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Abstract: Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disease that affecting females in 
reproductive age. Insulin resistance (IR), an important molecular basis for PCOS, accounts for at least 75% of women carrying this 
syndrome. Although there have been many studies on PCOS-IR, the detailed mechanisms are not fully understood. As essential hub 
for energy generation, mitochondria are critical to insulin secretion and normal function, whereas mutations in mitochondrial DNA 
(mtDNA) result in mitochondrial dysfunctions contributing to the pathophysiology of PCOS-IR via the regulation of balance of 
oxidative stress (OS), energy deficiency, or hormone metabolism. In the current review, we summarize the clinical and molecular 
features of PCOS-IR and discuss molecular mechanisms related to mtDNA mutations. 
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Introduction
Polycystic ovary syndrome (PCOS) is the most common endocrine disease occurring during reproductive years. It was 
a kind of endocrine and metabolic disorders that results in obesity, irregularity of menstruation, OS, hyperinsulinemia, 
hyperandrogenism, infertility, and sterility.1,2 First identified in 1935, PCOS was also recognized as Stein–Leventhal 
syndrome.3 Diagnosis of PCOS in adults can be made when at least two of three criteria are met: impairment of ovarian 
function, clinical and/or biochemical hyperandrogenism, and polycystic ovaries.4,5 Despite significant progress in 
diagnostic criteria for PCOS, the syndrome is still underdiagnosed or misunderstood by many practitioners.6

In the early stage, PCOS is often complicated with infertility and adverse pregnancy outcomes, while in the long term, 
the incidence of endometrial cancer, type 2 diabetes mellitus (T2DM), and cardiovascular diseases gradually increase, 
seriously harming women’s physical and mental health. Based on the National Institutes of Health’s diagnostic criteria, 
the geographical prevalence of this disease is 8.7%, 17.8%, and 12% based on the definition proposed by the Androgen 
Excess and PCOS Society.7 In a 2019 study, the prevalence of PCOS in Chinese women of reproductive age was 5.6%, 
which was consistent with other studies,8 while its incidence in Indian women was 9.13% according to a recent study.9 

Interestingly, PCOS seems to be more frequent in black women (8.0%) than white women (4.8%), with an incidence of 
6.6%.10 The prevalence of oligoanovulation and hyperandrogenemia is 56.6% and 60% among women with PCOS, 
respectively.11

Multiple morbidities are linked to PCOS, such as infertility, impairment of glucose tolerance, T2DM, coronary heart 
disease, depression, gynecological oncology, and nonalcoholic fatty-liver disease.12 Despite these well-characterized 
phenotypes, the pathogenesis of PCOS remains unclear. Increasing evidence suggests that genetic, epigenetic, and 
environmental factors contribute to PCOS progression.13 However, it was generally accepted that IR and hyperandrogen-
ism play key roles in its etiology.14
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The Role of IR in PCOS
Insulin is the master regulator of glucose metabolism. This hormone works under the condition of glucose uptake by 
insulin-sensitive tissue (muscle, liver, and adipose).15,16 IR is caused by defects in insulin signaling, reducing the ability 
of insulin to stimulate glucose utilization, and can thus lead to high insulin levels (hyperinsulinemia). It has been 
suggested that >75% of patients have associated IR.17

At the molecular level, IR and hyperinsulinemia may stimulate P450c17α and influence the activity of 17-hydroxylase 
and 17,20-lyase.18 Subsequently, these biochemical processes promote the secretion of androgen, increase free-androgen 
levels, and inhibit insulin signal transduction and translocation of glucose transporter 4, which affects glucose and lipid 
metabolism.19 Androgens can produce IR by directly affecting insulin action in skeletal muscle and adipose tissue, 
changing adipokine secretion and increasing visceral adiposity. Moreover, insulin and IGF120 synergize with luteinizing 
hormone (LH).21 Hyperinsulinemia enhances LH binding and androgen-producing response to LH.22 Hyperinsulinemia 
also reduces hepatic sex hormone–binding globulin,23–25 increasing free-testosterone levels in the blood and thus 
contributing to PCOS phenotypes (Figures 1 and 2).

