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Abstract: Glutamine is a non-essential amino acid that acts as a principal source of nitrogen and nu-
cleic acid biosynthesis in living organisms. In Saccharomyces cerevisiae, glutamine synthetase catalyzes
the synthesis of glutamine. To determine the role of glutamine synthetase in the development and
pathogenicity of plant fungal pathogens, we used S. cerevisiae Gln1 amino acid sequence to identify
its orthologs in Magnaporthe oryzae and named them MoGln1, MoGln2, and MoGln3. Deletion of
MoGLN1 and MoGLN3 showed that they are not involved in the development and pathogenesis of
M. oryzae. Conversely, ∆Mogln2 was reduced in vegetative growth, experienced attenuated growth
on Minimal Medium (MM), and exhibited hyphal autolysis on oatmeal and straw decoction and corn
media. Exogenous L-glutamine rescued the growth of ∆Mogln2 on MM. The ∆Mogln2 mutant failed
to produce spores and was nonpathogenic on barley leaves, as it was unable to form an appressorium-
like structure from its hyphal tips. Furthermore, deletion of MoGLN2 altered the fungal cell wall
integrity, with the ∆Mogln2 mutant being hypersensitive to H2O2. MoGln1, MoGln2, and MoGln3 are
located in the cytoplasm. Taken together, our results shows that MoGLN2 is important for vegetative
growth, conidiation, appressorium formation, maintenance of cell wall integrity, oxidative stress
tolerance and pathogenesis of M. oryzae.
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1. Introduction

Glutamine is a non-essential amino acid and is required in a vast number of metabolic
pathways in living organisms. For example, in humans glutamine is required in pathways
such as nitrogen metabolism, ammonia detoxification, acid–base homeostasis, osmotic
regulation, cell signaling, and proliferation [1,2]. In addition, it has been reported that
glutamine acts as a precursor for neurotransmitters and a substrate for immune cells [3,4].
Furthermore, it has been shown that glutamine is used for the synthesis of biomolecules
such as glucose, purines, pyrimidines, adenosine monophosphate, and nicotinamide ade-
nine dinucleotide (NAD+) [5–7]. Since glutamine is a crucial metabolite in the metabolism
of nitrogen, the intracellular glutamine levels are tightly regulated. Experimental data
for various fungi have provided evidence that glutamine is a key effector of nitrogen
catabolite repression (NCR), a regulatory cascade that is biased toward or prefers the
utilization of reduced nitrogen sources such as ammonium and glutamine at the expense
of more complex and energy-demanding ones, e.g., nitrate, purines, and proteins [8,9].
A classic example occurs in Saccharomyces cerevisiae, where a well-established model of
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the target of rapamycin (Tor) exists, where intracellular glutamine levels are sensed by
the (Tor) complex kinase 1 (TorC1), thus relaying the signal of glutamine availability to
the GATA-type transcription factors Gln3 and Gat1. These GATA factors then respond by
activating the transcription of NCR-sensitive genes during nitrogen-starvation conditions
or when non-preferred nitrogen sources are present [10,11]. Glutamine signals for nitrogen
metabolite repression can also be sensed from ammonia, glutamate, and nitrate [12–14].

Glutamine synthetase (GS) catalyzes the biosynthesis of glutamine, which acts as a
principal nitrogen source for the synthesis of nucleic acid and protein synthesis. In living
cells, ammonium assimilation occurs in two main ways [15]: NADP-dependent glutamate
synthesis, a reaction catalyzed by glutamate dehydrogenases, in which ammonium and 2-
oxoglutarate act as the substrates [16]; and the assimilation of ammonium by the glutamine
synthetase, an ATP-dependent reaction that results into the formation of an intermediate
product γ-glutamyl phosphate from glutamate, which eventually combines with ammonia
to generate glutamine and inorganic phosphate [15,16]. Several researchers have studied
the biological role, physico-chemical properties, and kinetic properties of GS from different
sources [17]. Methionine sulfoximine (MetSox) and phosphinothricin (PPT) have been
reported to be the inhibitors of GS activity, as they tightly bind to its active site of GS [16].
Because of the inhibition property of these two molecules on GS, GS can act as an important
target for bio-pesticides to be used in the agricultural industry. GS exhibits both the
biosynthetic and γ-glutamyl transferase activities, with these two different forms based
on whether the GS is in adenylylated or non-adenylylated forms [18,19]. The biosynthetic
activity catalyzes the formation of glutamine from glutamate and ammonia, whereas the
γ-glutamyl transfer activity catalyzes the transfer of γ-glutamyl moieties to peptides, amino
acids, or water [20]. GS is classified as GSI, GSII, or GSIII [21]. GSI enzymes were thought to
exist exclusively in prokaryotes, and their structures were shown to be dodecameric [22,23].
Later, GSI enzymes were also identified in mammals and plants [24,25]. In filamentous
fungi, GSII family proteins were identified, and in most cases, as one GS-encoding gene
present in the fungal genomes. However, two different subunits of GSα and GSβ were
found to encode the GSII family in the filamentous fungus Neurospora crassa [26,27]. The
presence of these two GS encoding genes in N. crassa was confirmed by genome sequencing.
Since GS plays a crucial role in glutamine biosynthesis and nitrogen regulation. The
activity of GS is tightly regulated to a level that allows the amount of glutamine available
for various metabolic pathways to be strictly controlled. Studies on how GS is regulated
have clearly been shown in Prokaryotes. For instance, in Escherichia coli, glutamine and
end products of glutamine metabolism, such as AMP, ADP, and other nucleotides, offer
a cumulative feedback inhibition to GS1 by competing with the substrate glutamate for
the active site [28]. In Bacillus subtilis, GSI activity is feedback-inhibited by glutamine [29]
and this inhibited form of GS controls the DNA-binding capabilities of the TnrA and
GlnR transcription factors via protein interaction [29,30]. Both these transcription factors
eventually regulate gene expression in response to changes in nitrogen availability.

Because glutamine is the major substrate for numerous metabolic pathways, it is an
important amino acid for normal functioning of living organisms; therefore, deficiency of
glutamine caused by a defect in GS interferes with normal life. In Drosophila melanogaster,
mutations in the gene encoding the mitochondrial glutamine synthetase I (GSI) resulted in
embryo lethality, consequently leading to female sterility [31], Moreover, in mice, GS was
also found to be essential in early embryogenesis [31]. In humans, mutations in the
GLUL gene (OMIM: 138290), which encodes for GS, were reported to cause an ultra-rare
recessive inborn error of metabolism—congenital glutamine synthetase deficiency [32],
whereas in plants GS has been reported to be essential for normal plant growth and
development [33]. In filamentous fungi such Aspergillus nidulans and Schizosaccharomyces
pombe, GS plays a crucial role in growth and development [34,35], while deletion of the
GS in plant pathogenic fungi Gibberella fujikuroi GS gene showed that, besides influencing
growth, GS has a significant impact on the transcriptional control of primary and secondary
metabolism [36].
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Magnaporthe oryzae is a devastating hemibiotrophic fungus that attacks most cereals,
including rice, thus posing a great challenge to global food security. Due to its economic
significance and genetic tractability, the blast fungus has been developed as a model
organism for plant-fungus interaction studies [37]. Infections begin when conidia germinate
and develop a specialized dome-shaped structure called an appressorium upon coming
in contact with the rice plant surface [38]. The mature appressorium then accumulates
enormous turgor pressure (8 MPa), which helps it puncture the rice cuticle, thus facilitating
its entry into plant cells [39]. While inside the host cell, the fungus differentiates into
bulbous invasive hyphae (IH), which eventually colonizes the adjacent plant cells. Rice
blast fungus initially adopts a hemibiotrophic infection strategy, which lasts approximately
four to six days; the fungus colonizes the living host cells without causing damage to the
host at this stage. Later it enters into a devastating necrotrophic phase, where the fungus
rapidly destroys the infected host tissue [40].

