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SUMMARY 
Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), 
in which often debilitating symptoms persist for at least three months. Elucidating the biologic 
underpinnings of LC could identify therapeutic opportunities. We utilized machine learning 
methods on biologic analytes and patient reported outcome surveys provided over 12 months 
after hospital discharge from >500 hospitalized COVID-19 patients in the IMPACC cohort to 
identify a multi-omics “recovery factor”. IMPACC participants who experienced LC had lower 
recovery factor scores compared to participants without LC. Biologic characterization revealed 
increased levels of plasma proteins associated with inflammation, elevated transcriptional 
signatures of heme metabolism, and decreased androgenic steroids in LC patients. The recovery 
factor was also associated with altered circulating immune cell frequencies. Notably, recovery 
factor scores were predictive of LC occurrence in patients as early as hospital admission, 
irrespective of acute disease severity. Thus, the recovery factor identifies patients at risk of LC 
early after SARS-CoV-2 infection and reveals LC biomarkers and potential treatment targets.  
 
KEYWORDS 
COVID-19, Long COVID, PASC, patient reported outcomes, SARS-CoV-2, Machine Learning, 
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INTRODUCTION 
Long COVID (LC) has become a pressing public health concern, affecting an estimated 10-35% 
of surviving individuals infected with SARS-CoV-2, or 15-20 million individuals in the United States 
and over 60 million worldwide1,2. In July 2024, the National Academies of Sciences, Engineering, 
and Medicine (NASEM) released an updated definition of LC, characterizing it as a chronic 
condition arising after SARS-CoV-2 infection that persists for at least 3 months, irrespective of 
acute disease severity2. LC can encompass a wide range of physical and cognitive symptoms, 
and can lead to new or worsening neurological, psychiatric, cardiovascular, pulmonary, endocrine, 
and gastrointestinal conditions, among others1–12. 
 
Several studies have identified demographic and clinical risk factors for LC13–15, including age16–

18, female sex16–21, and longer hospital stays18,22. Higher viral loads18,19 and lower anti-SARS-CoV-
2 antibody titers18,23,24 during the acute infection phase have also been associated with LC 
development. There are multiple, potentially overlapping hypotheses that explain the etiology of 
this condition, including persistent viral infection25,26, chronic inflammation26–29, latent herpesvirus 
reactivation26,30,31, immune dysregulation29,32,33, complement dysregulation34, and 
autoimmunity35,36. Despite these efforts, no consensus exists on the mechanisms of LC 
pathogenesis, and validation of the molecular findings across cohorts has been challenging. 
Additionally, most existing studies rely on measurements from a single or limited number of 
assays and are confined to restricted sampling time points during the acute or convalescent 
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phases of the disease. Therefore, a multi-omics longitudinal study spanning both acute infection 
and convalescent disease phases could help elucidate the molecular mechanisms underlying LC. 
 
The Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study37 offers a unique 
opportunity to investigate the temporal dynamics of multi-omics immune profiles during the acute 
and convalescent COVID-19 infection phases in a clinically well-characterized cohort of 
hospitalized patients from across the United States. Data from the IMPACC study can be 
leveraged to identify molecular correlates of post-acute symptom development or resolution for 
one year after hospital discharge. This cohort has previously been studied to characterize multi-
omics determinants of COVID-19 severity and mortality during the acute phase of disease38–40. 
Another study of the IMPACC cohort identified LC participants who experienced patient-reported 
outcome deficits up to 12 months after COVID-19 hospital discharge18. Clinical characteristics 
such as female sex, a higher respiratory SARS-CoV-2 viral burden, and lower antibody titers 
against the SARS-CoV-2 Spike protein during acute disease were associated with persistent 
deficits after hospital discharge. B cell lymphopenia and elevated fibroblast growth factor 21 
(FGF21) during the acute disease phase were also characteristics of participants who developed 
LC18. However, longitudinal immune profiles of IMPACC participants experiencing LC during the 
convalescent phase of disease have not yet been compared to those of IMPACC participants who 
experienced minimal deficits during convalescence, an analysis that could reveal LC biomarkers 
and uncover biological processes underlying the disease. 
 
In the current work, we applied supervised multi-omics integration methods to develop 
interpretable models that differentiate participants with LC from recovered individuals based on 
their longitudinal immunophenotyping profiles during the convalescent disease phase. We 
identified key biological programs and biomarkers driving LC classification. Our findings highlight 
persistent inflammation, dysregulation of heme metabolism, and altered androgenic steroid 
profiles as characterizing features of LC, independent of acute disease severity or SARS-CoV-2 
vaccination status post hospital discharge. Notably, these molecular profiles were already 
detectable during the acute phase of disease, suggesting their potential value as early predictive 
biomarkers for identifying patients at risk of developing LC. Additionally, despite a general lack of 
consensus about the definition of LC or consistency in the timing of sampling across different 
studies, we validated dysregulation of the heme metabolism signature in an independent LC 
cohort. These findings provide valuable insights into the molecular underpinnings of LC and offer 
a foundation for future research aimed at improving diagnostics and developing targeted 
interventions. 
 

RESULTS 

Longitudinal multi-omics profiling of long COVID 
The IMPACC study included 1,164 participants admitted to 20 US hospitals for COVID-19 
infection between May 2020 and March 202137. Clinical data collection and immunophenotyping 
were performed longitudinally during the acute disease phase within 72h of hospital admission 
and 4, 7, 14, 21 and 28 days after hospital admission (Visits 1-6, respectively)2. Surviving 
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participants were contacted 3, 6, 9, and 12 months after hospital discharge (Visits 7-10, 
respectively) to complete patient-reported outcome and symptom surveys during the 
convalescent phase, and to provide biosamples for immunophenotyping assays. Of the 702 
participants who could be reached by the study team after discharge, 513 were included in the 
IMPACC Convalescent cohort. These participants were selected because they completed at least 
one survey and provided at least one biosample during the convalescent period (Figure 1A and 
Table S1)18. IMPACC core labs performed immunophenotyping both in the acute and 
convalescent phases, including measurements of inflammatory mediators in blood serum via 
Olink (SO), global blood plasma metabolomics (PMG), global and targeted blood plasma 
proteomics (PPG and PPT), peripheral blood mononuclear cell (PBMC) transcriptomics (PGX), 
whole blood cell frequencies measured by mass cytometry by time of flight (CyTOF), and CyTOF 
mean marker signal intensity measurements (BCT). 
 
