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Regulation of gene expression in time, space and quantity is orchestrated by the
functional interplay of cis-acting elements and trans-acting factors. Our current view
postulates that transcription factors recognize enhancer DNA and read the transcriptional
regulatory code by cooperative DNA binding to specific DNA motifs, thus instructing the
recruitment of transcriptional regulatory complexes forming a plethora of higher-ordered
multi-protein-DNA and protein-protein complexes. Here, we reviewed the formation of
multi-dimensional chromatin assemblies implicated in gene expression with emphasis on
the regulatory role of enhancer hubs as coordinators of stochastic gene expression.
Enhancer hubs contain many interacting regulatory elements and represent a remarkably
dynamic and heterogeneous network of multivalent interactions. A functional
consequence of such complex interaction networks could be that individual enhancers
function synergistically to ensure coordination, tight control and robustness in regulation
of expression of spatially connected genes. In this review, we discuss fundamental
paradigms of such inter- and intra- chromosomal associations both in the context of
immune-related genes and beyond.

Keywords: regulation of transcription, enhancers, transcription factors, chromatin, enhancer hubs,
stochastic expression
WHAT ARE THE ENHANCERS

Regulation of gene expression in time, space and quantity is orchestrated by the functional interplay
of cis-acting regulatory elements and trans-acting factors. The establishment of cell identity during
development and the response to environmental cues such as pathogens requires transcriptional
reprogramming (1, 2). Cells respond to signals by engaging various receptors that recognize and
interpret the environment by initiating signal transduction cascades, culminating in the activation
of transcription factors (TFs), which bind to specific regulatory DNA sequences to control the
expression of genes, thus orchestrating a dynamic interplay between genome form and function (3–
6). Inappropriate regulation of gene expression during development or adult life can cause
abnormal embryogenesis and disease (7, 8). Enhancers and promoters represent the major
classes of DNA regulatory elements responsible for warranting the execution of precise gene
expression programs by functioning as information processing units interpreting the extra- and
intra-cellular signals in the form of transcription factor binding events, which are followed by the
recruitment of various transcriptional regulatory proteins such as cofactors, chromatin modifiers
org June 2021 | Volume 12 | Article 6823971
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and the transcriptional apparatus at the core promoter (9–15).
Core promoters are DNA regions, surrounding the start site
of transcription (TSS), directing the accurate initiation of
transcription by interacting with the various components of
the general transcription machinery, including RNA Pol II
(16). In addition, the DNA region (100-200 bp) located
immediately upstream of the TSS often bears critical
transcription factor binding sites and it is required to increase
the rate of transcription (17, 18). In some cases, upstream
promoter elements can function in a cell-type specific manner
to mediate the interactions with distal regulatory elements like
the enhancers (19, 20).