Mitochondrial Structure and Function
Mitochondria are very important organelles consisting an of outer membrane, intermembrane space, and inner membrane 
that surround the matrix. Structurally, the inner membrane is tightlyfolded and is the major site for electron-transport 
chain (ETC) (complexes I–IV), which are essential for oxygen consumption in mammalian cells.26 Among these, 
complex I — nicotinamide adenine dinucleotide Q (NADH-Q) oxidoreductase, comprises enzymes consisting of iron 
sulfur and flavin mononucleotide.27 Complex II, also known as succinate dehydrogenase (SDH), contains four nuclear 
encoded subunits: SDHA, SDHB, SDHC, and SDHD. Interestingly, complex II has a dual role, ie, in the ETC. and the 
tricarboxylic acid cycle, linking the two essential energy-producing processes of the cell.28,29 Complex I and II oxidize 
NADH and flavin adenine dinucleotide 2, respectively, transferring the resulting electrons to ubiquinol, which 
carries electrons to complex III. Complex III shunts the electrons across the intermembrane space to cytochrome C, 
which brings electrons to complex IV.30,31 Complex IV then uses the electrons to reduce oxygen to water. There are many 
enzymes located within the mitochondrial matrix that are critical for metabolic pathways, including tricarboxylic acid 
cycle or β-oxidation.

Mitochondria are also important for the maintenance of cellular energy homeostasis. They are often called the 
powerhouses of the cell because of their significant role in the supplementation of ATP via oxidative phosphorylation 
(OxPhos). In contrast, mitochondria also generate reactive oxygen species (ROS) through ETC complexes, and excess 

Figure 1 Influence of hyperinsulinemia on various human organs.

https://doi.org/10.2147/DMSO.S393960                                                                                                                                                                                                                               

DovePress                                                                                                                                

Diabetes, Metabolic Syndrome and Obesity 2023:16 140

Dong et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


ROS production will induce OS and cause mitochondrial dysfunctions.32 Mitochondria contain their own genetic 
material, mtDNA, which encodes seven genes of the ETC complex I: one for ETC complex III, three for ETC complex 
IV, and two for ETC complex V.33 The rest of the mitochondrial proteins are encoded by nuclear genes (Figure 3).34

Homoplasmy and Heteroplasmy
mtDNA has a very high sequence-evolution rate, in part because it is exposed to ROS. mtDNA mutations include point 
mutations, deletions, and insertions. mtDNA mutations can be either homoplasmic or heteroplasmic when just one or more than 
two variants exist, respectively.35,36 The heteroplasmic level of a certain mtDNA mutation is critical in clinical phenotypes.36

Heteroplasmic mtDNA mutations are frequently associated with human pathologies because they cause more severe 
mitochondrial dysfunction than homoplasmic mtDNA mutations. Under normal conditions, mtDNA can “repair” 
mitochondrial dysfunction. When it comes to a certain heteroplasmic level, nevertheless, such compensation will be 
insufficient and lead to clinical expression of disease (Figure 4).37,38

OS and PCOS-IR
Because mitochondria are the major sites for ROS generation, overproduction of ROS will lead to OS and 
consequent imunbalance between the oxidant and antioxidant systems.39 This imbalance may be caused by several 
metabolic activities, including obesity, hyperinsulinemia, and dyslipidemia.40 The predominant ROS in the mitochondria 
are superoxide anions (O2

−), which are produced by the leakage of electrons from the ETC, which can then react with O2.41

Endometrial IR is linked to hyperandrogenemia, obesity, and inflammation and strongly associated with OS, resulting 
in an upregulation of OS caused by excessive ROS and pregnancy impairment.42 OS can lead to IR through the 
impairment of insulin signaling and causing adipokine dysregulation.43 OS also regulates some classical signaling 
pathways, such as NFκB and JNK, which in turn phosphorylate insulin-receptor substrate proteins and lead to their 
degradation.44 Overproduction of ROS also suppresses GLUT4 translocation in cells via affecting insulin signaling.45

Figure 2 Summarized scheme of the pathophysiology of PCOS. 
Abbreviations: GnRH, gonadotropin-releasing hormone; LH, luteinizing hormone; FSH, follicule-stimulating hormone; SHBG, sex hormone –binding globulin.