LC status was defined in this cohort according to the participant’s response to post discharge 
surveys that captured symptoms and Patient-Reported Outcome (PRO) measures that evaluated 
general health and deficits in specific domains. Participants who responded to at least one set of 
post discharge surveys were assigned to PRO clusters according to latent class modeling and 
clustering using standardized scores of the PRO measures, as previously reported18 (details on 
the PRO measures used can be found in the Supplementary Methods). PRO clusters were 
classified as participant clusters with no or minimal deficits (MIN), or with deficits attributed to LC 
in several domains: physical predominant (PHY), mental/cognitive predominant (COG), and 
multi/pan domain (MLT)18 (Figure 1B). 
 
In this study, we utilized multi-omics immunophenotyping profiles to develop interpretable models 
for predicting LC and exploring the underlying molecular mechanisms. To assess the model 
performance, we split the Convalescent cohort into an 80% Train and 20% Test cohort, 
maintaining the proportions of participants in each PRO cluster (Figure 1C), with no noticeable 
imbalance in other clinical characteristics or biosample availability between the cohorts (Figure 
S1). We then used Signature-based multiPle-omics intEgration via lAtent factoRs (SPEAR)41, a 
supervised Bayesian factor model for the identification of multi-omics features, to integrate the 
high dimensional data and construct multi-omics predictive factors from immune profiles obtained 
during the convalescent phase in the Train cohort. We assessed their predictive performance by 
repeated cross-validation on the Train cohort and validated the selected model performance on 
the Test cohort (Figure 1D and 1E). To identify the immune programs captured in the predictive 
factors, we conducted in depth analyses of enriched biological pathways and analytes identified 
as highly relevant for the prediction performance by the model and performed associations with 
assay data not included in model training, such as blood CyTOF cell frequencies. 
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Figure 1. Multi-omics data overview and generation of a predictive LC factor. (A) Number 
of samples used in the multi-omics data integration strategy by assay (rows) and scheduled time 
of collection (columns). Shading indicates the frequency of samples with data availability at the 
indicated visit. (B) Patient classification in Patient Reported Outcome (PRO) clusters according 
to the PRO measure survey scores18. (C) Individual assay data were preprocessed and split into 
Train and Test cohorts by participant in an 80/20 split, maintaining the proportion of PRO cluster 
participants in each partition. (D) Preprocessed assay data and LC response outcomes for the 
Train cohort were used to identify multi-omics predictive factors with SPEAR. Factor scores were 
then calculated for the Test cohort. (E) The performance of the multi-omics predictive factors to 
classify patients into presence and absence of LC was assessed on the Train cohort via cross-
validation and then validated on the Test cohort. The predictive factor scores were confirmed to 
be associated with LC after correcting for possible confounding variables. In depth analysis of 
enriched biological pathways and significant analytes relevant for the prediction was performed. 
Factor scores were computed for the acute infection immune profiles, and association analysis 
with LC at these early time points was performed. See also Figure S1. 

Multi-omics factors are predictive of long COVID 
We focused on predicting LC in the Convalescent cohort from the multi-omics immune profiling 
data collected during the convalescent phase. Since the binary LC labels (presence or absence 
of LC) per participant could omit valuable information captured by the numeric PRO measures at 
each participant visit, we constructed separate SPEAR models to generate supervised factors 
including PRO measure scores (SPEAR Physical, SPEAR Cognitive, SPEAR Mental, SPEAR 
Impact, SPEAR Dyspnea) or the LC binary labels (SPEAR LC) as response variables (Figure 
S2A). We evaluated the predictive performance of the SPEAR multi-omics factors trained on the 
individual PRO measure scores to reconstruct the score values of unseen data in the training 
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cohort by cross-validation using a lasso regression model (Figure S2B). The SPEAR Physical 
model was the best performing, with lowest prediction error, and was selected for further 
evaluation. We then utilized the same procedure to assess the ability of the SPEAR LC factors 
and the best performing SPEAR model trained on individual PRO measure scores (SPEAR 
Physical) to predict binary LC status. The lasso model trained on the SPEAR Physical multi-omics 
factor achieved the highest predictive performance as evaluated with the area under the receiver-
operating characteristic curve (AUROC) (Figure 2A). Additionally, we compared the predictive 
performance of the SPEAR multi-omics supervised factors to the performance of equivalent 
unsupervised multi-omics factors, obtained with the Multi-Omics Factor Analysis (MOFA)42 
framework, that do not consider a response variable during the factor construction step. Both 
lasso classifiers trained on the SPEAR Physical and SPEAR LC predictive factors outperformed 
the classifier using MOFA unsupervised factors on the Train cohort (Figure 2A, Figure S2B). The 
SPEAR Physical model achieved an AUROC of 0.69 for predicting LC presence or absence in 
the Test cohort (Figure 2B). The SPEAR Physical Factor, learned by the SPEAR physical model,  
was significantly associated with LC in the Test cohort after correcting for sex and age 
(p=0.00098), two variables which have been previously associated with LC in our cohort18. The 
SPEAR Physical Factor scores were significantly higher for participants in the MIN group 
compared to the LC group, so we termed this factor as the “recovery factor” (Figure 2C, Figure 
S4A). Recovery factor scores were significantly associated with PRO clusters (p=0.0009); 
however, they showed a differential ability to identify individual LC deficit domains, with significant 
differences between MIN vs COG and MIN vs MLT PRO clusters, but not MIN vs PHY PRO 
clusters (Figure 2D, Figure S4B). Sparse lasso regression models to reconstruct recovery factor 
scores utilizing all analytes included in the model or analytes from individual omics assays showed 
that the model including all assays was best at reconstructing the factor scores, indicating that 
the recovery factor scores captured contributions from multiple omics layers (Figure S2C). Taken 
together, the recovery factor is a multi-omics model comprised of biologic analyte levels during 
the convalescent phase of COVID-19 that is able to distinguish MIN from LC over a 12 month 
period post hospital discharge in the IMPACC cohort. 
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Figure 2. Identification of a convalescent multi-omics recovery factor that discriminates 
long COVID. (A) Predictive performance of a lasso model trained on the MOFA and SPEAR 
factors to discriminate LC vs MIN at the event level. The mean AUROC of a 10-fold cross-
validation on the Train Cohort, for 100 bootstrapped model training repetitions are shown. 
Significance was calculated by standard normal approximation of bootstrapped differences 
between models (t-test, ****adj. p-value ≤ 0.0001) (B) Predictive performance of the SPEAR 
Physical model to discriminate LC vs MIN on the Test cohort. ROC curve of model (solid line), 
random classifier (dashed line), and AUROC value are shown. TPR: true positive rate, FPR: false 
positive rate. (C) Recovery factor scores for the Test cohort of the MIN and LC groups at 3 months 
(Visit 7), 6 months (Visit 8), 9 months (Visit 9) and 12 months (Visit 10) after hospital discharge. 
(D) Recovery factor scores of the individual PRO clusters by visit for the Test cohort. P-values in 
C and D show the significance of the recovery factor score association with MIN vs LC and 
pairwise PRO cluster combinations, respectively (see methods for association details). See also 
Figure S2, S3, and S4. 
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Functional characterization of the recovery factor 
To characterize the biologic processes underlying the recovery factor, we performed gene set 
enrichment analysis (GSEA) for each of the multi-omics assays based on the SPEAR model’s 
internal ranking of the relative importance of each feature for predicting the PRO Physical score. 
Surveyed pathways included gene sets from the Molecular Signatures Database (MSigDB) 
Hallmark43 and KEGG44 resources as well as metabolite sets from the Subpathway resource45–47. 
Joint p-values were computed to assess analyte set enrichment across the multi-omics assays. 
The Hallmark Heme Metabolism transcriptomic pathway was negatively associated with the 
recovery factor, indicating upregulation in LC participants, whereas the androgenic steroids 
metabolite set was positively associated with the recovery factor, indicating downregulation in LC 
participants (Figure 3A). Evaluated individually, several leading edge analytes in the Hallmark 
Heme Metabolism gene set and androgenic steroids Subpathway metabolite set showed 
significant associations with LC status (Figure S5 A and B). 
 