Previously, findings have documented the role of GS in growth and development in
different organisms [33,35,41]. However, the exact influence of GS in the development and
pathogenicity of plant fungal pathogens is unclear. In this study, we identified three genes
that encode GS in rice blast fungus. We established that MoGLN1 and MoGLN3 had no
influence on the development and pathogenicity of M. oryzae. In contrast, our findings
showed that MoGLN2 is important in glutamine biosynthesis, exerting a significant effect
on vegetative growth, conidiogenesis, appressorium-like structure formation, and melanin
biosynthesis, and that it was crucial for the maintenance of cell wall integrity and oxidative
stress tolerance in M. oryzae. Our findings, therefore, suggest that glutamine biosynthesis
mediated by MoGLN2 could provide a suitable target point for antifungal design against
plant fungal pathogens.

2. Materials and Methods
2.1. Fungal Strains and Culture Conditions

The wild-type (WT) Guy11 and mutant strains of M. oryzae were cultured at 25 ◦C
using complete media (CM: 0.6% yeast extract, 0.6% casein hydrolysate, 1% sucrose,
1.5% agar) as described in [42]. Other media used in this study include minimal media
(MM: 6 g of NaNO3, 0.52 g of KCl, 0.52 g of MgSO4, 1.52 g of KH2PO4, 10 g of glucose,
and 15 g of agar in 1 L of double-distilled water), straw decoction and corn media (SDC:
100 g of rice straw, 40 g of corn flour, and 15 g of agar in 1 L of double-distilled water),
and oatmeal agar media (OTM: 50 g of oatmeal and 15 g of agar in 1 L of double-distilled
water). Samples for genomic DNA extraction, total RNA, and protoplast preparation were
cultured in liquid CM in an orbital shaker at 110 rpm for 3 days.

Sensitivity assays were performed by culturing strains on CM plates supplemented
with cell wall enforcing agents (0.01% SDS, 200 µg/mL Congo red, 200 µg/mL Calcofluor
white), oxidative stress agent 2.5 mM, and 5 mM hydrogen peroxide (H2O2) for 8 days at
28 ◦C inside a dark chamber.

To induce conidiation, strains were cultured on rice bran agar (2% rice bran, 1.5% agar;
pH 6.5) for 10 days at 28 ◦C in the dark followed by 3 days of continuous light illumination.
Conidia were collected in 5 mL of distilled water, filtered using three-layer lens paper,
and counted with a hemocytometer under a light microscope.

2.2. Target Gene Deletion and Complementation in M. oryzae

To generate MoGLN deletion mutants, the split-marker approach [43] was adopted
in the construction knockout vectors used for deleting each of the MoGLN genes in M.
oryzae. The upstream and downstream flanking fragments of MoGLN genes were amplified
with the primer pairs listed in Table S1. The amplified PCR fragments were ligated with
hygromycin phosphotransferase (hph) cassette fragments amplified with primers HYG/F
+ HY/R and YG/R + HYG/R (Table S1) by overlapping PCR.

Protoplast preparation and transformation procedures were performed as previously
described [44] Transformants were selected on TB3 medium supplemented 250 µg/mL hy-
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gromycin B (Roche Applied Science, Penzberg, Germany) and 200 µg/mL G418 (Invitrogen,
Carlsbad, CA, USA), and the mutants were verified by Southern blotting analysis.

To generate complementation strains, fragments containing the full length of MoGLN1,
MoGLN2, and MoGLN3 genes and their respective 2.3 Kb native promoters were amplified
with primer pairs Gln1 com F/R, Gln2com F/R, and Gln3 comF/R (Table S1). The result-
ing PCR products were cloned in pKNTG vector containing neomycin resistance. Each
construct was transformed in its respective mutant protoplast.

2.3. Appressorium Formation, Penetration, and Infection Assays

Conidia collected from 10-day-old rice-bran culture were adjusted to (5× 104 spores/mL)
using sterilized double-distilled water with 0.02% (v/v) Tween-20 solution. Appressorium
formation assays were performed by adding 20 µL of conidial suspension from Guy11;
∆Mogln1 and ∆Mogln3 strains were on an artificial hydrophobic coverslip and incubated in
darkness at 28 ◦C. Appressorium formation was then examined at 4 h, 8 h, 12 h, and 24 h
time intervals. Conidia germination and appressorium formation on inductive surfaces
were measured as described previously [45].

To observe the formation of the appressorium-like structure, mycelial plugs from
Guy11, ∆Mogln1, ∆Mogln2, and ∆Mogln3 strains were inoculated on artificial cover slips
and 10-day-old barley leaves; appressorium-like structure formation was then observed
after 30 h.

Rice infection was performed by spraying 3-week-old rice (Oryzae sativa cv. CO39)
seedlings with the Guy11, ∆Mogln1, and ∆Mogln3 strain conidial suspension (5 ×
104 spores/mL). The infected plants were incubated in a humid chamber at 28 ◦C for
24 h in darkness and later transferred to a 12 h photoperiod chamber. Leaves were then
imaged 7 days after infection.

For the barley infection assay, mycelial plugs derived from Guy11, ∆Mogln1, ∆Mogln2,
and ∆Mogln3 were incubated on 10-day-old barley leaves at 28 ◦C for 24 h in darkness.
Later, they were transferred to light conditions and imaged after 7 days.

To observe penetration and invasive hyphal growth, 10 µL of Guy11, ∆Mogln1, and
∆Mogln3 conidial suspension (5 × 104 spores/mL) was repeatedly dropped on 10-day-old
barley leaves. The infected leaves were then incubated for 30 h, 48 h, and 72 h at 28 ◦C
under humid conditions; penetration and invasive hyphal growth were examined using
a microscope.

2.4. Nucleic Acid Manipulation, Southern Blotting Analysis, and qRT-PCR

DNA extraction was performed using cetyltrimethylammonium bromide (CTAB) [46],
gel electrophoresis, enzyme digestion, and ligation, and Southern blot hybridization was
performed using standard procedures [47]. Probe labelling, hybridization, and detection
were performed with a DIG High Prime DNA Labeling and Detection Starter Kit (Roche
Applied Science, Penzberg, Germany).

Total RNA was isolated from frozen fungal mycelia and rice leaves using a Magen
universal RNA kit as previously described [48]. To measure the relative abundance of gene
transcripts, RNA was extracted from mycelia cultured in CM liquid medium for 3 days
at 28 ◦C in an orbital shaker (110 rpm). To measure the relative abundance of MoGLN,
MoGLN2, and MoGLN3 transcripts during fungal developmental stages, the total RNA
samples were extracted from mycelia grown in CM liquid medium, conidia, and rice leaves
inoculated with the conidia of Guy11 (1 × 108 spores/mL) for 8, 24, 48 and 72 h.

Total RNA for all the samples was extracted using a Magen universal RNA kit, as
described previously [48]. For RT-PCR and quantitative real time RT-PCR (qRT-PCR), 5 mg
of total RNA was converted to cDNA using HiScript®11Q select RT supermix (vazyme).
The qRT-PCR data were generated with an Eppendorf Realplex2 master cycler (Eppendorf
AG 223341, Hamburg, Germany). Thermocycler conditions were as follows: 2 min at
95 ◦C, followed by 40 cycles of 95 ◦C for 15 s, 60 ◦C for 30 s, and lastly, the melting curve
stage of 95 ◦C for 15 s, 60 ◦C for 15 s, and 95 ◦C for 15 s. The stable expression actin
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gene (MGG_03982) was used as internal control, and three independent replicates were
performed for each experiment; the qRT-PCR primers used are listed in Table S1. Data
analysis was performed using the delta delta-CT (2−∆∆CT) method, as described in [49].

2.5. Western Blot Assays

The wild-type Guy11 and the mutant strains were grown in liquid CM medium at
28 ◦C for 4 days with agitation at 110 rpm. Total protein was extracted from mycelia as de-
scribed previously [50]. The intensity of the signal corresponding to phosphorylated Mps1
was detected by binding of phospho-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) (D13.14.4E)
Rabbit mAb and p44/42 MAPK (ERK1/2) antibodies (Cell Signaling Technology, Beverly,
MA, USA).

