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We discuss a recently proposed approach to solve the classic feature-bind-

ing problem in primate vision that uses neural dynamics known to be

present within the visual cortex. Broadly, the feature-binding problem in

the visual context concerns not only how a hierarchy of features such as

edges and objects within a scene are represented, but also the hierarchical

relationships between these features at every spatial scale across the

visual field. This is necessary for the visual brain to be able to make

sense of its visuospatial world. Solving this problem is an important step

towards the development of artificial general intelligence. In neural net-

work simulation studies, it has been found that neurons encoding the

binding relations between visual features, known as binding neurons,

emerge during visual training when key properties of the visual cortex

are incorporated into the models. These biological network properties

include (i) bottom-up, lateral and top-down synaptic connections, (ii) spik-

ing neuronal dynamics, (iii) spike timing-dependent plasticity, and (iv) a

random distribution of axonal transmission delays (of the order of several

milliseconds) in the propagation of spikes between neurons. After training

the network on a set of visual stimuli, modelling studies have reported

observing the gradual emergence of polychronization through successive

layers of the network, in which subpopulations of neurons have learned

to emit their spikes in regularly repeating spatio-temporal patterns in

response to specific visual stimuli. Such a subpopulation of neurons is

known as a polychronous neuronal group (PNG). Some neurons embedded

within these PNGs receive convergent inputs from neurons representing

lower- and higher-level visual features, and thus appear to encode the hier-

archical binding relationship between features. Neural activity with this

kind of spatio-temporal structure robustly emerges in the higher network

layers even when neurons in the input layer represent visual stimuli with

spike timings that are randomized according to a Poisson distribution.

The resulting hierarchical representation of visual scenes in such models,

including the representation of hierarchical binding relations between

lower- and higher-level visual features, is consistent with the hierarchical

phenomenology or subjective experience of primate vision and is distinct

from approaches interested in segmenting a visual scene into a finite set

of objects.
1. Introduction
The feature-binding problem concerns how the visual system represents the

hierarchical relationships between features (such as edges and objects). For

example, at an object level, how does the visual system represent which low-

level features belong to a particular object? If two letters T and L are seen

together, how does the visual system represent which horizontal and vertical

bars are part of which letter?
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Figure 1. A connectionist example of the feature-binding problem proposed by Rosenblatt [1]. Top row: A neural network receives input from a simple visual scene,
in which a triangle or a square can appear in either the top or bottom location. The network has four output neurons A, B, C and D that respond to the following
kinds of visual inputs: (A) triangle in either location, (B) square in either location, (C) either object in the top location and (D ) either object in the bottom location.
Bottom row: The responses of the output neurons to four different visual scenes. It is evident that when a single object is presented, then the combined activity
among the output neurons is sufficient to determine the identity of the object and its location. However, when both objects are presented together in different
locations, then it is not possible to determine the locations of each of the objects from the responses of the output neurons. Reproduced with permission from
Rosenblatt [1]. (Online version in colour.)
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Moreover, the visual system must represent hierarchical-

binding relations across the entire visual field at every spatial

scale and level in the hierarchy of visual primitives. Represent-

ing the binding relations between visual features is necessary in

order for the visual brain to make sense of its visuospatial

world. Furthermore, the binding of subfeatures to their

parent object would provide rich representations if applied

not only to the visual but also to the auditory and behavioural

systems of the brain. Consequently, solving this problem

would be an important step towards the development of

what is commonly termed artificial general intelligence

(AGI). This refers to machines that may one day be able to per-

ceive and comprehend their visuospatial environment with

a similar semantic richness to the brain, and exploit this

semantically rich representation of the world to guide general

intelligent behaviour within complex real environments.

One simple example of the feature-binding problem from

a connectionist perspective was discussed by Rosenblatt [1]