SPEAR performs internal significance testing to determine the importance of each analyte in 
predicting the response variable. The SPEAR Physical model identified 26 analytes across four 
assays that were significant in the recovery factor (SPEAR Bayesian posterior selection 
probability ≥ 0.95), and we performed individual associations of these features with LC status in 
the test cohort, adjusting for age and sex (Figure 3B, Figure S5). Nine of these 26 analytes were 
from the serum Olink assay. Of these, DNER (Delta And Notch-Like Epidermal Growth Factor-
Related Receptor), a non-canonical Notch ligand that has been implicated in promoting tumor 
growth and metastasis and in supporting wound healing48,49 was significantly reduced in LC 
participants, consistent with a prior study of plasma proteomics in LC subjects28. The remaining 
serum Olink analytes were negatively associated with the recovery factor. In particular, they 
included proteins and cytokines associated with chronic inflammatory conditions50–55, particularly 
endothelial/vascular inflammation (FGF23, FGF21, CXCL9, TNFRSF11B and TNFRSF9 
(CD137)), as well as inflammation-associated myeloid regulators56–58 (MMP10 and CSF1).  
Elevated levels of IL10RB have been previously associated with worse outcomes in acute COVID-
19 infection59, consistent with elevation under inflammatory conditions. LRG1, a protein elevated 
in LC participants, is induced by IL-6 and other inflammatory cytokines and has been implicated 
in angiopathic activity60–62. Phenylacetylglutamate and phenylacetylglutamine are gut microbiota-
derived metabolites associated with vascular inflammation and thrombosis63. Finally, the OSBP2 
(ORP4) transcript, which encodes an oxysterol binding protein64, was a leading edge gene in the 
Hallmark Heme Metabolism gene set that was elevated in LC participants. 
 
Several metabolites from the androgenic steroids pathway were represented in the 26 significant 
analytes and were positively associated with the recovery factor, indicating higher levels correlate 
with better physical function. When we tested these metabolites for their individual association 
with LC status, five (DHEA-S, epiandrosterone sulfate, androsterone sulfate, 5alpha-androstan-
3beta,17beta-diol monosulfate (2), 5alpha-androstan-3beta,17alpha-diol disulfate) were 
significantly lower in LC participants, adjusting for age and sex (Figure 3B). Androgens can 
suppress inflammation65, suggesting that the higher level of androgenic steroids in participants of 
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the MIN group could reflect better control of chronic inflammation. These findings are consistent 
with prior reports showing lower levels of sex hormones in LC31. Five metabolites related to 
pregnenolone were also represented in the significant SPEAR analytes (Figure 3B). 
Pregnenolone is synthesized from cholesterol as the first step of the steroid hormone biosynthesis 
pathway and is known to have potent effects as an inhibitor of inflammation66 and as a 
neurosteroid67. Altogether, these findings are consistent with a prominent role for persistent 
inflammation in LC with dysregulation of key analytes that may contribute to symptoms in LC, 
including elements that drive angiopathy, reduce wound healing, and alter heme metabolism. 
 
The feature sets from heme metabolism and androgenic steroids identified by GSEA analysis 
combined with the significant SPEAR analytes represent 73 unique features that potentially 
condense the predictive power of the recovery factor into a smaller feature set. To test this 
hypothesis, we calculated the geometric mean of the 43 leading edge heme metabolism and 12 
androgenic steroid features, as well as the 26 significant SPEAR analytes. All three geometric 
mean scores were independently significantly associated with LC in the test cohort (Figure 3C). 
Furthermore, the combined score that includes analytes from all three feature sets discriminates 
MIN and LC participants with even greater significance (Figure 3C). Thus, while the recovery 
factor is comprised of weighted contributions from 6,807 features, we have identified a smaller 
set of 73 unique features that discriminates participants according to LC status in the 
convalescent period. 
 
Consistent with our finding, the Hallmark Heme Metabolism pathway was previously reported by 
Hanson et al.29 as an enriched pathway in participants with persisting symptoms 1-3 months after 
acute SARS-CoV-2 infection compared to participants without persisting symptoms. This cohort 
comprised 102 participants, including non-hospitalized and hospitalized individuals29. To 
determine whether the same heme metabolism-related genes were dysregulated in LC 
participants in the IMPACC and Hanson et al. cohorts, we used the leading edge genes from the 
significant Hallmark Heme Metabolism pathway in our GSEA analysis (Figure S5A) and 
calculated the geometric mean gene expression in PBMCs from the Hanson et al. cohort29. We 
found that our heme metabolism leading edge genes significantly differentiated participants with 
persistent vs. resolved symptoms after COVID-19 infection at multiple time points in the 
independent cohort (Figure S5C), validating the reproducibility of the gene expression datasets 
and underscoring the importance of this subset of heme metabolism genes. 
 