2.6. RNA Isolation, Library Construction, and Sequencing

Total RNA from Guy11 and ∆Mogln2 mutants was extracted using a Magen Kit as
described previously [48]. The RNA integrity was assessed using the RNA Nano 6000 Assay
Kit of the Bioanalyzer 2100 system (Agilent Technologies, California, CA, USA). cDNA
libraries were constructed, and Illumina sequencing was performed on (Novaseq platform).
Isolation of poly(A) mRNA from total RNA and construction of cDNA libraries were
performed according to methods described previously [51]. After removing low-quality
raw reads, the clean reads from each library were aligned to the transcript sequences of the
Magnaporthe oryzae isolate 70-15 using bowtie2 (v2.3.4.1) [52], and the average mapping rate
was 80.41%. The expression abundance was calculated by RSEM (v1.3.1) [53] with default
parameters, and the TPM values of transcripts were exported to DESeq2 (v1.29.16) [54] for
differential expression analysis. A gene was defined as being a differentially expressed
gene (DEG) in the case of:

i. a minimum 2-fold difference in gene expression between the control Guy11 and the
∆Mogln2 (|log2FC| > 1);

ii. a maximum false discovery rate (FDR) of 0.01 (FDR < 0.01).

2.7. High-Performance Liquid Chromatography (HPLC) Assays

Samples for glutamine for other amino acid tests were prepared by culturing the
Guy11 and the ∆Mogln1, ∆Mogln2, and ∆Mogln3 at 28 ◦C in liquid CM medium for three
days and transferring to minimal medium for an additional two days with agitation
(110 rpm). The strains were then filtered out, rinsed with sterilized double-distilled water,
and frozen in liquid nitrogen. The dried hyphae tissues from the respective strains were
ground into powders using a mortar and pestle. The grinded hyphae generated from
the Guy11 and the MoGLN mutants were separately weighed into 2 mL Eppendorf tubes
(EP-tubes) containing 50 µmol/L BTI acetonitrile. A total of 25 µL of pyridine aqueous
solution (50 µmol/L) was added and mixed well. The samples were then incubated at
50 ◦C for 4 h. A total of 200 µL of 6 mol/HCl was then added, followed by hydrolyzation at
110 ◦C for 24 h. After the hydrolysis was completed, samples were dried with nitrogen and
hydrolyzed with 100 µL of acetonitrile-pyridine-triethylamine-water (10:5:2:3) buffer. Then,
20 µL PITC (phenyl isothiocyanate) was added and incubated at 50 ◦C for 1 h. Following
this, 250 µL of the samples were pipetted into a clean 2.0 mL EP tube, containing 750 µL
0.02 mol/L HCL and 200 µL N-hexane to remove impurities. The lower layer was then
carefully transferred to the new 2.0 mL EP tubes for detection of glutamine. The quantifying
services were performed and completed by Qingdao Sci-tech Innovation Quality Testing
Co. Ltd., Qingdao, China.

For detection of other amino acids in Guy11 and ∆Mogln2 mutants, ACQUITY UPLC®

BEH C18 column (2.1 × 100 mm, 1.7 µm, Waters, Milford, MA, USA) model HPLC instru-
ment was used. Injection volume was 5 µL, and column temperature was 40 ◦C. Mobile
phase A used 10% methanol water (containing 0.1% formic acid) and mobile phase B used
50% methanol water (containing 0.1% formic acid). The gradient elution conditions were
0~6.5 min, 10~30% mobile phase B; 6.5~7 min, 30~100% mobile phase B; 7~8 min, 100% mo-
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bile phase B; 8~8.5 min, 100~10% mobile phase B; 8.5~12.5 min, 10% mobile phase B. Flow
rate was 0~8.5 min, 0.3 mL/min and 8.5~12.5 min, 0.3~0.4 mL/min. Mass spectrometry
conditions were as follows: electrospray ionization (ESI) source, positive ionization mode.
The ion source temperature was 500 ◦C, the ion source voltage was 5500 V, the collision
gas was 6 psi, the curtain gas was 30 psi, and the atomization gas and auxiliary gas were
both 50 psi. The quantifying services were performed and completed by Fuzhou Beiruisi
Biotechnology Co. Ltd., Fuzhou, China.

2.8. Microscopy

To observe conidiophore development, conidia shapes, appressorium formation
on inductive surfaces, appressorium penetration, and invasive hyphae development,
an Olympus DP80 light microscope (Tokyo, Japan) was used, while GFP localization assays
were examined using a confocal microscope equipped with Nikon A1 plus instrument
(Nikon, Tokyo, Japan).

2.9. Bioinformatic Analysis

To identify MoGln1, MoGln2, and MoGln3 in the M. oryzae, the S. cerevisiae Gln1 amino
acid sequence was used to perform a blastP search in the M. oryzae genome KEEG database
(http://www.kegg.jp/kegg-bin/show_organism?org=mgr, accessed on 10 January 2020).
The Gln1, Gln2, and Gln3 amino acid ortholog sequences from different fungi were ob-
tained from (www.ncbi.nlm.nih.gov/blast, accessed on 10 January 2020) using the blast
algorithm [55]. Domains were predicted by Pfam (http://pfam.janelia.org/, accessed on
10 January 2020) and presented using IBIS 1.0.3 software [56]. Sequence alignment was
performed using MEGA v6, while phylogenetic tree was generated using the Maximum-
Likelihood method, with branches of the tree tested with 1000 bootstrap replicates. The
accession number for amino acid sequences used for phylogenetic analysis is as follows:
MoGLN1 (XP_003709618); MoGLN2 (XP_003719336); MoGLN3 (XP_003721264); NcGLN1
(XP_960904); SsGLN1 (XP_001588876); FoGLN1 (XP_018240222); FgGLN1 (XP_011319217);
TrGLN1 (XP_006967001); AfGLN1 (XP_023088587); AniGLN1 (XP_661763); UmGLN1
(XP_011390105); ScGLN1 (ONH79708); FfGLN1 (XP_023431521); AfGLN3 (RAQ56449);
FgGLN3 (XP_011315791); TrGLN3 (XP_006967843); UmGLN3 (XP_011392295); AniGLN3
(XP_664258); NcGLN3 (XP_965073); SsGLN1 (XP_001593468).

3. Results
3.1. Identification of Glutamine Synthetase in M. oryzae

To obtain sequences for M. oryzae glutamine synthetase genes, referred to here as
MoGLN, the amino acid sequence of glutamine synthetase gene (GLN1) from Saccharamycess
cerevisiae was used to conduct a blastP search in Kyoto Encyclopedia of Genes and Genome
(KEGG) resource section for M. oryzae (http://www.kegg.jp/kegg-bin/show_organism?
org=mgr, accessed on 10 January 2020). Three putative amino acid sequences that en-
code glutamine synthetase were identified and were named, based on a previous study,
as MoGln1 (MGG_06888), MoGln2 (MGG_14279), and MoGln3 (MGG_02538) [57]. The
three obtained MoGln amino acids were used for a blastP search to identify glutamine
synthetase amino acid sequences in other fungi in the Fungi and Oomycetes genomics
resources database (http://fungidb.org/fungidb/, accessed on 10 January 2020) and Na-
tional Centre of Biotechnology Information (https://www.ncbi.nlm.nih.gov/, accessed on
10 January 2020). The retrieved amino acid sequences were then used to conduct Pfam-
based domain prediction. Results obtained showed that Gln1 and Gln2 contained two
conserved domains—glutamine synthetase, a catalytic domain, and glutamine synthentase,
a beta-Grasp domain—while Gln3 contained a single glutamine synthentase—beta-Grasp
domain—and this domain was conserved in fungi (Figure 1A–C). Phylogenetic analysis
revealed that MoG1n1, MoG1n2, and MoG1n3 shared a close ancestor with Gln1, G1n2,
and G1n3 of Neurospora crassa (Nc), respectively (Figure 1A–C).