and further elaborated by von der Malsburg [2]. The example

is illustrated in figure 1. Consider a neural network with four

output neurons A, B, C and D. The first two neurons, A and

B, represent the triangle and square, respectively. These

neurons have location-invariant responses in that the neurons

respond to their preferred objects in both the top and bottom

locations. The second pair of output neurons, C and D,

represent object location, and respond when any one of the

objects is presented in either the top or bottom location,

respectively. If the network is presented with a single

object, the responses of the output neurons are sufficient to

determine the identity of the object and its location. However,

when both objects are presented to the network in different

positions simultaneously, then all of the output neurons

respond and their combined activity is insufficient to deter-

mine which object is in which location. This has been called

the superposition catastrophe [2]. So how might the visual

brain represent which features or objects are in which retinal

locations when multiple objects are presented together within

a scene?
One approach that has been proposed for solving the fea-

ture-binding problem is known as feature integration theory

(FIT) [3]. This theory makes the assumption that there is only

a single spatial locus of attention within the visual field where

features are bound together. This implies that visual tasks

requiring feature binding would need to be carried out in a

time-consuming serial manner as the visual brain processes

the visual field sequentially. However, feature binding would

be far more adaptive for an animal if it could be simultaneously

performed across the entire visual field in parallel. Moreover,

can the feature-binding problem, in which the brain must rep-

resent the hierarchical relations between visual features at

different spatial scales, really be solved by trying to reduce

the size of the spatial region in which it is performed? In fact,

an experimental study carried out by Duncan & Humphreys

[4] on human participants did not observe a clear dichotomy

between serial and parallel modes of visual search. Instead,

the search efficiency was related to factors affecting the intrin-

sic difficulty of the task. For example, the search efficiency

decreased as the targets and non-targets became more similar,

or if the non-targets became more dissimilar to each other.

These experimental observations are inconsistent with the

assumption of FIT that visual binding is performed sequentially

as a spatial locus of attention shifts across the visual field.

Another mechanism that has been proposed for solving

feature binding is synchronization of neuronal firing. Real

neurons in the brain communicate with each other by emit-

ting electrical pulses known as action potentials or ‘spikes’.

The binding by synchrony hypothesis suggests that the sub-

population of neurons encoding the visual features that are

part of the same object will emit their spikes close together

in time, but not at the same time as those neurons encoding

features associated with different objects [5–7]. In this way, it

is suggested that synchronization may be used to segment a

visual scene into several discrete object regions. It is important

to note that synchronization and oscillations are often inter-

changeably discussed in the literature with overlapping

definitions. In this paper, we use the term synchronization and
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Figure 2. Two minimal example connectivities that could facilitate basic poly-
chronous groups. It is important to note that these are monosynaptic
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synchrony to refer to the event when multiple neurons fire

spikes effectively simultaneously. Oscillations instead refer to

the longer timescale waves of excitatory and inhibitory activity

in a network that can be of a width covering tens of milliseconds.

Under the hypothesis of binding by synchrony, simul-

taneous firing of neurons binds together the visual features

that they represent. Attempts to find such a relationship have

been unsuccessful [8]. Furthermore, if neural network models

incorporate randomized distributions of axonal transmission

delays of the order of several milliseconds as found in the

brain, then this has the effect of degrading the emergence of

synchrony in these simulations. Meanwhile, the question

remains: Can decomposing natural scenes into a several-

object region really capture the semantic richness of primate

vision? Duncan & Humphreys [4] describe the hierarchical

nature of primate vision as follows:

connectivity examples, where only one spike is needed to activate a postsyn-
aptic neuron. While neurons in some areas can be activated by single afferent
neurons (some neurons in the lateral geniculate nucleus for example), neurons
usually require spikes from multiple neurons to spike. These examples, how-
ever, serve the purpose of illustrating the concept of polychronous groups. (a)
In this example, a spike from neuron A would cause neurons B and C to spike
5 and 10 ms later, respectively. The sequential spike times of A followed by B
followed by C are an example of the spatio-temporal pattern of spikes or a
polychronous group. (b) The connectivity of this example would cause the
same spatio-temporal pattern of spikes as example (a) but instead neuron
B would cause neuron C to fire. (a) and (b) are both examples of polychronous
groups caused by different underlying connectivities. Copyright & 2018 Amer-
ican Psychological Association. Reproduced [or Adapted] with permission. The
official citation that should be used in referencing this material is [9]. No

:20180021
A fully hierarchical representation is created by repeating segmen-
tation at different levels of scale. Each structural unit, contained by
its own boundary, is further subdivided into parts by the major
boundaries within it. Thus, a human body may be subdivided
into head, torso, and limbs, and a hand into palm and fingers.
Such subdivision serves two purposes. The description of a struc-
tural unit at one level of scale (animal, letter, etc.) must depend
heavily on the relations between the parts defined within it (as
well as on properties such as colour or movement that may be
common to the parts). Then, at the next level down, each part
becomes a new structural unit to be further described with its
own properties, defined among other things by the relations
between its own subparts. At the top of the hierarchy may be a
structural unit corresponding to the whole input scene, described
with a rough set of properties (e.g. division into light sky above
and dark ground below).
further reproduction or distribution is permitted without written permission
from the American Psychological Association.
How might the visual cortex represent such a hierarchy of

visual features, as well as the hierarchical binding relations

between these features, at every spatial scale and across the

entire visual field? Eguchi et al. [9] have recently shown

how this may be achieved within a biologically realistic hier-

archical neural network model of the primate ventral visual

system with the following properties.