Prior studies have identified altered leukocyte frequencies as a feature of LC18,26,29,31,33. To 
determine whether similar cellular changes were associated with the recovery factor, we analyzed 
whole blood CyTOF cell frequencies for 15 parent and 46 child immune cell types in our cohort 
during convalescence (Figure 3D). We found several cell subsets that were significantly 
associated with the recovery factor. B cells and CD161+ MAIT cells were positively associated 
with the recovery factor. In contrast, polymorphonuclear leukocytes (PMN) and monocytes, 
specifically the CD14+CD16- classical monocyte subset, were negatively associated with the 
recovery factor. Together, these findings suggest that a persistent elevation in monocytes and 
neutrophils, along with a deficit in B cells, is associated with prolonged inflammation during LC. 
These findings are consistent with a previous report that monocytes are elevated in males with 
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LC31.  The decrease in MAIT cells with LC could be another effect of sustained inflammation as 
lower levels of circulating MAIT cells have been associated with chronic HIV68 and hepatitis C69 
viral infections. 
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Figure 3. Heme metabolism and androgenic steroid pathways, inflammation-associated 
serum factors, and altered immune cell composition are associated with the recovery 
factor during convalescence. (A) GSEA identifies heme metabolism and androgenic steroid 
pathways as significantly associated with the recovery factor, with significance shown per assay, 
as well as across assays (joint adj. p < 0.05). (B) 26 significant analytes (SPEAR Bayesian 
posterior selection probability ≥ 0.95) in the recovery factor across different assays (left) were 
identified using SPEAR factor loadings (middle; coefficient in the factor), and each was tested for 
association in the test cohort with MIN vs LC groups (right; adj. intercept p-value). (C) Geometric 
means of analytes from the significantly enriched gene and metabolite sets and/or significant 
SPEAR analytes are shown per sample at each convalescent visit in the test cohort. The p-values 
indicate significance of the association with MIN vs LC. (D) Association in the full cohort of whole 
blood cell counts determined by CyTOF with the recovery factor for parent and child immune cell 
types. NK: Natural Killer cells, Mono: Monocytes, PMN: polymorphonuclear neutrophils, B: B 
lymphocytes, CD4: CD4+ T lymphocytes, CD8: CD8+ T lymphocytes. For a full list of the child 
populations see Table S3. (* adj. p-value < 0.05, ** adj. p-value < 0.01, *** adj. p-value < 0.001). 
See also Figure S5.  

The recovery factor is associated with clinical characteristics and multiple patient reported 
outcomes in the convalescent period 
We next evaluated whether the recovery factor was associated with clinical features and 
additional clinical outcomes. We tested the association of recovery factor scores with clinical 
features at hospital admission (i.e., Visit 1), including demographics, comorbidities, complications, 
and baseline lab measurements (Figure 4A). Several demographic and clinical measures were 
significantly associated with recovery factor scores, including age, sex, length of hospital stay and 
the Sequential Organ Failure Assessment (SOFA) score. Notably, anemia as a complication was 
negatively associated with the recovery factor, whereas hemoglobin and hematocrit baseline 
measurements showed a significant positive association (Figure 4A). We additionally conducted 
association testing with Patient Reported Outcome (PRO) measures from surveys conducted at 
the same visit at which the recovery score was assessed in participants across the convalescent 
period, correcting for age and sex. The recovery factor score was significantly associated in the 
test cohort with the PROMIS Physical score, on which the model was trained (Figure 4B), and the 
EQ-5D-5L score, both of which contained similarly worded questions assessing physical function 
(Figure 4B). Interestingly, the recovery factor was also correlated with PROMIS Mental and 
PROMIS Psychosocial Impact scores, although these associations did not remain significant after 
p-value correction (Figure 4B). We also tested whether recovery factor scores associated with 
whether participants reported clinical symptoms in the 7 days prior to each visit but found no 
significance with any symptom group (Figure 4C). 
 
There is a general lack of consensus about whether LC is associated with the severity of acute 
disease. A previous analysis of clinical features from the IMPACC cohort showed no association 
between the severity of acute infection, as assessed by clinical trajectory groups, and LC 
development6,18. However, other studies have found an association6. Thus, we sought to 
determine whether acute disease severity contributed to the association between recovery factor 
scores and LC status in our cohort. Clinical severity in the IMPACC cohort during the acute phase 
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was defined by unsupervised clustering of respiratory ordinal score over time, taking discharge 
status and limitations into account, with trajectory group 1 (TG1) representing the mildest disease 
course and TG4 representing the most severe disease among participants who survived for at 
least 28 days post hospitalization70. After correcting for acute phase trajectory group assignment, 
recovery factor scores remain significantly associated with LC at the first three convalescent time 
points (Figure 4D), indicating that acute clinical severity does not contribute to the association 
between participant recovery factor scores in the convalescent phase of disease and LC status. 
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Figure 4. Associations of clinical measurements with recovery factor scores. (A) 
Association of recovery factor sores with clinical features (demographics, comorbidities, 
complications and baseline lab measurements). Dot plot shows the signed adjusted p-values 
indicating the clinical feature term significance from a linear mixed-effect model with enrollment 
site and participant as random effects to explain the convalescent phase recovery factor scores. 
Sex and discretized age were further adjusted as fixed effects for clinical features other than sex 
and age. Only significant associations (adj. p-value <0.05) are shown. (B) Associations of 
recovery factor scores with individual PRO survey scores (PROMIS scale scores, EQ-5D-5L and 
health score) in the test cohort. Raw and adjusted p-values indicated the PRO score term 
significance in linear mixed effect models. (C) Associations of recovery factor scores with each 
indicated symptom group in the test cohort. Numbers are the uncorrected significance (p-values) 
of the symptom group term in linear mixed effect models. (D) Recovery factor scores per 
participant in the test cohort, separated into MIN and LC groups by acute phase trajectory groups, 
stratified by visit. P-values for panels B-D show the endpoint term of a linear mixed effect model 
with sex, discretized admit age, and trajectory group as fixed effects and enrollment site as 
random effect. No individual MIN vs. LC comparisons were significant after p-value correction. (* 
adj. p-value < 0.05, ** adj. adj. p-value < 0.01, *** adj. p-value < 0.001)  

Sex impacts recovery factor scores  
The incidence of LC is higher in females than males, despite a higher percentage of males with 
severe COVID-19 acute disease courses21,71. In the IMPACC Convalescent cohort, nearly half of 
the female participants presented with long term deficits compared to only ~30% of male 
participants (Fig. S6A). Assignment to clinical subtypes of LC was not influenced by sex, with 
similar proportions and numbers of male and female LC participants assigned to COG, PHY and 
MLT PRO clusters (Figure S6A).  However, consistent with the known influence of sex on LC 
status, sex was a statistically significant covariate in the association of the recovery factor with 
LC status from Figure 2C (p=3.6e-7) and with PRO clusters from Figure 2D (adj. p<0.001 in all 
pairwise comparisons). Thus, we tested if the recovery factor was able to discriminate LC in both 
males and females by repeating our associations with LC status in the Test cohort separated by 
sex. Recovery factor scores were significantly associated with the binary assignment to LC vs. 
MIN groups in females but not in males after p-value adjustment (Figure S6B), although the trend 
of lower scores in LC participants persisted in males. When considering individual PRO groups, 
recovery factor scores discriminated between MIN vs. COG and MIN vs. MLT groups for females 
and MIN vs. MLT PRO groups for males (Figure S6C). Given that the incidence of LC is lower in 
males, it is notable that recovery factor scores were generally higher in males versus females 
regardless of LC status. 
 