http://www.kegg.jp/kegg-bin/show_organism?org=mgr
www.ncbi.nlm.nih.gov/blast
http://pfam.janelia.org/
http://www.kegg.jp/kegg-bin/show_organism?org=mgr
http://www.kegg.jp/kegg-bin/show_organism?org=mgr
http://fungidb.org/fungidb/
https://www.ncbi.nlm.nih.gov/
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3.2. Expression of MoGLN Genes at Different Developmental Stages of M. oryzae

It was initially assumed that through-checking the expression pattern of the three
MoGLN genes at various developmental stages of the fungus would provide information
on their likely roles. Using the WT strain, we quantified the expression level of these genes
at conidia and in the planta stage (8 h, 24 h, 48 h, and 72 h). The Guy11 mycelia stage
was used as a control, and in the planta stages, 21-day-old rice leaves were sprayed with
Guy11 spores. The expression of MoGLN1 was found to be higher at the late infection
stages of fungus, with the fold increases of −0.7, 0.1, −0.5, 5.5, and 4.0 at sporulation,
8 h, 24 h, 48 h, and 72 h, respectively (Figure 2A). For MoGLN2, we noted an elevated
expression at the sporulation stage, with fold increases of 2.0, 1.0, 0.4, −0.6, and −0.8 at
conidiation, 8 h, 24 h, 48 h, and 72 h, respectively (Figure 2B). Finally, our stage-specific
qPCR analysis established that the transcripts levels of MoGLN3 were high at the early
infection stage, with fold increases of 2.4, 3.8, 0.8, 0.6, and 1.0 at the asexual stage, 8 h, 24 h,
48 h, and 72 h, respectively (Figure 2C). To validate the exact functions of the three MoGLN
genes, their respective deletion mutants were generated, and phenotype was characterized.

3.3. Generation of ∆Mogln1, ∆Mogln2, and ∆Mogln3 Deletion Strains

To establish the exact roles of the MoGLN genes in development and pathogenicity of
the rice blast fungus, we generated their respective deletion mutants using a homologous
recombination approach by replacing each of MoGLN1, MoGLN2, and MoGLN3 open
reading frame (ORF) with the hygromycin phosphotransferase (HPH) gene. To generate
the gene deletion constructs, the upstream (A fragment) and downstream (B fragment)
flanking regions of MoGLN1, MoGLN2, and MoGLN3 were amplified and ligated with 5′

and 3′ split parts of a hygromycin-resistant gene. Each of the constructs was separately
transformed in Guy11 protoplast and screened on TB3 medium containing hygromycin
resistance. Putative transformants for MoGLN1, MoGLN2, and MoGLN3 deletions were
screened by PCR with gene-specific ORF primer pairs (Table S1), and successful deletion of
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MoGLN1, MoGLN2 and MoGLN3 was subsequently confirmed using southern blot assays.
Results obtained after confirmation assays showed MoGLN1, MoGLN2, and MoGLN3 open
reading frame (ORF) were successfully replaced with a single integration of hygromycin
phosphotransferase (HPH) to generate ∆Mogln1 (Figure 3A,B), ∆Mogln2 (Figure 3C,D),
and ∆Mogln3 (Figure 3E,F).
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specific expression of MoGLN1; (B) phase-specific expression of MoGLN2; (C) phase-specific expression of MoGLN3. The
phase-specific expression of the three MoGLN genes was quantified by quantitative real-time (QRT)-PCR after synthesis
of cDNA in each developmental stage. The ACTIN gene (MGG_03982) was used for internal control for normalization,
and the expression level of each gene at the mycelial stage was considered 1 for further comparisons. The qPCR results
were obtained from three independent biological replications with three technical replicates. Error bars represent standard
deviations. Asterisks indicate statistically significant differences (**, p < 0.01; ***, p < 0.001; one-way ANOVA was used to
analyze data with Tukey’s multiple-comparison test in GraphPad Prism 8).
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Figure 3. Southern blot analysis to confirm MoGLN deletion mutants. (A,B) Sketch representation of deletion of MoGLN1
in the M. oryzae genome and southern blot analysis of the gene knockout mutants and WT Guy11 via MoGLN1 ORF
probe A and hygromycin phosphotransferase (HPH) probe B. (C,D) Sketch representation of deletion of MoGLN2 in M.
oryzae genome and southern blot analysis of the gene knockout mutant and WT Guy11 via MoGLN2 ORF probe A and
hygromycin phosphotransferase (HPH) probe B. (E,F) Sketch representation of deletion of MoGLN3 in the M. oryzae genome
and southern blot analysis of the gene knockout mutant and the WT Guy11 using MoGLN3 ORF probe A and hygromycin
phosphotransferase (HPH) probe B.

3.4. MoGLN2 Contributes to Vegetative Growth in M. oryzae

To investigate the contribution of MoGLN genes in vegetative growth of M. oryzae,
we cultured the three respective MoGLN mutants on CM (complete medium), MM (min-
imal medium), OTM (oatmeal medium), and SDC (straw decoction and corn medium)
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and observed their growth. After eight days of inoculation, we established no signifi-
cant difference in mycelial growth in terms of colony diameter between the wild-type
Guy11, ∆Mogln1, and ∆Mogln3 on four different types of medium (Figure 4A,B). However,
the growth of ∆Mogln2 mutants was remarkably reduced in CM, OTM, and SDC, and the
mutant failed to grow on MM medium (Figure 4A,B). In addition, the ∆Mogln2 exhibited
poor development of aerial hyphal on SDC and OTM when compared to the wild-type
Guy11, ∆Mogln1, and ∆Mogln3 strains (Figure 4A,B). Introduction of MoGLN2 gene into
the ∆Mogln2 mutant restored the growth defects of ∆Mogln2 on CM, MM, OTM, and SDC.
These results indicated that MoGLN2 is required for proper vegetative growth in M. oryzae.
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Figure 4. MoGLN2 is required for vegetative growth in M. oryzae. (A) Photographs showing radial and aerial hyphal growth
of the wild-type (WT) and the three mutants. Mycelial plugs inoculated on CM, MM, OTM, and SDC were cultured in the
dark at 28 ◦C, and photograph taken after eight days. (B) Bar graphs showing the difference in radial growth between the
WT and the three MoGLN mutants. The error bar represents the standard deviation of three independent replicates, while
the double asterisk shows significant difference (**, p < 0.01; ***, p < 0.001; one-way ANOVA was used to analyze data with
Tukey’s multiple-comparison test in GraphPad Prism 8).