(1) The model is a ‘spiking’ neural network, in which the

timings of the spikes emitted by neurons are explicitly

represented.

(2) The synaptic connections are modified during visual train-

ing by spike time-dependent plasticity (STDP). Specifically,

a synapse is strengthened through long-term potentiation

(LTP) if a spike from the presynaptic neuron arrives at the

postsynaptic neuron just before the postsynaptic neuron

emits a spike. The synapse is weakened through long-

term depression (LTD) if the spike from the presynaptic

neuron arrives at the postsynaptic neuron just after the

postsynaptic neuron has emitted its spike [10,11].

(3) The network architecture incorporates bottom-up, top-

down and lateral synaptic connections. This kind of synap-

tic connectivity is consistent with the primate visual cortex.

(4) There is an axonal transmission delay of a few milliseconds

in the time it takes for an action potential or spike to pass

from one neuron to another. The axonal transmission

delay between each pair of pre- and postsynaptic neurons

has a fixed value that does not alter through time. How-

ever, different axonal connections have different random

transmission delays, which can be anywhere from a few

milliseconds to tens of milliseconds.

(5) The network may incorporate multiple synaptic con-

nections between each pair of pre- and postsynaptic
neurons, where these connections have different axonal

transmission delays. Eguchi et al. [9] showed that this

allows the STDP to selectively strengthen specific synaptic

connections with particular axonal transmission delays.

Using a neural network model with the above architectural

components, Eguchi et al. [9] reported that training the

model on visual stimuli led to the emergence of repeating

spatio-temporal patterns of spikes in the higher layers of the

network. A subpopulation of such neurons that emit their

spikes in a regularly repeating spatio-temporal chain is referred

to as a polychronous neuronal group (PNG). Figure 2 illustrates

two examples of basic network connectivities, which could

underlie basic polychronous groups. The phenomenon of

network responses with spatio-temporal patterns of neural

activity is known as polychronization [12]. This is in contrast

with synchronization, in which the spikes of subpopula-

tions of neurons are clustered very close together in time

(synchronized). A key factor in pushing the network from

synchronous to polychronous activity is the incorporation of

axonal transmission delays, which forces the neurons to spike

at different times relative to other neurons. The original

study also reported that these PNGs responded selectively to

particular visual stimuli on which the network had been

trained. These stimulus-specific PNGs were found to emerge

even though the input neurons representing the visual

stimuli had entirely randomized spike times set according to

a Poisson distribution.

Neurophysiological evidence has emerged for the existence

of stimulus-specific and reliable patterns in spike timing.
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Havenith et al. [13] showed the existence of high levels of stimu-

lus-specific information in the timing of action potentials.

Notably, the timing of these spikes was reliable relative to the

peak of the underlying neuron population oscillation (beta/

low gamma) and not relative to stimulus onset. The function

and relevance of underlying population oscillations (transient

or otherwise) is intriguing and the evidence strong for a func-

tional role in activity gating, information propagation and

more (for a review see [14]), though we leave an exploration of

the theoretical benefits of such oscillations to a future study.

Nonetheless, this observed timing was in the context of a

range of visual stimuli (drifting gratings with motion in differing

angles) and recorded in the primary visual cortex [13]. This evi-

dence lends support to the idea that spike times are an

informative property of neuronal responses. Evidence has also

been found for precise spike timing with respect to stimulus

onset in the early visual system [15–17]. The interaction between

cortical oscillations and of precise spike timing relative to

stimulus onset may also be of importance.

A key conceptual development by Eguchi et al. [9] was to

propose that embedded within these PNGs exist neurons,

called binding neurons, that learn to represent the hierarchi-

cal binding relationships between lower- and higher-level

visual features. The simulations performed by these authors

demonstrated that such binding neurons develop automati-

cally and robustly within the emergent PNGs during visual

training. Moreover, in theory, these kinds of neurons will

learn to represent the hierarchical binding relations between

visual features at every spatial scale and across the entire

visual field. Thus, models exploiting polychronization may

enable a richer representation of a visual scene than that per-

mitted by either FIT or feature binding by synchronization. In

particular, the hierarchical representations of visual scenes

that emerge in the models investigated by Eguchi et al. [9],

including the representation of hierarchical binding relations

between lower- and higher-level visual features, are consist-

ent with the hierarchical subjective experience of primate

vision as described by Duncan & Humphreys [4].