We next investigated whether the gene and metabolic pathways or top analytes associated with 
the recovery factor (Figure 3A-B) were differentially represented between sexes, where sex was 
also a statistically significant covariate (Figure 3C, adj. p<0.001). The geometric mean score of 
the heme metabolism pathway approached significance but was no longer significantly associated 
with LC when the cohort was divided into male and female subsets after p-value correction (Figure 
S6D). Geometric mean scores for androgenic steroids and significant SPEAR analytes (which 
contained several top metabolites from the androgenic steroids pathway) were significantly 
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associated with LC only in males (Figure S6D). The androgenic steroid scores were higher in 
males than females irrespective of LC status (Figure S6D), corresponding to the higher overall 
recovery factor score in males (Figure S6B). Notably, the combined score of the top 73 unique 
features from Hallmark Heme Metabolism, androgenic steroids, and significant SPEAR analytes 
remained significantly associated with LC in both sexes (Figure S6D). 

Vaccination is not associated with altered recovery factor scores 
Our cohort was enrolled prior to the national rollout of SARS-CoV-2 vaccines for the general 
population. During the longitudinal post-hospitalization follow-up period, as vaccines became 
broadly available, close to 75% of the participants in the IMPACC Convalescent cohort received 
a SARS-CoV-2 vaccination (Figure S7A-B). To assess the potential influence of the vaccine 
response on the immune profiling data and thus the recovery factor, we compared recovery factor 
scores per visit for events occurring before and after the first vaccination dose, as well as events 
occurring within a three-week period after any vaccination dose, when vaccine responses have 
been shown to impact immune profiles72,73. No significant difference was found in recovery factor 
scores across these comparisons, indicating a negligible effect of vaccination on immune profiles 
related to LC in our patient cohort (Figure S7 C-D). 
 
Recovery factor scores during the acute disease phase associate with LC status during 
convalescence 
We next investigated whether the immune elements identified in the recovery factor were 
detectable during the acute infection phase, prior to development of LC. We computed recovery 
factor scores using immune profiling data from all participants in the Convalescent cohort during 
their acute phase visits (Visits 1 to 6, spanning hospital admission through 26-35 days post-
admission). Remarkably, we found that recovery factor scores were significantly higher in MIN 
versus LC participants as early as hospital admission (Visit 1) and consistently during the acute 
period (Figure 5A; Figure S8A). Recovery factor scores were also significantly higher in MIN 
versus COG groups and MIN versus PHY groups in the acute phase when assessed across the 
28-day time course (Figure 5B; Figure S8B). Geometric means of heme metabolism and 
androgenic steroid pathway analytes from the recovery factor, as well as the 26 significant SPEAR 
recovery factor analytes were also significantly associated with LC status during the acute phase. 
The combined geometric mean score of analytes from these three feature groups in acute phase 
data associated most significantly with MIN versus LC status (Figure 5C), as it did previously in 
the convalescent phase (Figure 3C).  
 
We further assessed whether altered circulating immune cell composition in the acute phase of 
disease could contribute to acute-phase recovery factor scores. Association testing of recovery 
factor scores with whole blood CyTOF measurements during the acute disease phase showed 
that CD4+ and CD8+ T cells, conventional and plasmacytoid dendritic cells, eosinophils, 
basophils, and CD56hi CD16low natural killer (NK) cells were significantly positively associated 
with the recovery factor scores. Within the CD4+ T cell compartment, naïve, central memory 
(TCM), and effector memory (TEM) subsets, as well as non-naive regulatory T cells (Treg) were 
significantly associated with recovery factor scores, while activated CD4+ T cells were inversely 
correlated. Within the CD8+ T cell compartment, naïve, TCM, and TEM subsets were positively 
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associated with recovery factor scores, as were NKT cells and CD161+ MAIT cells. In contrast, 
monocytes, neutrophils, B cells, and plasmablasts in the acute phase were negatively associated 
with recovery factor scores (Figure 5D). These findings are consistent with a previous study that 
found higher plasmablast counts and lower total CD4+ T, total CD8+ T, CD4+ TEM, CD8 TEM, 
Treg, NK, and dendritic cell counts in immune-cell populations sampled at days 0-14 after 
infection in COVID-19 patients who experienced persisting symptoms at days 91-180 after 
infection29.  The similarities across both studies are indicative of an acute blood immune cell type 
signature of LC that is robust to variance in patient cohorts and LC definition.  
 
In summary, our findings indicate that the major biologic signatures of the recovery factor that 
stratify LC from recovered participants in the convalescent phase – elevated heme metabolism 
gene signatures, reduced androgenic steroids, increased circulating inflammatory mediators, and 
increased monocytes and neutrophils – are evident early in the acute phase of disease. 
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Figure 5. Recovery factor scores in acute phase data associate with eventual LC status. 
(A) Recovery factor scores during the acute disease phase for participants in the LC and MIN 
groups within 72h of hospital admission (Visit 1) and at day 4 (Visit 2), day 7 (Visit 3), day 14 (Visit 
4), day 21 (Visit 5), and day 28 (Visit 6) after admission. (B) Recovery factor scores during the 
acute disease phase for participants in individual PRO clusters. (C) Geometric mean of analytes 
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in enriched gene and metabolic sets and/or significant SPEAR analytes during the acute phase. 
No individual per-visit comparisons were significant after p-value correction. P-values in top-right 
box in A-C show the significance of the recovery factor score or geometric mean signature 
association with MIN vs LC or pairwise PRO cluster combinations. Bars above the boxplots show 
the pairwise significance across groups in a per-visit comparison (** p<0.01, *p<0.05).  (D) 
Recovery factor scores association with whole blood CyTOF immune cell populations during the 
acute phase (* adj. p-value < 0.05, ** adj. p-value < 0.01, *** adj. p-value < 0.001). See also Figure 
S8. 
 