Enhancers activate transcription of target genes independent
of their distance, position and orientation relative to the
promoter of the affected gene (10, 21, 22). In certain cases,
enhancers can act synergistically to ensure for proper gene
activation (23). Our current model envisions that TFs
recognize enhancer DNA in a combinatorial manner by
reading the transcriptional regulatory code through the
interplay of nucleotide sequence recognition, sequence context,
3D DNA structure (shape), DNA binding cooperativity,
interacting cofactors and nucleosome occupancy (24–29).
Establishment and maintenance of cell identity and function
arise from integrated actions of transcription factors with
chromatin–associated proteins, coactivators, and with the
spatially organized genome (30). Combinatorial TF DNA
binding leads to a synchronized targeting of enhancers by
multifunctional transcriptional regulatory proteins such as
coactivators, corepressors, chromatin modifiers and remodelers
through direct and indirect physical associations, to assemble a
plethora of high-order multi-protein-DNA and protein-protein
complexes required for regulation of transcription (4, 9, 14). TFs
belong to a diverse class of DNA binding protein families with
distinct structural characteristics and individual members from
the same family can bind similar DNA motifs, yet carry out
distinct functions, in vivo (31–33). In addition, as the number of
DNA binding sites in the genome for most TFs is greater than the
number of the corresponding protein molecules per cell, it
appears that only some TF molecules occupy most of their
functional relevant sites in physiological conditions (34–38).
TFs typically recognize and bind to short 6-12bp-long
degenerate DNA motifs. Consistently, TFs bind to thousands
of genomic sites across chromatin landscapes, but the number of
genes changing their expression is frequently limited to a few
hundred (39–42). Cells, at least in part, resolve this apparent
paradox through combinatorial strategies where TFs must work
together when bound to enhancers and promoters to achieve the
specificity required for the selection of the appropriate genes to
become activated. Cooperative DNA binding of TFs to low-
affinity sites provides the means to target the correct genes for
expression in time, space and in response to signals and is
mediated by direct or indirect DNA-and/or chromatin-
facilitating contacts between the proteins (33). Interestingly,
high throughput ChIP-seq studies identified that binding of
TFs to certain genomic regions is highly clustered, each cluster
is composed of both functionally related and unrelated TFs,
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representing strong binding of one or a few TFs, and weaker
binding to more degenerate motifs by many other TFs, implying
a substantial degree of cooperation between individual motifs
(43, 44). Large genomic regions with an unusually high degree of
enrichment for lineage-specific TFs, cofactors (e.g. Med1) and
histone modifications (H3K27ac) have been recently identified
and characterized as super-enhancers (SEs), different from
classical enhancers. These clusters of closely spaced enhancer
elements often regulate the expression of genes determining cell
identity and fate and driving oncogenic transcription (45–48). In
general, super-enhancers are involved in strong intradomain
interactions that is, between its individual enhancer constituents,
which are stronger compared to typical enhancer-promoter
interactions (15, 49). As super-enhancers consist of multiple
enhancer elements, we assume that there will be complex
functional relationships among the different constituents of any
given super-enhancer working, depending on the biological
context, either in a synergistic or additive manner or a
combination thereof, thus resembling the arrangement and
functional relationships of TF motifs building a typical enhancer.

One of the best-characterized examples of assembled super-
enhancers is provided after stimulation of endothelial cells with
TNFa, which leads to the formation of super-enhancers specific
for inflammatory genes (50). Major players for the inducible
assembly of these super-enhancers are the transcription factor
NF-kB and the coactivator BRD4, a member of the
bromodomain and extraterminal domain (BET) family of
factors that is typically recruited to enhancers and super-
enhancers. In brief, stimulation of endothelial cells with TNFa
promotes the rapid redistribution of NF-kB across diverse
genomic loci and subsequently the assembly of inflammatory
SE chromatin configurations. This is accompanied by striking
colocalization of the NF-kB p65 subunit and BRD4 in regulatory
sequences marked by histone acetylation (H3K27ac). Thus, NF-
kB efficiently targets its binding sites and promotes a
pronounced recruitment of BRD4 across inflammatory SEs,
which coordinate the development of a pro-inflammatory gene
expression program (50).

The blood cell-specific SE cluster, known as BENC, is located 1.7
MB downstream of the Myc locus, and consists of multiple
enhancer modules working in a combinatorial manner. BENC is
bound by the transcription factors GFI1b, RUNX1 and MYB (51)
and is essential for the regulation of Myc expression in
hematopoietic and leukemic stem cells critical for hematopoietic
malignancies. BENC deletion in hematopoietic stem cells closely
mimics the conditional deletion of theMyc gene. Thus, overlapping,
adjacent and/or partially redundant regulatory units arranged in
clusters and bound by a variety of transcription factors functioning
in a combinatorial manner, are essential for the generation of cell-
type specific transcriptional regulatory outputs.
ENHANCER-PROMOTER NETWORKS