3.5. Glutamine Auxotroph in Rice Blast Fungus Occurs via Inactivation of MoGLN2

In Aspergillus nidulans, deletion of the glutamine synthetase gene resulted in the mutant
cells requiring glutamine for growth in MM medium [34]. Because the ∆Mogln2 mutant
was attenuated in MM, we speculated the mutant cells lacked sufficient glutamine levels
required for growth. To test this idea, we first tested the growth of ∆Mogln2 in MM medium
supplemented with different concentrations of glutamine (0.1 mM, 0.625 mM, 1.25 mM,
2.5 mM, and 5 mM). Our results showed that exogenous glutamine could restore growth of
∆Mogln2 on MM medium, with more aerial hyphal being observed at high concentrations of
glutamine (Figure 5A). Since the growth defect of ∆Mogln2 on MM medium was attributed
to insufficient glutamine levels, we detected intracellular glutamine in the mycelia of
the three MoGLN mutants. No significant change in glutamine levels was recorded in
∆Mogln1, while glutamine levels were significantly lower and higher in ∆Mogln2 and
∆Mogln3 strains, respectively (Figure 5B). We then sorted to determine if deletion of one
MoGLN gene affected the expression of the remaining two genes. We observed an up-
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regulation of MoGLN2 in ∆Mogln1 mutant, with expression of MoGLN3 being unaffected
(Figure 5C). The expression level of MoGLN1 was higher in the ∆Mogln2 mutant, with
no detectable change in expression of MoGLN3 (Figure 5D). Lastly, both MoGLN1 and
MoGLN2 were up-regulated in ∆Mogln3 mutant (Figure 5E). These expression patterns
showed that glutamine levels in ∆Mogln1 were from MoGLN2, low levels of glutamine in
the ∆Mogln2 mutant were from MoGLN1, and the highest glutamine levels in ∆Mogln3 were
from MoGLN1 and MoGLN2. These results suggest that both MoGLN1 and MoGLN2 could
be involved in de novo glutamine biosynthesis. However, the level of glutamine produced
by MoGLN1 is not sufficient enough to sustain normal cellular function. Further evidence
for the involvement of MoGLN1 in glutamine biosynthesis was reported in ∆Moasd4 after
glutamine levels were significantly lowered in ∆Moasd4 upon deletion of MoGLN1 in
∆Moasd4 [57]. Overall, we conclude that glutamine auxotroph in rice blast fungus only
occurs via deletion of MoGLN2.
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Figure 5. Exogenous glutamine restores growth defects of ∆Mogln2 on MM medium. (A) Radial growth of ∆Mogln2 mutant
on MM medium supplemented with different concentrations of glutamine. The experiment was repeated three times
with similar results obtained. (B) Statistical representation of intracellular glutamine levels detected in WT and the three
MoGLN mutants. Error bars represent standard deviations obtained from two independent tests. Data were analyzed
using GraphPad Prism 8; asterisks indicate statistically significant differences (**, p < 0.01; ***, p < 0.001; based on one-way
ANOVA with Tukey’s multiple-comparison test). (C) Graph showing the expression of MoGLN2 and MoGLN3 in ∆Mogln1
mutant; (D) graphical representation of expression pattern of MoGLN1 and MoGLN3 in the ∆Mogln2 mutant; (E) expression
pattern of MoGLN1 and MoGLN2 in ∆Mogln3 mutant. The actin gene was used as a control. Data for statistical analysis
were obtained after performing three independent biological replicates. Error bars represent standard deviations. Asterisks
indicate statistically significant differences (**, p < 0.01; ***, p < 0.001; one-way ANOVA was used to analyze data with
Tukey’s multiple-comparison test in GraphPadPrism 8).

3.6. MoGLN2 Is Required for Asexual Reproduction in M. oryzae

To determine the roles of the three MoGLN2 genes in sexual reproduction in rice blast
fungus, the wild-type Guy11 and the three mutant strains were cultured on sporulation
rice bran medium for 10 days, and then conidiophore development and conidia formation
evaluated. The wild-type strain, ∆Mogln1, and ∆Mogln3 produced similar conidiophores
and an equal number of spores (Figure 6A,B). No conidia or conidiophores was formed in
the cultures of ∆Mogln2 mutants (Figure 6A,B). Since rice bran medium could not initiate
conidiation in ∆Mogln2, we tried different conidiation media, including OTM and SDC.
Neither of these activated conidiation in the ∆Mogln2 mutant. As glutamine synthetase
catalyzes the biosynthesis of glutamine, we supplemented rice bran, OTM, and SDC
media with different concentrations of glutamine (1 mM, 2 mM, 5 mM, 10 mM, 20 mM,
40 mM, and 60 mM). None of these glutamine concentrations rescued the conidiation
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defects in the ∆Mogln2 mutant. We then performed quantitative real-time PCR (qRT-PCR)
analysis to check the transcript levels of conidiation-related genes, including COS1, COM1,
CON6, CON7, HOX6, HOX7, and STUA. The expression of these genes was found to be
significantly reduced in the ∆Mogln2 mutant (Figure 6C), indicating that MoGLN2 regulates
conidiogenesis in rice blast fungus through controlling the expression of conidiation-related
genes. In summary, these results shows that MoGLN2 plays an important role in asexual
reproduction in rice blast fungus.
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and spore formation capacity of strains cultured on rice bran medium for 10 days. Bar, 10µm. (B) Graph showing
quantification of spores from Guy11, ∆Mogln1, ∆Mogln2, ∆Mogln3 strains on rice bran medium. The ∆Mogln2 mutant
failed to produce spores. (C) Quantitative RT-PCR analysis showing the expression of conidiation-related genes in the WT
and ∆Mogln2 mutants. The expression was normalized actin gene (MGG_03982). Results are means obtained from three
independent replicates. Error bars represents standard deviations. Asterisks indicate statistically significant differences (**,
p < 0.01; ***, p < 0.001; one-way ANOVA was applied to analyze data with Tukey’s multiple-comparison test in GraphPad
Prism 8).

3.7. MoGLN2 Is Important for Appressorium Formation in M. oryzae

In rice blast fungus, infection occurs when M. oryzae spores land on the rice leaf surface
and germinate into a specialized structure called appressorium. Besides rice leaves, appres-
sorium also forms when M. oryzae spores encounter a hydrophobic surface, as it mimics
the rice leaf surface. Because ∆Mogln1 and ∆Mogln3 produced spores, their respective
spores alongside with those from the Guy11 wild strain were inoculated on an artificial
hydrophobic surface, and spore germination and appressorium formation were examined
at 4 h, 8 h, 12 h, and 24 h time intervals. Both ∆Mogln1 and ∆Mogln3 produced normal
appressoria that was indistinguishable from the wild-type strain (Figure 7A), thus confirm-
ing that MoGLN1 and MoGLN3 are not required for appressorium formation in M. oryzae.
It has been reported that rice blast fungus can form appressoria from its hyphae [58]. We
then evaluated appressorium formation using mycelia plugs of Guy11, ∆Mogln1, ∆Mogln2,
and ∆Mogln3 strains by first observing appressorium-like structure formation on an ar-
tificial hydrophobic surface. After 24 h, no appressorium-like structure formed on a
hydrophobic surface inoculated with mycelia from ∆Mogln2; in contrast, the ∆Mogln1 and
∆Mogln3 formed appressorium-like structures similar to the Guy11 strain (Figure 7B). Fur-
thermore, we examined appressorium-like structures on barley leaves inoculated with the
three MoGLN mutants; similarly, ∆Mogln2 failed to form appressorium-like structures on
barley leaves, but ∆Mogln1 and ∆Mogln3 and the Guy11 strain formed appressorium-like
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structures (Figure 7B). Collectively, we conclude that MoGLN2 is important for appresso-
rium formation in rice blast fungus.
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Figure 7. MoGln2 plays a crucial role in appressorium formation in rice blast fungus. (A) Bright
field micrographs of the appressoria formed by WT, ∆Mogln1, and ∆Mogln3 mutants on inductive
hydrophobic cover slips. Conidia from WT, ∆Mogln1, and ∆Mogln3 mutants were inoculated on
a hydrophobic cover slip, and appressoria formation was observed at 4 h, 8 h, 12 h, and 24 h
time intervals. Scale bar = 10µm. (B) An appressorium-like structure formed on a hydrophobic
surface and barley leaves. Mycelia plugs derived from WT, ∆Mogln1, ∆Mogln2, and ∆Mogln3 were
inoculated on 10-day-old barley leaves, and inductive hydrophobic cover slips; appressorium-like
structure formation was observed after 30 h. Scale bar = 10µm. The ∆Mogln2 mutant failed to form
appressorium-like structures both on barley leaves and hydrophobic cover slips.