Acute-phase recovery factor scores distinguish acute disease severities and predict LC 
risk irrespective of acute severity 
We investigated the full IMPACC study cohort (n = 1,148 participants with at least one sample 
measurement for the omics modalities included in our model) to assess whether recovery factor 
scores determined from acute phase data would associate with patient severity trajectory group 
assignments. For this analysis we included participants who did not survive beyond 28 days post-
hospital admission and participants without biospecimens and/or surveys during the convalescent 
phase. Recovery factor scores were significantly associated longitudinally with acute disease 
trajectory groups and were highest in participants with milder disease courses (TG1-TG3) and 
lowest in participants with the most severe acute disease trajectories (TG4 and TG5) (Figure 6A). 
Acute-phase recovery factor scores increased over time for participants in all trajectory groups 
except TG5, the most severe group in which participants died by day 28 after hospital admission 
(Figure 6A). To assess whether the association between acute recovery factor scores and 
convalescent LC status was simply due to acute recovery factor scores being an indicator of acute 
disease severity, we repeated the association test including trajectory group as a covariate at 
each visit (Figure 6B) and longitudinally (Figure S8C). LC status was still significantly associated 
with acute recovery factor scores even after taking trajectory group into account. These findings 
suggest that recovery factor scores in the acute phase contain valuable information for predicting 
convalescent LC status beyond its correlation with acute disease severity.  
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Figure 6. Recovery factor scores associate with acute disease phase trajectory groups, 
but identify LC irrespective of acute severity. (A) Longitudinal analysis of acute recovery factor 
scores for the full IMPACC cohort stratified by trajectory group (N=1,148 participants). P-value 
shows the significance of the trajectory group term in a longitudinal model correcting for age and 
sex as fixed effects and enrollment site and participant ID as random effects. (B) Recovery factor 
scores in the acute phase by convalescent MIN/LC label, stratified by acute trajectory group and 
visit number. P-values show significance in distinguishing MIN vs. LC labels in linear mixed 
models with sex, discretized admit age, and trajectory group as fixed effects and enrollment site 
and participant ID as random effects, performed separately for each acute visit and corrected 
across all visits. 
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Machine learning models based on the recovery factor scores at the acute or the 
convalescent phase together with clinical features predict LC status during the 
convalescent phase 
Building on the strength of the recovery factor to predict LC even from the acute phase of disease, 
we assessed whether a combination of the recovery factor scores and clinical characteristics 
could improve the predictive performance. We selected clinical features including the routinely 
recorded elements of age at enrollment, sex, body mass index (BMI), length of hospital stay, 
Sequential Organ Failure Assessment (SOFA) score, along with Spike IgG antibody titers and 
viral load (SARS-CoV-2 N1 PCR) during the acute phase of disease, which were previously 
associated with LC status in the IMPACC cohort18 (Figure S9), as well as the presence of 
comorbidities including hypertension, diabetes, chronic cardiac disease, chronic kidney disease, 
malignant neoplasms, chronic neurological disorders, liver disfunction/failure, history of 
transplants, smoking/vaping, asthma, respiratory diseases other than asthma, substance use, 
HIV infection, and the total number of comorbidities (Figure S10A). Lasso models trained 
exclusively on the mean recovery factor scores during the acute phase (SPEAR acute, mean 
cross-validation AUROC 0.64) outperformed models trained exclusively on clinical features 
(Clinical, mean cross-validation AUROC 0.63) (Figure S10B). The performance in predicting LC 
was further improved when training models on the combination of baseline and acute-phase 
clinical features and recovery factor scores (SPEAR acute + clinical, mean cross-validation 
AUROC 0.66) (Figure S10B). The lasso model trained on the recovery factor scores during the 
convalescent phase (mean cross-validation AUROC 0.74) also outperformed the clinical-only 
model and was slightly improved when combined with clinical features (mean cross-validation 
AUROC 0.75) (Figure S10C). In addition, we assessed whether a reduced set of analytes based 
on the 26 SPEAR significant analytes could achieve similar predictive performance to the models 
trained on the full recovery factor (Figure S10C). Such streamlined models would be 
advantageous in a clinical setting or to develop clinical diagnostics tests to identify individuals with 
LC more easily. Even though the best performing reduced analyte set models (SPEAR significant 
analytes) had a lower predictive power than the models trained on the full convalescent recovery 
factor scores, this sparse model achieved a mean cross-validation AUROC of 0.69, suggesting 
its utility. 
 
We further evaluated whether single time point measurements of the recovery factor scores could 
achieve similar performance as the models with averaged scores over the acute or convalescent 
phases. Interestingly, we observed a slowly increasing trend in predictive performance for each 
individual time point with increased visit numbers during earlier visits, which peaked at Visit 8 (6 
months after hospital discharge) with a mean cross-validation AUROC of 0.74 (Figure S10D). The 
6-month time point was also the strongest individual time point predictor when the model included 
the clinical features (mean cross-validation AUROC of 0.76) (Figure S10D). Notably, recovery 
factor scores as early as Visit 1 provided predictive performance (mean cross-validation AUROC 
0.63), indicating that the recovery factor captures early predictive features of LC during the acute 
disease phase, albeit the signal at this early time point is not as strongly predictive as later in the 
convalescent phase. 
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DISCUSSION 
In this study, we applied supervised multi-omics integration methods to identify biologic features 
associated with LC in 513 participants from the IMPACC cohort. We took advantage of data 
availability from this cohort that was followed longitudinally after hospitalization with COVID-19 
through the first 28 days of the acute phase of disease and subsequently for up to one year after 
hospital discharge18,70. The IMPACC cohort is unique in its comprehensive inclusion of clinical 
data, biospecimens, and quarterly patient-reported outcome surveys, combined with multi-omics 
immunophenotyping at multiple time points throughout the acute and convalescent phases of the 
disease. A previous study of this cohort identified demographic and clinical risk factors associated 
with the development of LC, which included female sex, comorbidities such as chronic heart, lung, 
and neurologic diseases, and a longer length of hospital stay18. Here, we report the first study of 
the IMPACC cohort to analyze biologic data collected during the convalescent phase of disease, 
allowing us to identify a multi-omics “recovery factor” capable of discriminating participants who 
recover with minimal deficits from those who experience a variety of clinical LC symptoms. 
Notably, we find that as early as 72h after hospital admission for COVID-19, recovery factor 
scores predict which patients, irrespective of their acute disease severity, will go on to experience 
LC. Biologic features associated with the recovery factor score indicate that reduced androgenic 
steroid levels, increased heme metabolism signatures, and persistent elevation of inflammation-
associated serum proteins are hallmarks of LC that both identify individuals with LC during 
convalescence and predict which acute COVID-19 patients will experience LC. 
 