The application of high-throughput sequencing-based
chromatin profiling (e.g. ChIP-seq, DNAseI-seq), ideal for
June 2021 | Volume 12 | Article 682397
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measuring the potential regulatory activity, indicates that the
human genome contains about a million candidate different
enhancers (52, 53) interspersed at regions located proximally,
distantly, or within genes, and that in each cell type a fraction of
these putative enhancers is active. Enhancers regulate gene
expression in quite diverse manners. For example, enhancers
do not necessarily regulate their closest gene (10), each gene may
be regulated by more than one enhancer (54, 55), and a single
enhancer can regulate multiple genes (56). The above
mechanistic principles suggest the existence of complex and
highly dynamic enhancer-promoter networks and diverse
modes of enhancer action. The multiplicity of the enhancer-
promoter functional interactions is highly regulated by
transcription factors and cofactors associated with them to
direct the re-configuration and the spatial folding of the 3D
chromatin interaction, thus bridging remotely located
transcriptional regulatory elements to a functional assembly.
Although there is strong evidence that enhancer-promoter
interactions are usually established concurrently with gene
activation, and thus comprising an integral part of global
genomic regulation, it is not yet proven whether enhancer-
promoter contacts are the cause or the consequence of
regulated gene expression. Some enhancer-promoter paired
configurations are formed in the absence of any transcriptional
events, thus suggesting that, simply, their identification does not
necessarily have functional implications (57). However, forced
chromatin looping between an enhancer and a promoter led to
induction of transcription at high levels (58), thus strongly
suggesting the requirement for establishing functional 3D
structures connecting enhancers and promoters that could be
integrated into a higher order condensed multi-genic 3D
transcriptionally-active hubs at specific nuclear positions to
coordinate gene expression of functionally related genes (59, 60).

Furthermore, although the identification of specific enhancer-
promoter contacts provides important information regarding the
assignment of enhancers to the correct target genes, these
interactions are not necessarily predictive of functional
regulation. For example, recent studies have shown that sonic
hedgehog (Shh) expression in the developing embryo is regulated
by multiple enhancer elements. Using a combination of 3D-DNA
FISH and chromosome conformation capture approaches,
Benabdallah et al., demonstrated that Shh expression is
incompatible with the classic enhancer-promoter looping
model. The authors found that, practically, there is no spatial
proximity between the enhancer and the promoter during the
differentiation of embryonic stem cells to progenitor neural cells
(61). In contrast, however, Shh expression in the zone of polarized
activity in the developing limb in mice, which is controlled by a
different enhancer called ZRS, is characterized by the highest
enhancer-promoter proximity as compared to other non-
expressing tissues, a finding consistent with the formation of a
tight chromosomal loop between the enhancer and the promoter
(62). Similar to the findings of Shh expression in ES cells, live-cell
imaging experiments revealed that the expression of the key
pluripotency transcription factor Sox2 in ES cells is not
controlled by the spatial proximity between its control region
Frontiers in Immunology | www.frontiersin.org 3
SCR and the promoter, despite the fact that 3C assays have
identified enriched contacts between the enhancer and the
promoter (63). Although it is not yet fully understood how a
spatially remote enhancer could affect the activity of its target
promoter, we speculate that the assembly of condensates
composed of transcriptional regulatory proteins could trigger
the formation of large macromolecular bridges or hubs, which
may alter the configuration of the intervening chromatin
structure, thus leading to increased enhancer-promoter spatial
distances, despite the fact that these regulatory sequences are
functionally linked.