A further hypothesis of the original study was that infor-

mation about visual features at every spatial scale, including

the binding relations between these features, would be pro-

jected upwards to the higher layers of the network, where

such fine-grained spatial information would be available for

readout by later brain systems to guide behaviour. The authors

referred to this as a holographic principle. Such a mechanism

could be important in the primate brain if subsequent brain

regions that are responsible for decision-making and behaviour

only receive connections from the higher stages of the visual

system. Consistent with this, a neurophysiology study carried

out by Rainer et al. [18] showed that information about the

location of a target object was encoded in the responses of

neurons in the prefrontal cortex (PFC). The simulations carried

out by Eguchi et al. [9] also provided evidence for this

hypothesized upwards projection of visual information.

In this paper, we review the theory of hierarchical feature

binding proposed by Eguchi et al. [9], their spiking neural

network model and simulation results. As discussed above,

the simulation studies carried out by these authors reported

the emergence of stimulus-specific spatio-temporal patterns

of spikes (PNGs) within the higher network layers, which are

repeated across different presentations of the same stimulus,

even when the spike timings of the stimulus representations

in the input layer were randomized. These authors investigated
the emergence of both large-scale PNGs consisting of many

neurons, as well as spike-pair PNGs consisting of just two neur-

ons that carried high levels of stimulus-specific information.

However, there is a potential issue with the latter results. Con-

sider two neurons that respond selectively to a particular

preferred stimulus with high firing rates, but do not respond

to any other stimuli. In this case, it may be possible to find

what appear to be spike-pair PNGs, i.e. particular interspike

intervals that are repeated across a large proportion of presen-

tations of the preferred stimulus, even though the times of

spikes emitted by the two neurons may in fact be random. In

the light of this possibility, in §4.1 we also present some new

simulation results taking a closer look at the gradual emer-

gence of spatio-temporal structure (polychronization) as

signals progress through a hierarchy of network layers.
2. Theory
2.1. The emergence of polychronization within

a biological spiking neural network model
of the primate visual system

Eguchi et al. [9] hypothesized that the kind of spiking

neural network architecture with properties (i)–(iv) described

above, especially including randomized distributions of

axonal transmission delays, would develop regularly repeating

spatio-temporal patterns of spiking activity in the higher net-

work layers after training on a set of visual stimuli—i.e.

polychronization [12]. This hypothesis was originally inspired

by the modelling study of Diesmann et al. [19]. They showed

that a hierarchical spiking neural network consisting of series

of successive layers could lead to the emergence of synchro-

nous activity in the higher layers even when the spikes in the

input layer were widely dispersed (i.e. unstructured) in time.

This is an example of the development of a synfire chain.

Synfire chains were originally proposed by Abeles [20] as net-

works within which such synchronous activity could

propagate. They are defined as a hierarchical series of pools

(or layers) of neurons which when a given layer fires, in a suffi-

ciently synchronous manner, the resulting volley of spikes

propagate on from each pool to the next, causing each pool

of neurons to fire synchronously one after another in sequence.

The conditions for the stability of synfire chains have been

explored and characterized, and a major requirement within

these networks is the existence of single-valued synaptic trans-

mission delays [19,21]. The reason this work was impactful was

that feature binding was posited at the time to be linked to syn-

chronized neuronal activity, whereby the spikes emitted by

neurons representing visual features that are part of the same

object would be clustered very closely together in time. The

simulations of Diesmann et al. [19] showed how such synchro-

nized activity could emerge naturally within a biological

spiking neural network. However, in order for synchrony to

emerge in their simulations, the model assumed either no

axonal delays or axonal delays all of the same fixed length.

Bienenstock [22] proposed that it might be possible to relax

this constraint by allowing the incorporation of non-uniform

axonal transmission delays as actually found in the brain.

These authors hypothesized that synchronous waves could

still emerge if pairs of given neurons in the network were con-

nected by multiple polysynaptic pathways with the same

overall length. This was referred to as a synfire braid.
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Nevertheless, Bienenstock [22] was still concerned with the

emergence of synchronized activity to solve feature binding.

As discussed above, our view was that synchrony could not

offer a solution to the binding problem that accorded with

the rich hierarchical phenomenology of primate vision [4]. In

this paper, we shall be discussing the alternative notion of

polychronization proposed by Izhikevich [12], and its potential

role in solving feature binding. Although synfire chains/braids

and polychronization both involve spatio-temporal patterns of

spiking activity, the latter is quite distinct from the former.

Specifically, polychronization is far less constrained than

synfire chains/braids in that it does not assume that subpopu-

lations of neurons have to emit their spikes in a synchronized

manner. We have found that this greater freedom can lead to

the emergence of representations of the hierarchical binding

relations between lower- and higher-level features.