Increased levels of androgenic steroids in serum were positively associated with recovery factor 
scores and with participants who recovered from COVID-19 with minimal deficits. Seven of the 
twelve leading-edge androgenic steroid metabolites, as well as Oxysterol Binding Protein 2 
(OSBP2), a leading-edge gene in the Hallmark Heme Metabolism pathway, were also included 
within the list of 26 analytes that were statistically significant within the recovery factor. Limited 
studies have elucidated the role of reduced androgenic steroids in LC, but in agreement with our 
findings, lower testosterone levels have been associated with increased LC symptomatology in 
both males and females31. We observed that several intermediate metabolites in the canonical 
steroid hormone biosynthesis pathway were associated with the recovery factor and were 
decreased in LC participants, including sulfated forms of testosterone precursors (pregnenolone 
and DHEA) and downstream metabolites (androsterone, epiandrosterone, and 5alpha-androstan-
3beta,17beta-diol). Notably, our list of top androgenic steroid metabolites has strong overlap with 
the androgenic steroid signature from an independent all-female cohort of healthy controls 
compared to myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) patients74. All six 
androgenic steroid metabolites that were significantly elevated in healthy controls in this study 
(DHEA-S, androstenediol (3alpha, 17alpha) monosulfate (2), androstenediol (3beta,17beta) 
disulfate (2), 5alpha-androstan-3beta,17alpha-diol disulfate, androsterone sulfate, 
epiandrosterone sulfate)74 were also statistically significant in our recovery factor, strongly 
implicating this signature in the shared symptomology, such as fatigue, post exertional malaise, 
and sleep disturbances, between ME/CFS and LC75. In our study, a geometric mean score 
consisting of leading-edge metabolites from the androgenic steroids pathway significantly 
differentiated MIN vs. LC in the entire cohort. Nonetheless, we note that when the cohort was 
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subset into males and females, the geometric mean scores for the androgenic steroid pathway 
only significantly stratified LC from recovered male participants, although levels of androgenic 
steroid scores also trended lower in females with LC. 
 
The fact that pregnenolone (sulfate) and many of its downstream metabolites were all significantly 
elevated in the recovery factor, despite being generated by distinct enzymes, suggests that a rate-
limiting enzymatic step upstream of pregnenolone may explain the observed signature. We 
observed that cholesterol, which is cleaved by the mitochondrial enzyme CYP11A1 to produce 
pregnenolone in the first step of the steroid hormone biosynthesis process, was detected in the 
metabolomics assay but was not identified as a significant metabolite in the recovery factor. 
CYP11A1 was not detected in our proteomics or transcriptomic assays, likely due to localized 
activity in the adrenal gland. Further experimentation is needed to test if impaired generation of 
pregnenolone from cholesterol in LC is responsible for decreased levels of intermediate 
androgenic steroid metabolites. Alternatively, the observed decrease of sulfated androgenic 
steroid levels in LC may reflect altered activity of sulfatases or sulfotransferase enzymes. Notably, 
some sulfonated steroids, such as DHEAS, a leading-edge gene in the androgenic steroid 
pathway and a top significant analyte in the SPEAR recovery factor, have been shown to exhibit 
immunosuppressive and anti-inflammatory effects, particularly in neuroinflammation76. In addition, 
testosterone has shown to play an immunomodulatory role and is often reduced in patients with 
other critical illnesses77. Thus, elevated sulfated steroids in the recovery factor may contribute to 
the reduction in inflammation associated with recovery from COVID-19 with minimal deficits76.  
 
In addition to altered androgenic steroids, the transcriptional signature of heme metabolism in 
PBMCs was inversely associated with the recovery factor, such that LC participants had elevated 
expression of genes associated with the heme metabolism pathway during the convalescent 
period. As with androgenic steroids, we found the leading-edge genes of the heme metabolism 
pathway were also higher during the acute phase of disease in participants who would later 
experience LC. Notably, overexpression of a heme metabolism signature in blood was recently 
reported for a separate cohort of 102 participants, including non-hospitalized and hospitalized 
COVID-19 patients evaluated 1-3 months after infection, which found this pathway to be enriched 
in participants experiencing persisting symptoms29. The authors related the elevated heme 
metabolism signature to stress erythropoiesis induced in response to inflammation-associated 
anemia driven by IL-6-mediated hepcidin upregulation29,78. In that study, participants who 
experienced LC had reduced iron and HGB 2 weeks to 1 month after COVID-19 infection. This 
iron restriction was proposed not only to induce anemia, but also to impair lymphocyte function. 
The subsequent delayed resolution of acute infection might result in sustained inflammation and 
persistent anemia up to at least 6 months after infection, which may partially explain the systemic 
symptomatology of acute COVID-19 and LC. Anemia of inflammation, also known as anemia of 
chronic disease, is a common complication associated with chronic inflammatory illnesses such 
as chronic kidney disease, congestive heart failure, as well as ICU admission79. Anemia as a 
complication was also significantly negatively associated with the recovery factor and was shown 
to be associated with PRO clusters in our previous study18, whereas hemoglobin and hematocrit 
baseline measurements showed a significant positive association with the recovery factor. Our 
findings are largely consistent with this study, as we also find evidence of persistent inflammation 
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in LC participants: inflammation-associated serum factors, such as CXCL9, CSF1, and FGF21, 
were identified by SPEAR as significant analytes in the recovery factor, albeit they did not reach 
significance when associated individually with LC status. Of note, FGF21 measured in the acute 
phase was previously associated with cognitive and multidomain deficit PRO clusters relative to 
MIN in this cohort18, and has been proposed as a biomarker for chronic inflammation in myalgic 
encephalomyelitis/chronic fatigue syndrome (ME/CFS)80, a complex chronic disease that 
overlaps clinically with LC. Furthermore, LRG1, which is activated by the inflammatory IL-
6/STAT3 pathway is significantly elevated in LC participants, perhaps contributing to vascular 
pathology in LC60–62. Although IL-6 (SPEAR Bayesian posterior selection probability = 0.86) did 
not reach significance in the SPEAR factor, it was within the top 50 analytes of the factor. Along 
with these persistent signatures of inflammation, we also identified elevated heme metabolism 
gene expression signatures as a key feature of LC. In fact, expression levels of the leading-edge 
heme metabolism genes we identified in our study could also predict LC participants in another 
cohort29, demonstrating that the same heme metabolism signature during the acute phase of 
COVID-19 can predict which patients will experience LC when tested in participants from distinct 
studies. Together, these findings point to persistent inflammation, driving anemia and stress 
erythropoiesis as key drivers of LC. 
 