Essential questions related to the formation of dense
enhancer-promoter or enhancer-enhancer networks are how
they are established, maintained, or dissolved. We speculate
that it would be difficult or nearly impossible for any distal
enhancer to locate its target promoter if the genome was largely
homogeneously structured, thus lacking an internal higher order
organization. We now know that, in general, the hierarchical
organization of chromatin involves the A (euchromatin) and B
(heterochromatin) compartments, with compartment B marked
by a more compact chromatin packaging as compared to
compartment A (64), which is characterized by increased
chromatin accessibility and higher gene expression levels (65).
Chromatin contacts within each compartment are specifically
enriched, but contacts between genomic regions present in the A
and B compartments are not favored. Each chromatin
compartment is further substructured to additional hierarchical
layers termed Topological Associated Domains (TADs) (66, 67),
where regions within the same TAD tend to interact more
frequently with each other than with regions belonging to
different TADs. Thus, within TADs, numerous genomic
interactions (loops) are formed connecting regulatory elements
such as enhancers and promoters, with a significantly smaller
number of interactions spanning across the boundaries of
adjacent TADs. TAD borders are frequently demarcated by the
binding of CTCF, a TF functioning as a chromatin organizer
(68). TAD anchors are frequently bound by the CTCF-cohesin
complex usually in a convergent motif orientation (66) through a
loop extrusion process mediated by the cohesin ring until the
process is blocked at CTCF sites arranged in a convergent
orientation (69). Mutations at the TAD boundaries can lead to
chromatin reconfiguration at the TAD borders causing
enhancers present in one TAD to activate transcription of
genes present in the neighboring TAD (70). More specifically,
rearrangement of TAD boundaries at the WNT6/IHH/EPHA4/
PAX3 locus caused an extensive rewiring of the interactions
between enhancers and promoters leading to l imb
malformations (70). The functional insulatory role of CTCF in
gene regulation was further investigated in a study where the
disruption of CTCF binding at the TAD boundaries via CRISPR
led to the aberrant interaction of a constitutive enhancer with the
PDGFRA oncogene in glioma (71). Interestingly, removal of
CTCF binding sites both at the boundary and within TADs at the
Sox9-Kcnj2 locus led to fusion of neighboring TADs, which,
however, did not result in major effects on developmental gene
regulation (72). In contrast, however, inversion of CTCF binding
June 2021 | Volume 12 | Article 682397
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sites within the protocadherin enhancer rewires the enhancer-
promoter interactions and alters gene expression patterns (73).
Taken together, the data presented above indicate that the
precise role of chromatin topology in enhancer/promoter
function is determined by the specific genomic context.

An important issue regarding the multiplicity of enhancer-
promoter network of interactions relates to the mechanisms by
which an enhancer selects the correct promoter for activation.
While within TADs, the number of candidate promoter targets
for a given enhancer is relatively limited, in many cases enhancers
and their target promoters are not adjacent in the primary DNA
sequence, but interrupted by one or more genes that are not co-
expressed or co-regulated with the enhancer’s target gene. For
example, expression of the Sex comps reduced (Scr) gene during
Drosophila embryogenesis is controlled by an enhancer which is
located far upstream. Importantly, the continuity of the Scr gene
and its enhancer is interrupted by the localization of the fushi tarazu
(ftz) gene, which is regulated by an enhancer positioned at close
distance from the Scr gene, whereas the Scr enhancer is present at
the 3’ of the ftz gene. In other words, the Scr enhancer is closer to ftz
than to Scr promoter, and the ftz enhancer is flanked by the Scr and
ftz promoters. However, both genes are expressed at different times
during embryogenesis, and their expression is controlled by their
individual enhancers. The selectivity of the Scr enhancer for
activating transcription from the Scr promoter and not from the
closest ftzp promoter depends on promoter proximal DNA
elements called tethering elements, which when bound by specific
transcription factors might mediate highly specific enhancer-
promoter interactions between the Scr enhancer and promoter
(19, 74). These data are compatible with the looping and
relocation models for enhancer-promoter communication,
because they can explain how an enhancer can skip more
proximal promoters (75).