Diabetes, Metabolic Syndrome and Obesity 2023:16                                                                          https://doi.org/10.2147/DMSO.S393960                                                                                                                                                                                                                       

DovePress                                                                                                                         
141

Dovepress                                                                                                                                                            Dong et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 3 Genetic map of human mitochondrial genome, which has a 16,569 bp sequence. Red boxes indicated PCOS-IR–associated mtDNA mutations.

Figure 4 Heteroplasmy and the threshold effect.
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PCOS-IR–Associated mtDNA Mutations
ND1 T3394C Mutation
The ND1 T3394C (p.Y30H) mutation changes an amino acid (AA) that is extremely conserved in >90% of mammalian mtDNAs 
and believed to be associated with PCOS-IR.46,47 Functional analysis has revealed that this mutation affects the stability of ND1 
mRNA, as well as complex I assembly and activity, decreases ATP levels and mitochondrial membrane potential (MMP), and 
enhances ROS production.47,48

ND2 C5178A Mutation
The m.C5178A mutation causes the alternation of leucine to methionine at position 237 of the corresponding AA, which 
occurrs within the ND2 gene in complex I and is associated with PCOS-IR,46 longevity,49 and acute myocardial 
infarction.50 Markedly decreased ATP, MMP, superoxide dismutaseand significantly increased ROS, malondialdehyde, 
and 8-hydroxydeoxyguanosine have been identified in polymononuclear leukocytes derived from subjects harboring this 
mutation, suggesting that the m.C5178A mutation may cause OS and result in mitochondrial dysfunction.51

ND5 T12338C and T12811C Mutations
We previously identified homoplasmic m.T12338C (p.M1T) together with tRNASer(UCN) C7492T mutation in a patient 
with PCOS-IR.52 At the molecular level, m.T12338C altered well-conserved methionine with threonine; therefore, the 
ND5 mRNA was expected to be shortened by two AAs.53 Using cybrid cell models, the m.T12338C mutation decreased 
the stability of the ND5 polypeptide, affecting the assembly and activity of respiratory chain complexes.54 Therefore, m. 
T12338C causes a mitochondrial dysfunction that plays a key role in PCOS-IR.

The m.T12811C (p.Y159H) mutation occurs at extremely conserved residues in ND5, which is essential for the 
functions of complex I.55 The alternation of tyrosine to histidine is believed to affect the structure and function of the 
transmembrane region of the ND5 protein.56 Since ND5 plays a a putative role in maintening the functions of complex I, 
the m.T12811C mutation may affect the ND5 polypeptide and influence ETC activities.57

D-loop Mutations
The D-loop region is where mtDNA replication and transcription occur, and is important for transcription of both heavy and light 
strands.58 A recent case–control study by Deng et al suggested that variants m.G207A, m.16036GGins, and m.16049Gins may 
decrease the risk of PCOS in a Chinese population.59 The m.G207A substitution was located at the heavy strand, which is critical 
for mtDNA replication, suggesting that m.G207A may affect the binding affinity and influence the replication of mtDNA.60 

While m.16036GGins and m.16049Gins both occurred at hypervariable region 1, notably they were found to reduce the risk of 
endometriosis,61 highlighting the importance of these mutations in maintaining mitochondrial functions.