3.8. MoGLN2 Is Essential for Full Virulence in M. oryzae

To establish the role played by different subunits of glutamine synthase in the pathogenic-
ity of rice blast fungus, we first examined the virulence of ∆Mogln1, ∆Mogln2, and ∆Mogln3
by inoculating their mycelial plugs on 10-day-old barley leaves. Seven days after inocula-
tion, ∆Mogln2 failed to cause disease symptoms both on intact and injured barley leaves,
while the wild-type, ∆Mogln1, and ∆Mogln3 produced large similar blast lesions on barley
leaves (Figure 8A,B). Since ∆Mogln1 and ∆Mogln3 strains could produce spores, we har-
vested the Guy11, ∆Mogln1, and ∆Mogln3 spores from 10-day-old rice bran cultures used
to spray 3-week-old seedlings of the susceptible rice variety CO39. Our results showed that
both ∆Mogln1 and ∆Mogln3 strains produced necrotic blast lesions on rice leaves similar to
the wild-type strains (Figure 8C). Based on these results, we conclude that amongst the
three MoGLN genes, MoGLN2 is solely involved in the pathogenicity of rice blast fungus.
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Figure 8. MoGLN2 plays an important role in promoting the infections of M. oryzae. (A,B) ∆Mogln2
failed to induce hyphae-mediated blast lesions on intact and injured barley leaves. (C) Rice leaves
bearing blast lesions of ∆Mogln1 and ∆Mogln3 mutant spores. Both barley and rice leaf images were
taken seven days post inoculation.

3.9. MoGLN1 and MoGLN3 Are Not Involved in Appressorium Penetration and Infectious
Hyphal Growth

Appressorium penetration is an essential process that allows the fungus to get inside
the host cell and cause infection. Appressorium-mediated penetration occurs when turgor
pressure builds up within appressorium, which is used to breach the host surface [59].
Owing to the fact that ∆Mogln1 and ∆Mogln3 spores could form appressorium on the
hydrophobic coverslip, we monitored appressorium penetration and subsequent invasive
hyphal formation by inoculating conidia from Guy11, ∆Mogln1, and ∆Mogln3 on 10-day-
old barley. After 30 h of inoculation, the majority of the appressoria of Guy11, ∆Mogln1,
and ∆Mogln3 strains had penetrated the barley cells and started forming invasive hyphae
(Figure 9). At 48 h, the invasive hyphal of the three strains had spread and colonized the
adjacent cells (Figure 9), clearly showing that deletion of either MoGLN1 or MoGLN3 did
not affect these processes. These results indicate that both MoGLN1 and MoGLN3 are not
required for appressorium penetration and invasive hyphal formation in rice blast fungus.
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hyphal growth was observed at 30 h, 48 h, and 72 h. Bar= 20 µm.
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3.10. Cell Wall Integrity Is Impaired in the ∆Mogln2 Deletion Mutant

To investigate the contribution of three MoGLN genes in fostering cell wall integrity in
rice blast fungus, we first monitored and measured the vegetative growth of three MoGLN
mutants on CM medium amended with cell wall stressors Calcofluor white (CFW) [60,61],
Sodium Dodecyl Sulfate (SDS) [62,63], and Congo Red (CR) [64]. After eight days post
inoculation, our results showed only ∆Mogln1 mutant was highly inhibited on plates
containing CR. On SDS medium, both ∆Mogln1 and ∆Mogln2 were highly inhibited, while
on CM medium containing CFW, ∆Mogln2 was slightly inhibited, with ∆Mogln3 being
highly sensitive (Figure 10A,B). We performed additional tests to conclusively determine
which among the genes is involved in the maintenance of cell wall integrity. We examined
the effects of lytic enzymes (10 mg/mL lysing enzymes) on the three ∆Mogln mutants.
Fewer protoplasts were generated by the ∆Mogln2 mutant compared to wild-type Guy11,
∆Mogln1, and ∆Mogln3 strains (Figure 10C,D), indicating either the cell wall structure
was altered, making it less resistant to degradation by lytic enzymes, or the membrane
and cell wall were breached as a result of excess rupture, thus leading to poor protoplast
recovery. In rice blast fungus, reduced Mps1 phosphorylation was previously reported
in a mutant with altered cell wall integrity [65]. Therefore, we performed western blot
assay to determine the phosphorylation of Mps1 in the three MoGLN mutants. Mps1
phosphorylation remained unchanged in the ∆Mogln1 and ∆Mogln3 strains, and it was
remarkably reduced in the ∆Mogln2 mutant, indicating cell wall defects associated with
loss of MoGLN2 (Figure 10E). Taken together, these results indicate MoGLN2 is important
in maintaining cell wall integrity in rice blast fungus.

3.11. Intracellular Levels of Other Amino Acids Were Higher in ∆Mogln2 Mutant

In Saccharomyces cerevisiae, reduced glutamine levels detected in a hypo-osmorality
GLN1 mutant resulted in increased intracellular amounts of the other amino acids, except
for proline [66]. To confirm whether low levels of glutamine affected the concentration of
other amino acids in the ∆Mogln2 mutant, the Guy11 and ∆Mogln2 strains were cultured in
liquid CM medium for three days and then transferred to MM medium for an additional
three days. Mycelial samples were then used to detect the concentration of other amino
acids. The steady-state intracellular pools of almost all the amino acids detected were
found to have increased in ∆Mogln2 (Table 1). Analysis of RNA sequencing data for
the Guy11 and ∆Mogln2 mutants showed that increased intracellular amino acid levels
in ∆Mogln2 correlated with the expression of genes related to amino acid biosynthesis,
as RNA sequencing transcriptome data showed that the majority of genes, including those
involved in translation, amino acid activation, tRNA aminoacylation, tRNA aminoacylation
for protein translation, amide biosynthetic process, and peptide biosynthetic process, were
found to be differentially up-regulated in the ∆Mogln2 mutant (Figure 13A). This confirms
that reduced glutamine levels in ∆Mogln2 resulted in increased biosynthesis of other
amino acids.

3.12. ∆Mogln2 Is Hypersensitive to Oxidative Stress

In rice fungal pathogens, sensitivity to oxidative stress using hydrogen peroxide is
well documented [67–69]. To investigate the contributions of the three MoGLN genes in
oxidative stress tolerance in rice blast fungus, we observed the mycelia growth of the three
respective mutants on CM medium amended with 2.5 mM and 5 mM concentrations of
hydrogen peroxide (H2O2). We established that mycelial growth of the ∆Mogln1 mutant
was moderately inhibited on CM medium containing 5 mM H2O2, while the ∆Mogln3
mutant exhibited less sensitivity both on 2.5 mM and 5 mM concentrations of H2O2 relative
to the WT strain (Figure 11A,B). However, the ∆Mogln2 mutant was hypersensitive to both
2.5 mM and 5 mM H2O2 concentrations (Figure 11A,B), suggesting therefore that MoGLN2
could be involved in the regulation of oxidative stress tolerance in rice blast fungus.
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Figure 10. MoGLN2 is essential for maintenance of cell wall integrity in M. oryzae. (A) The Guy11 and
MoGLN mutants were cultured on CM medium supplemented with (200 µg/mL CR, 0.01% SDS, and
200 µg/mL CFW) at 28 ◦C for 8 days before being photographed. (B) Graph showing inhibition rate
of WT and mutant strains. Inhibition rate was compared to the growth rate of each untreated control
(Inhibition rate = (the diameter of untreated strain − the diameter of treated strain)/(the diameter of
untreated strain × 100%)). Three independent repeats were performed, with similar results obtained.
(C) Light microscopic examination of protoplast release after treatment with cell-wall-degrading
enzymes for 30 min, 60 min, and 90 min at 28 ◦C. Bar= 10 µm (D) Graphical representation of
protoplast release assay for the WT and three MoGLN mutants. (E) Phosphorylation of MoMps1 in WT
and three MoGLN mutants, ∆Mops1, and ∆Mopmk1. Proteins were prepared from mycelia inoculated
in liquid CM, and the phosphorylated MoMps1 was detected by binding of the antiphospho-p44/42
antibody, with the Mpk1 antibody as a control. The phosphorylation level of MoMps1 in the ∆Mogln2
strains indicated the reduced activation of MoMps1. Statistical results for growth inhibition rate and
protoplast results were obtained from at least three independent replicates. Error bars represent
standard deviations. Asterisks indicate statistically significant differences (*, p < 0.005 **, p < 0.01,
***, p < 0.001; one-way ANOVA was used to analyze data with Tukey’s multiple-comparison test in
GraphPad Prism 8).
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Table 1. Intracellular free amino acids.