The structural chromatin loops responsible for forming TADs
are dependent on ubiquitously expressed CTCF and cohesin
proteins and therefore are distinct from those assembled by the
interactions of regulatory sequences. The latter are generally
mediated by enhancer- and promoter-bound transcription factors
and cofactors and therefore their formation is dynamic and
developmentally regulated (30). Our current understanding is that
TADs define regions of the genome where enhancer-promoter
interactions are allowed to occur to ensure robust and reliable
transcriptional activation, thus precluding inappropriate regulatory
interactions between enhancers and promoters located in different
TADs (76). Despite the established roles of the architectural protein
CTCF in supporting regulatory enhancer-promoter interactions
(66, 73), its depletion although leads to a significant reduction of
TAD structures results in moderate rather than dramatic changes in
global gene expression (77, 78). An emerging idea derived from
single-cell 3C and advanced imaging experiments (79, 80) to explain
this unexpected finding is that the cell-to-cell variability in the
overall TAD structure indicates that the existence of a highly
heterogeneous structure of the chromatin could provide a
reasonable explanation for the relatively modest effects in
transcription upon TAD disruption. Thus, it is not yet fully
understood how TADs and TAD boundaries affect the regulation
Frontiers in Immunology | www.frontiersin.org 4
of gene expression, and the regulatory logic that rules
their involvement.

Understanding the Regulatory
Genome in 3D
The spatial arrangement of the regulatory genome in 3D has
been mainly studied by Chromatin Conformation Capture (3C)
methodologies and its ChIP or probe-based derivatives and
advanced high-resolution microscopy techniques (62, 66, 81–
85). Notably, some of the first examples of well-characterized
mechanisms of gene regulation by DNA-DNA contacts in
mammals, were derived from studies in hematopoietic and
immune cells regarding the 3D organization of the b-globin
gene locus (86) and the interchromosomal association between
the IFN-gamma gene locus and regulatory regions of the T(H)2
cytokine locus in a dynamic and cell-type-specific fashion (87).
Additional studies have provided evidence that transcription
factors bound to enhancers and promoters mediate this type of
DNA-DNA communication by acting as the components
exposing complementary interacting protein surfaces required
for the establishment and the specificity for the formation of
looped structures (20). A well-characterized example of a looping
factor essential for chromatin interactions at the b-globin locus is
the cofactor Ldb1 (58). Ldb1 together with GATA1 acts as a
molecular bridge, which facilitates the communication between
the Locus Control Region (LCR) and the b-globin promoter.

In the case of the virus inducible human IFNb stochastic gene
expression, the IFNb enhancer contributes to the formation of
highly specialized 3D associations required for singular and
stochastic expression of the IFNb gene in a subset of infected cells
(35, 88, 89). Previous work has indicated that virus infection induces
the coordinated activation of three distinct sets of transcription
factors, NF-kB, IRF3 and 7, and ATF2/cJun, which together with
the architectural protein HMG I(Y) bind cooperatively to the
nucleosome-free enhancer/promoter of the IFNb gene and form a
nucleoprotein structure known as the enhanceosome (24, 90–95)
(Figure 1). Following its assembly, the IFNb enhanceosome exposes
a continuous recognition surface used to recruit the transcriptional
coactivator CBP (93). Enhanceosomes with similar properties have
now been identified and characterized on several model enhancers
in bothDrosophila andmammalian systems. For example, cell type-
specific and/or inducible expression of the MHC class I and MHC
class II expression, which is crucial for the initiation and regulation
of adaptive immunity, requires the assembly of enhanceosomes
which activate transcription by recruiting the coactivators NLRC5-
and CIITA, respectively (96). As it is the case for the IFNb
enhanceosome, the NLRC5 and CIITA coactivators are recruited
to their target promoters by interacting simultaneously with a
continuous surface of the MHC Class I and Class II
enhanceosome components, respectively.

The human IFNb promoter contains one well-positioned
nucleosome physically obscuring the TATA box and the start site
of transcription. Once assembled, the IFNb enhanceosome
dynamically recruits histone acetyltransferases and chromatin
remodelers causing sliding of the nucleosome masking the TATA
to a new position 36bp downstream, thus unmasking the TATA box
June 2021 | Volume 12 | Article 682397
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and the start site of transcription (91, 97, 98). The gene is initially
expressed from a single allele, but its expression is subsequently
becoming biallelic (88, 99). The discovery of the early monoallelic
IFNb expression suggested that gene activation itself is successfully
completed only with a certain probability in a given cell. A similar
mode of monoallelic stochastic activation has also been described
Frontiers in Immunology | www.frontiersin.org 5
for the IFNa family of genes and it is a typical and general feature of
cytokine expression during immune responses (100, 101).