4977-bp Deletion
The 4977-bp deletion is one of the most common deletions of mtDNA, spanning approximately a third of the entire 
mitochondrial genome (nucleotides 8470–13,447), and is regarded as a pathogenic deletion in PCOS.62,63 The 4977-bp 
deletion removes five tRNAs and seven genes encoding respiratory chain complexes that are important for normal OxPhos 
functions. The 4977-bp deletion results in an impairment of protein synthesis and reduces ATP and mtDNA copy number.64

tRNALeu(UUR) Mutations
We previously described a Chinese pedigree with PCOS-IR that harbored a heteroplasmic tRNALeu(UUR) A3302G 
mutation.65 The proband’s mother and grandmother were diagnosed with T2DM. The m.A3302G mutation occurred at 
two nucleotides from the 5’ end of tRNALeu(UUR), which is evolutionarily conserved from various species (Figure 5A). 
As such, it can be anticipated that m.A3302G mutation may influence 5’ end processing.66 Biochemical analysis has 
revealed that this mutation leads to severe complex I and IV deficiencies. A marked decreased in the stability of 
tRNALeu(UUR) was identified in cybrids with this mutation. In addition, the m.A3302G mutation led to abnormal 
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processing of RNA19, an unprocessed RNA intermediate comprising mt-16S rRNA, mt-tRNALeu(UUR), and mtND1.67,68 

Therefore, the m.A3302G mutation can cause mitochondrial dysfunctions involved in PCOS-IR.
Another PCOS-IR–associated mutation is m.C3275T in tRNALeu(UUR), which has been reported in another family 

with PCOS and metabolic syndrome.69 The m.C3275T mutation was located in a well-conserved position in the variable 
region of tRNALeu(UUR) (Figure 5A). A recent study revealed that the m.C3275T mutation was a risk factor of Leber’s 
hereditary optic neuropathy.70 Intriguingly, m.C3275T disrupted Watson–Crick base-pairing (28A–46C) and may have 
caused a failure in tRNALeu(UUR) metabolism.

tRNAGln Mutations
By mutational screening for mt-tRNA genes in 80 patients with PCOS-IR and 50 healthy controls, we identified a set of tRNA 
mutations.71 Among these, m.T4363C mutation occurred at the anticodon stem of tRNAGln (conventional position 38). 
A mutation at position 38 needed to be modified and played important roles in tRNA structure and function (Figure 5B).72 

Bioinformatic analysis indicated that the m.T4363C mutation caused the thermodynamic change of tRNAGln69. The m.T4363C 
mutation has been identified in a Chinese pedigree with hypertension, but detailed molecular mechanisms remain unexplored.73 

While the m.T4395C mutation occurs at the sixth base of mt-tRNAGln-accept arm, adjacent to the 5’ end of tRNAGln (Figure 5B), 
interestingly the mutant 4395C formed a novel (6C–64G) base-pairing that was associated with essential hypertension.74 The 
secondary structure altered by the m.T4395C mutation may influence tRNA function and impair mitochondrial translation.

tRNACys Mutation
The homoplasmic m.G5821A mutation resides at the acceptor arm of tRNACys gene (position 6). This mutation has been 
reported to be associated with cardiomyopathy,75 and is also a risk factor in clinical expression of deafness-related m. 
A1555G mutation.76 At the molecular level, m.G5821A abolishes conserved base-pairing (6G–67C); therefore, it may 
lead to failure of tRNA metabolism via the alternation of its structure (Figure 5C).77

Figure 5 (A-G) Cloverleaf structure of mt-tRNA genes, arrows indicate the positions of PCOS-IR related mutations.
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tRNASer(UCN) Mutation
The m.C7492T mutation in homoplasmy is located at the anticodon stem of tRNASer(UCN) (position 26). Notably, the 
cytosine at that position is conserved from bacteria to human mitochondria, emphasizing the importance of m.C7492T 
mutation to tRNA function (Figure 5D).78 A heteroplasmic mutation (m.T4295C) occurring at the same conventional 
position in tRNAIle has been reported to cause chronic progressive external ophthalmoplegia.79 Therefore, the m.C7492T 
mutation may have the same impact on tRNA function.