Across all time points, consistent immune cell subsets were associated with the recovery factor. 
In both the acute and convalescent disease phases, CD161+ MAIT cell frequencies were 
positively associated with the recovery factor, while monocyte, neutrophil, and CD14+ CD16- 
classical monocyte cell frequencies were negatively associated with the recovery factor. However, 
the B cell population is negatively associated with the recovery factor during the acute disease 
phase, but becomes positively associated during convalescence. We also found several points of 
agreement for immune cell frequencies in the recovery factor with previous reports of LC subjects. 
While comparing immune composition across cohorts can be challenging due to differences in 
cohort construction and cell type annotation, we found that CD4+ and CD8+ T cells, plasmacytoid 
DCs, and conventional DCs are positively associated with the recovery factor during the acute 
phase of disease, while monocytes, neutrophils, and B cells are negatively associated, suggesting 
reduced T cell immunity relative to inflammatory innate immunity in the acute phase of disease in 
individuals most susceptible to LC. This finding is in keeping with cellular trends observed in 
Hanson et al.29 in the acute phase of disease and in males during convalescence by Silva and 
colleagues31. Consistent with Klein et al.26, we do not find significant associations of the recovery 
score with naive CD4+ or naive CD8+ T cell subsets in the convalescent phase of COVID-19.  
 
A previous study from IMPACC identified a ‘severity factor’ that significantly associated with 
clinical outcomes during the acute phase of disease39. Given that both the severity factor and the 
recovery factor are associated with inflammatory signatures during acute COVID-19, we 
compared immune cell types associated with the recovery factor to those associated with the 
severity factor at this stage of disease. There were notable similarities: for example, the combined 
monocyte, B cell, and neutrophil populations are negatively associated with the recovery factor 
and positively associated with the severity factor. Likewise, CD4+ T cell and CD8+ T cell 
populations are positively associated with the recovery factor and negatively associated with the 
severity factor. These cellular associations suggest that inefficient adaptive immunity during the 
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acute phase of disease, with elevated frequencies of inflammatory innate cells contribute to LC 
susceptibility. This model is consistent with our past18 and current findings in the IMPACC cohort 
that reduced levels of anti-SARS-CoV-2 antibodies and increased viral titers in patients within the 
first 72 hours of hospital admission are associated with participants who will experience LC 
(Figure S9). These findings are also consistent with other reports that hospitalized individuals are 
more susceptible to LC than non-hospitalized individuals14,81. Nonetheless, our recovery factor 
predicts which patients will experience LC, irrespective of acute disease severity, indicating that 
the model has learned features of COVID-19 beyond inflammation that are associated with 
COVID-19 severity.  
 
Although symptom groups, such as respiratory symptoms, were found to be significantly 
associated with LC in this cohort18, the multi-omics recovery factor does not associate with a 
particular clinical symptom group. Instead, it captures biomarkers predictive of global physical 
deficits, as reported by patients after acute COVID-19 disease. While assessing the entire multi-
omics SPEAR factor in convalescent patients is impractical, our findings indicate that assessing 
the 26 significant SPEAR analytes would aid in LC diagnoses (Fig S10c). 
 
This study has several limitations. The reliance on self-reported survey data to identify symptoms 
and classify participants into MIN/LC and individual PRO clusters may introduce potential biases. 
To address this, population-normalized PRO measure scores were utilized, and comparisons 
were made to pre-illness health status when possible. Additionally, the surveys were developed 
early in the pandemic (March 2020), before the full spectrum of LC symptoms was characterized, 
and thus did not capture current commonly-recognized manifestations such as brain fog, fatigue, 
sleep disturbances, neuropathy, and dysautonomia. Self-selection bias may also be present, as 
patients with severe LC symptoms might have been less likely to respond to the surveys. As the 
study cohort was recruited during early phases of the pandemic (May 2020 through March 2021), 
it consists of individuals infected with the original SARS-CoV-2 strain and does not include data 
on subsequent variants of concern, limiting the generalization of the findings to other later 
dominant strains. Vaccination data were self-reported and limited to the post-acute phase since 
enrollment was largely completed prior to vaccine rollout, and exact vaccination dates were 
unavailable for some participants. Latent virus reactivation was not considered in this model. 
Furthermore, as part of the study design, all participants in the IMPACC cohort were hospitalized 
for COVID-19. Consequently, the multi-omics factors were constructed without incorporating 
profiles from individuals with COVID-19 who did not require hospitalization or healthy controls, 
potentially introducing a bias toward those with more severe disease. However, we were able to 
discover in our hospitalized cohort molecular signatures that were previously observed in cohorts 
that included non-hospitalized and asymptomatic SARS-CoV-2 infected participants29. 
 
Despite these limitations, the study possesses significant strengths. In addition to the prospective 
design, with acute and convalescent longitudinal multi-omics profiling, enrollment through multiple 
sites across the United States enhances the diversity and broad representation of the cohort and 
mitigates potential participant recruitment biases, contributing to the robustness of the findings. 
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In conclusion, supervised multi-omics factor construction of immune profiling data from SARS-
CoV-2 infected participants who recovered with minimal deficits or experienced LC indicates that 
immune cell types and serum factors associated with inflammation, reduced androgenic steroids, 
and an elevated heme metabolism signature predict which participants will experience LC, 
irrespective of acute disease severity. Moreover, these signatures are maintained into 
convalescence, indicating that persistent inflammation is likely a key driver of LC. Further studies 
will be needed to determine why inflammation persists in some COVID-19 patients. We did not 
assess persistent SARS-CoV-2 viral loads or viral reactivation in this study; however, a recent 
study of IMPACC data82 suggests reactivation of latent viruses could contribute, consistent with 
other studies26,30,31. Altogether, our data, paired with prior congruent reports, suggest that 
impaired lymphocyte function early in COVID-19 reduces cellular and humoral adaptive immunity 
and contributes to high SARS-CoV-2 viral loads. Elevated viral loads can trigger innate immune 
cell responses that increase inflammatory cytokines, driving inflammation-associated anemia that 
further reduces lymphocyte function, which could enable reactivation of latent viruses. Such 
persistent inflammation that is not successfully resolved likely leads to LC pathology. Strategies 
to break the cycle of inflammation and correct the inflammation-associated anemia may promote 
recovery from LC, and merit further investigation. 
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