Given the pivotal role of IFNs in antiviral host responses, it
has come as a surprise that, at the single-cell level, IFNs are
expressed only by a fraction of virus-infected cells. Indeed,
approximately ~20% of the virus-infected cells are expressing
A

B

FIGURE 1 | (A) A model depicting the virus infection-induced NRC-IFNb interchromosomal interactions. In uninfected cells, the IFNB and NRC loci are well
separated. Virus infection induces the nuclear localization of NF-kB, which binds cooperatively with ThPOK to appropriately spaced binding sites at NRCs (right part).
While bound to NRCs, ThPOK oligomerizes to reach to a single IFNb allele resulting in physical proximity of the NRCs-bound NF-kB with the IFNb enhancer
triggering enhanceosome assembly and subsequently activation of the IFNb gene. (B) A model depicting the assembly of enhancer hubs and transcriptional
condensates. In resting cells enhancers and transcriptional regulators are diffused in the nucleus. Upon cell activation transcriptional condensates bearing enhancers,
promoters and regulators are formed as a result of liquid-liquid phase separation. Components are highly concentrated within the condensates.
June 2021 | Volume 12 | Article 682397
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IFNb. Moreover, the induction of Interferon Stimulated Genes
(ISGs) after acute viral infections has also been found to be
highly heterogeneous at the single-cell level (99), with only a
fraction of cells inducing an antiviral gene expression program at
physiological concentrations of IFNs.

Recent findings have indicated that IFNb expression heterogeneity
is due, at least in part, to stochastic interchromosomal interactions
driving the variable patterns of IFNb gene expression in response to
virus infection (35, 88, 89). The important finding was that
stochasticity in expression of human IFNb is due to low intra-
cellular concentrations of the transcription factor NF-kB, which is
captured onto specialized DNA sites called NRCs (NF-kB Reception
Centers) belonging to Alu-like repetitive elements and then it is
delivered to the IFNb enhancer, via stochastic interchromosomal
interactions. It was shown that the transcription factor ThPOK (89), a
GAGA binding factor, binds cooperatively with NF-kB to NRCs and
mediates their physical proximity with the IFNb gene and other co-
regulated genes via its ability to oligomerize when bound to DNA, as
it was shown by in vitro experiments. Furthermore, ThPOK
knockdown experiments significantly decreased the frequency of
interchromosomal interactions, NF-kB DNA binding to the IFNb
enhancer, and virus-induced IFNb gene activation. Cooperative DNA
binding between ThPOK and NF-kB, in vitro and in vivo, on the
same face of the double DNA helix, is required for interchromosomal
interactions and this distinguishes NRCs from various other Alu
elements bearing interspersed NF-kB and ThPOK sites (89)
(Figure 1A). These studies showed how DNA binding
cooperativity of stereospecifically aligned transcription factors
provides the necessary ultrasensitivity for the all-or-none stochastic
cell responses to virus infection. The above mechanistic insights
strongly suggest that the primary DNA sequence of the interacting
DNA elements acts as a blueprint, which contains a specific linear
genomic code that is interpreted via the construction of highly
specialized high-order nucleoprotein complexes. Additional studies
have also shown that stochastic IFNb expression in response to virus
infection is due to cell-to-cell variability due to limiting quantities of
components ranging from the recognition of viral RNA by host
factors and the activation of signaling pathways, to the exact levels of
activated transcription factors (102).

