also
Frontiers in Immunology | www.frontiersin.org 6
suggest that the fibrogenic activity of immunoregulation is only
effective in a non-inflammatory environment.
INCLUSIVE IMPLICATION OF
IMMUNOREGULATORY MEDIATORS AND
CELLS IN LUNG FIBROTIC DISEASES

Immunoregulation is operative in different fibrotic context and
not specifically concomitant to particle-induced fibrogenesis.
Indeed, recent investigations using complementary mouse
models of lung fibrosis also reported that inflammation is not
an absolute prerequisite for fibrogenesis and that the fibrotic
pathological process can develop through immunoregulation.

IL-10 induce lung collagen deposition and fibrosis when
overexpressed in transgenic mice (96, 97). These observations
correspond to those noted when TGF-b1 is overexpressed in
murine lungs (98). Intratracheal transfer of adenoviral
recombinant IL-10 or TGF-b1 to murine lung has been shown to
dramatically increase fibroblast accumulation and expression of
type I and type III collagen around airways as well as in the
pulmonary interstitium (70, 99, 100). The pro-fibrotic function of
IL-10 is associated to infiltration of fibrocytes and M2-like
macrophages (97). In addition; IL-10 and TGF-b1 contribute to
lung injury and fibrosis by sensitizing epithelial cells to apoptosis
(98, 101). TIM-3+ M2-like macrophages that possess strong
immunoregulatory functions is now considered as an important
pro-fibrotic population by being a key source of TGF-b1 and IL-10.
Adoptive transfer of this immunoregulatory population promoted
bleomycin-induced lung fibrosis by highly secreting TGF-b1 and
IL-10 (102). Recent data at single cell level suggest that pro-fibrotic
macrophages did not demonstrate a shaped and clear M2-like
polarization but resemble to alveolar macrophages deriving from
monocytes (103). Altogether, these studies indicated that the long-
term overexpression of M2 like-related immunoregulating
cytokines that suppress inflammation such as TGF-b1 and IL-10
are also profibrotic factors in the lung.

In vivo expansion of lung CD4+CD25+Foxp3+ T regs cells
during bleomycin-induced lung fibrosis unexpectedly led to an
increase of fibrogenesis. More important, this pro-fibrotic effect
was a lymphocyte-dependent process. A marked down-regulation
of type 1 and an increase of type 2 immune responses in the lungs
were proposed to explain T reg fibrogenic activity (104, 105). These
observations were corroborated by Chakraborthy and colleagues.
Depletion of T regs ameliorate bleomycin-induced acute lung
fibrosis by modulating Th effector cell balance. In addition,
adoptive transfer of Sema 7a1 T regs induces fibrosis in the TGF-
b1–exposed murine lung by altering the production of T-cell
mediators (106).

Accumulation of MDSC with functional immunosuppressive
activity was also noted in bleomycin-induced experimental
pulmonary fibrosis and their potential role in fibroblast activation
investigated (107, 108). Purified MDSC differentiate into lung
fibroblasts as manifested by significantly elevated a-smooth
muscle actin and TGF-b1 expression. Differentiation of MDSC
August 2021 | Volume 12 | Article 690375
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into fibrocytes could also be possible during tissue repair processes.
Indeed, there is some evidence that peripheral monocytes and
MDSCs differentiate into fibrocytes (109, 110). These cells have
the ability to promote fibroblast proliferation, migration, and
collagen production but also differentiate into myofibroblasts
(111, 112). Altogether, these previous experimental studies are
well in accordance with the immunoregulation concept elaborated
from findings reported after particle exposure and supporting that
persitent immunoregulatory environment is profibrotic in absence
of immunostimulation (Figure 3).

The disconnection between fibrosis and inflammation is not
limited to patients developing silicosis or asbestosis. Clinical
measurements of inflammation in IPF patients developing
fibrosis fail to correlate scar formation with inflammation and
immunostimulation. Corticosteroids have never conclusively
Frontiers in Immunology | www.frontiersin.org 7
been shown to significantly alter the course of pulmonary
fibrosis in patients and have, at best, limited efficacy in the
treatment of scarring disease (113).

Interestingly, the expression TGF-b1 and IL-10 mainly by
macrophages was increased in lung biopsies from patients with IPF
compared with controls, suggesting the presence of M2-like
macrophages (114, 115). Single-cell multi-omics approaches
characterizing macrophage populations in health and lung fibrotic
disease at high resolution tempered a clear accumulation of M2-like
polarized macrophages in fibrotic tissue. Fibrotic macrophages in IPF
patients are now identified as proliferating SSP1-positive
macrophages (116, 117). However, it has been suggested that Th2-
related cytokines such IL-4 and IL-3 as well as M-CSF activate this
subset of proliferating macrophages (117). Clinical reports showed
increased number and function of CD4+CD25+FoxP3+ T regs in the
FIGURE 3 | Schematic representation of the implication of the different immunoregulatory cells and mediators in lung fibrosis. The studies on experimental lung
fibrosis have highlighted a new pathological pathway, which suggests that pulmonary fibrosis is orchestrated by an immunoregulatory response characterized by a
persistent accumulation of pulmonary immunoregulatory cells (regulatory T and B lymphocytes, i.e. T and B regs; regulatory myeloid cells, i.e. M2/
immunosuppressive macrophages and Myeloid Derived Suppressive Cells, MDSC) and a sustained production of IL-10 and TGF-b1. The persistent accumulation of
these elements to control immunostimulatory responses in the lungs contribute, however, to pulmonary fibrosis. This sustains the view that immunoregulation is
important pro-fibrotic environment that could markedly explain the development of the lung fibrotic response under non-inflammatory conditions.
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lungs and blood of patients with IPF associated with a more
progressive clinical course (106, 116, 118–120). More recently, the
importance of MDSC was also suggested by the observation of
MDSC accumulation in IPF lungs (108, 121).

In conclusion, the presence of immunoregulatory
microenvironment may be relevant to human pathology. Based on
these recent findings, it is important to consider the possibility that
regulatory lymphocytes and myeloid cells may also drive
fibroproliferative wound healing. Consequently, these cells and
their cytokine products could become therapeutic targets
in patients developing fibrotic diseases. Particularly, these studies
identified as potentially important targets the production of TGF-b1
and IL-10 by immunoregulatory cells in non-immunostimulatory
conditions. The clinical separation of patients reaches from
immunoregulatory or immunostimulatory scar formation could
offer novel markers for the pathological assessment as
well as novel regulators and drug targets to treat pulmonary
fibroproliferative diseases.
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