Amino Acid p-Value

Guy11 ∆Mogln2

Mean Mean

(µg/g) SD (µg/g) SD

Alanine 0.004 2158.11 41.42232 3521.255 111.47538

Serine 0.015 394.285 88.46613 911.845 13.73908

Proline 0.01 234.075 22.90319 1054.775 116.4817

Valine 0.008 399.47 1.24451 1125.905 90.12076

Isoleucine 0.014 150.165 24.71338 604.355 73.88559

Threonine 0.03 412.59 9.48937 2922.265 405.98536

Aspartate 0.097 287.76 51.36424 503.8 89.35001

Leucine 0 219.82 3.73352 880.38 7.43876

Asparagine 0.012 119.015 35.65939 421.79 31.09856

Lysine 0.038 2444.65 479.2487 17,505.03 4272.45938

Glutamate 0.024 1731.585 84.53462 4348.05 583.39138

Methionine 0.026 50.34 3.6911 186.5 31.72081

Histidine 0.094 474.54 36.44428 1734.325 585.7319

Phenylalanine 0.007 4.1295 4.1295 460.365 38.33226

Arginine 0.282 2692.36 310.1512 4231.13 1456.97938

Tryptophan 0.002 50.755 0.3182 241.79 12.37437

Tyrosine 0.064 271.06 60.99503 1841.21 589.82605

SD represents standard deviation; mean is the average of two independent replicates.
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formed qPCR analysis to confirm the expression of these genes in the three MoGLN mu-
tants. As expected, BUF1, RSY1, and ALB1 were found to be down-regulated in the 
ΔMogln2 mutant (Figure 12B), indicating that the melanization defect exhibited by the 
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Figure 11. Sensitivity of the three MoGLN mutants to H2O2. (A) Growth phenotype of the WT and MoGLN mutants under
oxidative stress. The WT and three mutant strains were inoculated on CM agar medium with or without 2.5 mM H2O2 and
5 mM H2O2 and cultured at 28 ◦C for 10 days. (B) The colony diameters of the strain tested were measured, and statistical
analysis was performed. The growth inhibition rate was compared to the growth rate of each untreated control (Inhibition
rate = (the diameter of untreated strain − the diameter of treated strain)/(the diameter of untreated strain × 100%)). Three
independent repeats were performed, with similar results obtained. Error bars denote the standard deviations from means
obtained from three independent replicates. Asterisks indicate statistically significant differences (**, p < 0.01; ***, p < 0.001;
one-way ANOVA was used to analyze data with Turkey’s multiple-comparison test in Graph Pad Prism 8).
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3.13. MoGLN2 Is Important for Melanin Biosynthesis in Rice Blast Fungus

In fungal pathogens, mycelia and appressoria undergo melanization; appressorial
melanization is important for the normal functioning of the appressorium. After being
cultured in liquid CM medium for five days, we observed a darkening of mycelial color for
Guy11, ∆Mogln1, and ∆Mogln3 strains, implying that Guy11, ∆Mogln1, and ∆Mogln3 could
be undergoing hyphal melanization. In contrast, no clearly visible darkening of mycelia
was observed in culture inoculated with ∆Mogln2 strains (Figure 12A). This prompted
us to speculate that the failure of ∆Mogln2 mycelia to form black pigmentation could
be a result of the repression of genes important for melanization. We then performed
qPCR analysis to confirm the expression of these genes in the three MoGLN mutants. As
expected, BUF1, RSY1, and ALB1 were found to be down-regulated in the ∆Mogln2 mutant
(Figure 12B), indicating that the melanization defect exhibited by the ∆Mogln2 strain is
a result of reduced expression of these genes. Based on these results, we conclude that
MoGLN2 plays a crucial role in the regulation of hyphal melanization in rice blast fungus.
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Figure 12. MoGLN2 is required for hyphal melanization in M. oryzae. (A) Mycelial growth in liquid CM medium showing
impaired hyphal melanization as a result of MoGLN2 gene. (B) qRT-PCR analysis of the expression levels of genes important
for melanin biosynthesis in mycelium grown in liquid CM. Error bars denote the standard deviations from means obtained
from three independent replicates. Asterisks indicate statistically significant differences (*, p < 0.005; ***, p < 0.001; one-way
ANOVA was used to analyze data with Tukey’s multiple-comparison test in GraphPad Prism 8).

3.14. Differentially Expressed in ∆Mogln2 Mutant

Considering the dramatic phenotype exhibited by ∆Mogln2, we performed RNA
sequencing and analyzed the transcriptome data for Guy11 and ∆Mogln2. This was
aimed at establishing which genes were differentially expressed after deletion of MoGLN2.
We established that 3703 genes were differentially expressed, including 1819 and 1884
up-regulated and down-regulated genes, respectively (Figure S1A,B). Gene Ontology
(GO) and KEGG enrichment analysis for the genes up-regulated and down-regulated in
∆Mogln2 showed many enriched GO terms for up-regulated genes, including those that
are involved as ribosome, translation, peptide biosynthetic process, purine nucleoside
monophosphate metabolic process, ribonucleotide biosynthetic process, and obsolete cy-
tosolic part (Figure 13A). KEGG analysis showed three enriched pathways, including
Ribosome, oxidative phosphorylation’ and aminoacyl-tRNA biosynthesis (Figure S2A).
For down-regulated genes, we obtained fewer enriched results. In GO enrichment anal-
ysis, we discovered the term transmembrane transporter activity, peroxisome, and lipid
catabolic process were enriched (Figure 13B). Moreover, we only discovered two enriched
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pathways, including microbial metabolism in diverse environments and ABC transporters
(Figure S2B).

J. Fungi 2021, 7, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 13. Molecular functions of the genes up-regulated (A) and down regulated (B) in ΔMogln2 at a two-fold expression 
threshold based on the Gene Ontology (GO) terms. 

3.15. Subcelullar Localization of MoGLN Genes 
To evaluate the subcellular localization of MoGln1, MoGln2, and MoGln3 in rice blast 

fungus, the MoGLN1, MoGLN2, and MoGLN3 genes, with their corresponding native pro-
moters, were fused in the C-terminus region of GFP and cloned in the pKNTG vector con-
taining neomycin-resistant genes [70]. The constructs were separately transformed in their 
respective mutant protoplast. Results obtained showed that MoGln1-GFP, MoGln2-GFP, 
and MoGln3-GFP were all targeted to the cytoplasm in growing hyphae, conidia, and ap-
pressorium (Figure 14A–C), thus indicating the three MoGLN genes are all located in the 
cytoplasm in rice blast fungus. 

Figure 13. Molecular functions of the genes up-regulated (A) and down regulated (B) in ∆Mogln2 at a two-fold expression
threshold based on the Gene Ontology (GO) terms.

3.15. Subcelullar Localization of MoGLN Genes

To evaluate the subcellular localization of MoGln1, MoGln2, and MoGln3 in rice
blast fungus, the MoGLN1, MoGLN2, and MoGLN3 genes, with their corresponding native
promoters, were fused in the C-terminus region of GFP and cloned in the pKNTG vector
containing neomycin-resistant genes [70]. The constructs were separately transformed in
their respective mutant protoplast. Results obtained showed that MoGln1-GFP, MoGln2-
GFP, and MoGln3-GFP were all targeted to the cytoplasm in growing hyphae, conidia,
and appressorium (Figure 14A–C), thus indicating the three MoGLN genes are all located
in the cytoplasm in rice blast fungus.
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4. Discussion

Glutamine synthetase (GS) catalyzes the biosynthetic pathway involved in the synthe-
sis of glutamine, and thus plays an important role in the assimilation of nitrogen. These
enzymes have been extensively characterized in bacteria [41,71] and some filamentous
fungi [34,72]. However, their functions in rice blast fungus remain uncharacterized. In
this study, we identified and performed functional analysis of the three genes that encode
glutamine synthetase (GLN1, GLN2, and GLN3) in M. oryzae. Upon deletion of each of the
GS genes, we established that both MoGLN1 and MoGLN3 had no effect on the vegetative
growth of M. oryzae. However, ∆Mogln2 was significantly reduced in growth on CM, SDC,
and OTM. These findings echoed a previous study where glutamine synthetase GlnA1 of
Mycobacterium tuberculosis was required for growth in human THP-1 macrophages and
guinea pigs [41]. The ∆Mogln2 was attenuated in growth on MM medium, and supple-
mentation of MM medium with L-glutamine rescued the growth defects, demonstrating
that glutamine auxotroph in rice blast fungus occurs via inactivation of a single copy of
GS (MoGLN2); this differs from a previous study with Sinorhizobium meliloti (formerly
Rhizobium meliloti) that required all three GS genes to be inactivated to generate a strain
that was auxotrophic for L-glutamine [73].