Additional examples of architectural proteins acting as organizers
of 3D genome architecture include YY1 (103), ZNF143 (104), and
SATB1 (105). In contrast to CTCF, YY1 preferentially binds to active
enhancers and promoters mediating their 3D interaction via its
ability to dimerize (103). ZNF143 binds to the anchors of chromatin
interactions and facilitates the formation of secure connections
between promoters and distal regulatory elements (104). Finally,
SATB1 can act as a tissue-specific organizer of gene expression with
well-established roles in the regulation of TH2 cytokine gene locus
(105, 106) by cooperative binding to multiple closely spaced
consensus sites in nucleosomes (107). In summary, the examples
described above demonstrate that the formation of 3D DNA-DNA
nuclear contacts is not a purely random phenomenon but it depends
on sequences hosting chromatin architectural proteins, which in
many cases are in direct interaction with TFs.

The molecular mechanisms controlling olfactory receptor (OR)
gene transcription (108) inducing the monoallelic expression of one
Frontiers in Immunology | www.frontiersin.org 6
out of more than 1,000 genes in each cell, share many common
features with the cellular responses leading to virus-induced
stochastic monoallelic IFNb expression. The singular and
stochastic expression of OR genes is controlled by a dense
network of 3D DNA interactions occurring exclusively in
olfactory sensory neurons (109–111). The OR genes, which are
interspersed in various chromosomes, aggregate in one nuclear
compartment, where they are repressed by acquiring chromatin
marks characteristic of heterochromatin. However, this aggregation
brings in close proximity many OR enhancers located adjacent to
the OR genes viamultiple interchromosomal interactions forming a
multi-enhancer hub. Monoallelic OR transcription is activated by
the multi-enhancer hub, which associates stochastically with the
corresponding gene chosen for expression. The TFs Lhx2 and Ebf
bind cooperatively in a stereospecific manner on OR enhancers
followed by the recruitment of the LIM domain protein Ldb1, which
facilitates these interchromosomal interactions. Thus, DNA binding
cooperativity between transcription factors, as it is also the case for
IFNb expression, provides the necessary specificity to drive
spatiotemporal alterations of the 3D chromatin for the cell-type
specific expression of OR genes and cellular responses upon viral
infections, respectively.

Many mechanistic similarities to the stochastic monoallelic
OR and IFNb expression are also shared by the NF-kB-
dependent TNFa-induced hierarchical co-expression of
SAMD4A, TNFAIP2, and SLC6A5 genes (112, 113), which also
form a tight signal-dependent multigene complex through intra-
and interchromosomal interactions. TNFa induction causes the
hierarchical co-transcription of these genes in a small fraction of
cells containing tightly associated genes in a multigene complex.

Photoreceptor specification in the Drosophila eye depends on
the stochastic and cell-autonomous expression of the transcription
factor Spineless (Ss) (114–116). The stochastic Ss expression in
individual cells is regulated by a 60 kb region harboring the R7/8
enhancer and the silencer elements 1 and 2 (115, 116). It was
shown that the stochastic Ss expression pattern depends on
interchromosomal communication and on inter-allelic crosstalk,
which averages the frequency of expression of each allele (116).
Thus, although each allele follows an independent-stochastic choice
of expression, 3D interchromosomal communication coordinates
the expression status between alleles, thus ensuring for the proper
expression of both alleles within the same randomly selected subset
of photoreceptor cells. Conclusively, both the 3D interchromosomal
interactions and the action of enhancers from a distance determine
stochastic photoreceptor specification.

In summary, the examples described above when taken together
withmany other similar studies, suggest a general model according to
which cell activation by environmental signals or during
development and differentiation leads to a cascade of multiprotein
and multigene high order dynamic assemblies, ranging from
signalsomes to enhanceosomes and chromatin-modifying
machines, thus providing local regulatory input from different
genomic elements. This mode of information flow ensures that
stochastic molecular interactions are canalized to produce specific,
robust and reliable outputs. Furthermore, these observations strongly
support the view that transcription factors are capable of inducing
June 2021 | Volume 12 | Article 682397
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extensive chromatin rewiring, in many cases stochastic, at specific
genomic loci, thus modifying gene expression patterns in a cell-
specific manner.
ENHANCER HUBS-TRANSCRIPTIONAL
CONDENSATES