tRNAAsp Mutation
Adenine-to-guanine alternation at position 7543 affects a well-conserved adenosine in the anticodon stem of tRNAAsp, 
which may influence the posttranscriptional modification of this tRNA (Figure 5E).80 Yeast genes harboring C-to-T 
transition at position 28 are transcribed and can be further processed to form the maturation of 4S-size tRNAAsp, whereas 
mutant tRNA may not be charged with radiolabeled aspartate.81 Subjects with m.A7543G mutation have shown partial 
cytochrome C oxidase deficiency, suggesting the potential pathogenicity of this mutation in mitochondrial dysfunction.82

tRNALys Mutation
The homoplasmic A8343G mutation affects the first adenine in the TψC loop of tRNALys (position 54). The nucleotide at 
that position is often modified, thus playing an important role in the structure and function of tRNA.83 This mutation may 
affect tRNA aminoacylation ability and binding affinity with mitochondrial elongation factor Tu, which is critical for 
mitochondrial protein synthesis (Figure 5F).84,85 Therefore, the m.A8343G mutation is pathogenic in PCOS-IR.

tRNAGlu Mutation
The well-known m.A14693G mutation occurs at a conserved position of the TΨC loop of tRNAGlu (Figure 5G). The nucleotide 
at position 54 (m.A14693G) of tRNAGlu is often modified, thus having an impact on tRNA functions.86 It has been proposed that 
the m.A14693G mutation can cause failure in tRNAGlu metabolism and impair mitochondrial protein synthesis.87

Mechanism of PCOS-IR–Associated mtDNA Mutations
Mutations in mtDNA have structural and functional consequences, such as affecting OxPhos complexes and influencing 
mitochondrial protein synthesis. Mmost of these mtDNA mutations occurred with mt-tRNA genes (Figure 5 and 
Table 1). mt-tRNA mutations may destabilize tRNA tertiary structure, alter RNA processing, and lead to defects in 

Table 1 Summary of PCOS-IR–associated Mt-tRNA mutations

tRNA species Allele Nucleotide position 
in tRNAs

Structure 
location

Homoplasmy/ 
heteroplasmy

Aberrant tRNA Biology References

tRNALeu(UUR) C3275T 44 Variable region Homoplasmy Disrupts conserved base-pairing [69]

A3302G 71 Acceptor arm Heteroplasmy Affects 3’-end processing [65]

tRNAGln T4363C 38 Anticodon stem Homoplasmy Affects tRNA posttranscriptional 

modification

[69]

T4395C 6 Acceptor arm Homoplasmy Creates new base-pairing [69]

tRNACys G5821A 6 Acceptor arm Homoplasmy Disrupts conserved base-pairing [75,76]

tRNASer(UCN) C7492T 26 Anticodon stem Homoplasmy Creates new base-pairing [52]

tRNAAsp A7543G 29 Anticodon stem Heteroplasmy Affects tRNA aminoacylation and 

steady-state level

[71]

tRNALys A8343G 54 TψC loop Homoplasmy Affects tRNA posttranscriptional 

modification

[69]

tRNAGlu A14693G 54 TψC loop Homoplasmy Affects tRNA posttranscriptional 

modification

[46,71]
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nucleotide modification. Subsequently, these mutations lead to failures in tRNA metabolism. These mitochondrial 
protein-synthesis defects resulte in decreased in ATP production in granulosa cells or pancreatic cells, thus contributing 
to PCOS clinical phenotypes.

Conclusion
Mutations in mtDNA important contributors to PCOS-IR. Genetic variants in mitochondrial genomes can perturb 
OxPhos and are thought to contribute to the clinical pathology of PCOS. mtDNA damage is believed to increase OS 
and create a proinflammatory state, which could accelerate the progression of PCOS.88 Therefore, mtDNA may offer 
a viable alternative target for genetic studies tackling this complex but common disease and attempting to explain the 
discrepancies in clinical phenotype and progression of PCOS.
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