Intracellular glutamine test assays showed that glutamine levels were significantly
reduced in ∆Mogln2, remained unchanged in ∆Mogln1, and were significantly higher in
∆Mogln3. An explanation for unchanged glutamine levels in the ∆Mogln1 mutant might be
that glutamine was being synthesized by MoGLN2. The higher glutamine levels in ∆Mogln3
were attributed to up-regulation of both MoGLN1 and MoGLN2. MoGLN1 was previously
reported to reduce higher glutamine turnovers in the ∆asd4 mutant after the MoGLN1
gene was deleted in the ∆asd4 mutant background [57]. This shows that MoGLN1 might
be involved in glutamine biosynthesis. Therefore, the likely source of low intracellular
glutamine detected in ∆Mogln2 was from up-regulation of MoGLN1; however, MoGLN1
cannot supplement MoGLN2 to produce sufficient glutamine levels required for fungal
development and pathogenicity. The amount of other amino acids was found to have
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significantly increased in ∆Mogln2 and correlates with a study on S. cerevisiae where the
intracellular amount of other amino acids was found to have increased in the S. cerevisiae
∆Scgln1 mutant [66]. The increased levels of the other amino acids in ∆Mogln2 might be
attributed to enhanced biosynthesis of amino acids, as our RNA sequencing data revealed
that genes related to amino acid biosynthesis, such as those involved in translation, amino
acid activation, tRNA aminoacylation, tRNA aminoacylation for protein translation, amide
biosynthetic process, and peptide biosynthetic process, were found to be up-regulated in
∆Mogln2 mutants.

Like in many fungal pathogens, conidiation and appressorium development are key
steps in the disease cycle of M. oryzae. Upon landing on the host surface, the conidia begin
to produce germ tubes and eventually develop into a specialized infection structure called
appressorium, with 8 MPa turgor pressure at the tips, which helps the fungus penetrate
host cell barriers [39]. Analysis of the conidiation profiles of the three MoGLN mutants
showed that both ∆Mogln1 and ∆Mogln3 had no effect on the asexual process in rice
blast fungus. However, ∆Mogln2 failed to produce conidia in the different sporulation
media tested. This observation was consistent with stage-specific qRT-PCR results, which
showed that MoGLN2 was highly expressed at the conidiation stage. It is well shown that
the aerial hyphal formation plays a crucial role during conidiophores differentiation and
conidiation [74–77]. The ∆Mogln2 exhibited hyphal autolysis, with poor development of
aerial hyphal on sporulation media SDC, OTM, and rice bran, indicating that the conidiation
defects of the mutant may be due to the inability to form conidiophores. Sporulation defects
of the mutant catalyzing amino acid biosynthetic process could be remediated by adding
corresponding exogenous amino acid [78,79]. In this study, several attempts were made to
supplement different sporulation media with L-glutamine concentration of 1 mM, 2 mM,
5 mM, 10 mM, 20 mM, 40 mM, and 60 mM; however, conidiogenesis could still not be
restored by ∆Mogln2. L-glutamine was reported to be unstable compared to the other amino
acids in aqueous solution [80] and given the long incubation time required for activation of
conidiation in M. oryzae on sporulation medium (at least 10 days in dark and three days in
light), it is most likely that a substantial amount of the initial L-glutamine is degraded in
the culture medium. This could be a possible reason why exogenous L-glutamine did not
rescue conidiation defects in ∆Mogln2.

Glutamine has been reported as one of the amino acids required by fungal pathogens
during host colonization for successful infection to occur. For instance, analysis of amino
acid changes during sunflower infection by Botrytis cinerea showed glutamine derived from
the host was required by the fungus during in planta infection [81]. Moreover, colonization
of Piriformospora indica to its host during in planta infection required glutamine [82]. In this
study both ∆Mogln1 and ∆Mogln3 had a sufficient amount of glutamine, and thus they
were able to colonize the barley cells and cause infection. However, the ∆Mogln2 mutant,
which had low levels of intracellular glutamine, failed to form appressorium-like structures
and thus was completely nonpathogenic on barley leaves. The failure of the ∆Mogln2
mutant to cause infection on barley leaves echoed previous studies with Mycobacterium
species, where loss of function of GLN1A and GLN1 resulted in attenuated virulence on
their respective hosts [41,83]. Our findings and previous studies on Mycobacterium species
clearly demonstrate that glutamine biosynthesis mediated by glutamine synthetase is a
critical process for pathogenic microorganisms to cause infection in their host.

The fungal cell wall is a vital structure with great plasticity and is crucial for main-
taining cellular integrity and viability. The cell wall plays an important role in different
functions, including controlling cellular permeability and cushioning the cell from osmotic
and mechanical stress [84–86]. In addition, the cell wall facilitates smooth interactions
of the cellular components with the external environment through adhesins and a large
number of receptors; upon their activation, triggers signal transductions inside the cell [84].
Variations in nutrient availability result in changes in the expression of enzymes required
for cell wall biosynthetic enzymes. It was previously reported that the loss of function of
glutamine synthetase in S. cerevisiae resulted in ∆Scgln1 mutant showing a defect in cell wall
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integrity [66]. Furthermore, glutamine synthetase GLN1-A in pathogenic Mycobacterium
bovis was reported to be essential in cell wall resistance [83]. Similarly in this study, we
established that the ∆Mogln2 mutants displayed increased sensitivity to cell wall stressors
when cultured on CM medium containing (CR, CFW, and SDC). Moreover, less protoplast
was formed in the ∆Mogln2 mutant compared to Guy11, ∆Mogln1, and ∆Mogln3 after being
treated with lytic enzyme, implying an altered cell wall structure and making it resistant
to degradation by lytic enzymes. Mps1 phosphorylation has been used as a marker for
cell wall integrity tests [65]. In this study, the phosphorylation level of MoMps1 was
decreased in ∆Mogln2 but not ∆Mogln1 and ∆Mogln3, further indicating the involvement
of MoGLN2 in cell wall fungal cell integrity. Our findings on the contribution of MoGLN2
in the maintenance of cell wall integrity in rice blast fungus and previous studies on GLN1
of S. cerevisiae and GLN1-A in pathogenic Mycobacterium bovis demonstrate the important
role of glutamine synthetase in cell wall integrity in living organisms.

It has been well demonstrated that ROS homeostasis is essential for fungal devel-
opment [87,88]. In rice blast fungus, loss of MoSEC22 resulted in reduced intracellular
ROS levels, with the mutant being highly sensitive to H2O2 and losing its virulence [89].
In this study, deletion of ∆Mogln2 was highly sensitive both on 2 mM and 5 mM H2O2,
indicating that MoGLN2 likely plays an important role in oxidative stress tolerance in rice
blast fungus.

In summary, we established that among the three MoGLN genes, MoGLN2 is required
for glutamine biosynthesis and is essential for growth, conidiogenesis, appressorium
formation, and pathogenicity. Moreover, we confirmed that MoGLN2 is involved in the
maintenance of cell wall integrity and oxidative stress tolerance in rice blast fungus. These
findings provide an attractive target for the development of antifungal agents required to
control the devastating effects of plant fungal pathogens.
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