Enhancer hubs containing highly interacting regulatory elements
represent a remarkably dynamic and heterogeneous network of
multivalent macromolecular interactions. Most of these
interactions could be established in a stochastic manner and
individual cells within a homogeneous population may contain
unique combinations of two or more interacting partners. The
higher the number of interacting partners the lower the probability
of a cell in the population to contain multi-partner hubs. We
speculate that enhancer hubs by containing multiple enhancers
targeting a single promoter or many promoters targeted by a single
enhancer or many interconnecting enhancers targeting many
different promoters, could aggregate into a single nuclear position.
A functional consequence of such complex interaction networks
could be that different enhancers function synergistically to ensure
coordination, tight control and robustness in regulationof expression
of spatially connected genes. Thus, enhancer-promoter hubs ensure
that all target genes are “on” and are appropriately regulated in a
spatiotemporal manner, with stable relative levels of expression.
Thus, each gene is subject to the same intrinsic and extrinsic noise
e.g.fluctuations in the concentration of transcriptional regulators etc.
The high density of transcription factors bound to enhancers and
promoters in the context of enhancer hubs or super-enhancers leads
to the cooperative and synergistic recruitment of high concentration
of coactivators, components of the transcriptional machinery and
other cofactors (117).Conclusively, an important implicationderived
from the assembly of enhancer hubs is the accumulation of
transcriptional regulators at high local concentrations, which then
are equally available for binding to the enhancer and promoter
elements of the associated genes in a locus-specific manner.

Since many transcriptional regulators typically contain large low
complexity and/or intrinsically disordered regions (IDRs), like the
activation domains of many TFs, the probability to undergo hetero-
or homo-typic multivalent interaction or oligomerization is high
(118). IDRs have been described as functional protein segments that
are not likely to form a defined 3D structure (119) and have been
classified mainly by their amino acid profile or by their hypothetical
shape (120).Highdensitiesofproteinsbearing IDRsandnucleic acids
have been implicated in the formation of membraneless
compartments through the well-understood mechanism of liquid-
liquidphase separation (LLPS) (121–125).The termphase separation
describes a process by which distinct liquid droplets bearing high
concentration of molecules are formed. The formation of such
nuclear compartments increases the likelihood for certain
biochemical reactions to occur, such as transcription, thus
bypassing partially or entirely the necessity for direct physical
contacts between individual enhancers and promoters (Figure 1B).
Theoretically, an additional advantage of regulating coordination of
transcription via a phase separation model is the plasticity and
Frontiers in Immunology | www.frontiersin.org 7
reversibility by which LLPS formations are driven, and thus
provide a reliable mechanism of transcriptional initiation and
termination of many coregulated genes at once. For example,
clusters of enhancer elements have been proposed to regulate
biological processes implicated in development and disease (47), as
well as regulatingmammalian cell identity (45).We speculate that in
the case of the SEs assembling upon TNFa induction of endothelial
cells (see above), thepronounced recruitmentof cofactors, likeBRD4,
etc. could lead to the additional recruitment of RNA Pol II and
cofactors via an extensive network of intermolecular interactions
between specific regions of intrinsically disordered hydrophilic
activation domains (IDRs), thus leading to the formation of phase-
separated nuclear liquid droplets (126) (Figure 1B).

The proposed model describes that the highly condensed
concentration of biochemical interactions between TFs and
coactivators, occurring on TFBSs-enriched extended 3D chromatin
configurations, promote the colocalization/co-recruitment of diverse
SEs at specific nuclear sites and subsequently the formation of 3D
chromatin condensates (Figure 1B).

The ability of eukaryotic cells to assemble high-order transcription
condensates ensures that enhancers bearing low-affinity binding sites
can efficiently recruit RNA Pol II molecules to target genes to support
robust patterns of gene expression (27, 125, 126). It is reasonable to
assume that the individual functions of SEs could become modified
upon their recruitment to the 3D chromatin condensates, where they
could acquire novel regulatory characteristics hardwired in dense
networks of macromolecular interactions.
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