Building closely on the work of Diesmann et al. [19], it

was hypothesized by Eguchi et al. [9] that including randomized

distributions of axonal transmission delays, e.g. spread uni-

formly in the range 0–10 ms, into such hierarchical spiking

network models would force neurons to emit their spikes

separated in time, thereby creating spatio-temporal spike

sequences (PNGs). Moreover, as Diesmann et al. [19] showed

how synchronous neural activity could gradually emerge

through successive layers even when there was no such temporal

structure among spikes in the input layer, Eguchi et al. [9]

hypothesized that input patterns with randomized spike times

could lead to the emergence of polychronous activity in the

higher layers of networks incorporating randomized distri-

butions of axonal delays. In the simulation study reported in

Eguchi et al. [9], the spike patterns representing the stimuli in

the input layer had no regular temporal structure, except that

the average firing rates of the input neurons were set in accord-

ance with the outputs of Gabor filters that simulated the

responses of simple cells in visual area V1. Eguchi et al. [9] also

hypothesized that training the network on visual stimuli using

STDP to modify the synaptic connections would enhance the

emergence of PNGs in the higher network layers, where individ-

ual PNGs would learn to respond to a particular preferred visual

stimulus. The study reported that these predictions were con-

firmed in their simulations. Moreover, these authors reported

that many more stimulus-specific PNGs emerged in the highest

(output) layer than individual neurons tuned to specific visual

stimuli. This strongly hints at such PNGs playing an important

role in stimulus representations in the brain. This is supported

by experimental observations from multi-unit recording studies

in monkeys, which have reported the existence of such spatio-

temporal spike patterns in the primate cortex in response to

the presentation of visual stimuli [23,24].

Given the reported emergence of stimulus-specific poly-

chronous activity in the spiking network simulations

performed by Eguchi et al. [9], and the observed presence

of these kinds of PNGs in the primate brain, what role

might such polychronous activity play in solving the fea-

ture-binding problem in a way that reflects the hierarchical

subjective experience of primate vision?

2.2. How the emergence of polychronization may
offer an approach to solving feature binding
in primate vision

Eguchi et al. [9] proposed that the emergence of polychronous

activity within a hierarchical spiking neural network may
provide an understanding of how the primate brain solves

the feature-binding problem. To address the hierarchical

phenomenology of primate vision, as described by Duncan &

Humphreys [4], consider a couple of higher-level features or

stimuli such as the alphabetical letters T and L, each of which

may be located anywhere on the retina. The letters T and L

both comprise a horizontal bar and a vertical bar, which are

the lower-level features. If the letters T and L are presented

together at some random locations on the retina, how might

the visual cortex represent which horizontal and vertical bars

(lower-level features) are part of which letters (higher-level fea-

tures or stimuli)? The ability to represent such hierarchical

binding relations between lower- and higher-level features is

fundamental to the ability of the visual brain to produce an

integrated representation of a visual scene, and consequently

make sense of its visuospatial world.

Consider training a spiking network with properties (i)–

(iv) described above on the letter T presented everywhere

across the retina. Eguchi et al. [9] hypothesized that this

would lead to the emergence of a T-specific PNG which is

activated regardless of the location of the T on the retina.

Within this T-specific PNG, it was hypothesized that binding

neurons could exist which encode the hierarchical binding

relations between lower- and higher-level features. Specifi-

cally, such binding neurons were posited to fire as part of

the PNG if, and only if, a neuron or subset of neurons repre-

senting a lower-level feature, such as a horizontal bar at a

particular retinal location, was participating in driving the

neuron or subset of neurons representing a higher-level fea-

ture, such as the letter T. In this case, the binding neurons

would carry measurable information that the lower-level

feature was part of the higher-level feature or stimulus.

The simplest example of how such binding neurons might

operate is shown in figure 3a. There are three neurons form-

ing a binding circuit. Neuron 1 in a lower layer represents the

low-level feature; neuron 2 in the higher layer represents the

high-level feature; and neuron 3 is a binding neuron that

encodes the hierarchical binding relation between the low-

and high-level features. The connections between the neurons

have axonal transmission delays associated with them, where

D(i,j ) denotes the delay from presynaptic neuron j to postsyn-

aptic neuron i. Given the existence of the axonal transmission

delays shown in figure 3a, it is evident that neuron 1 will be

participating in driving neuron 2 only if a spike emitted by

neuron 2 occurs approximately D(2,1) after a spike emitted

by neuron 1. Moreover, if the three axonal delays shown in

figure 3a have the relationship

D(3,1) ¼ D(2,1) þ D(3,2), ð2:1Þ

then the spikes emitted by neurons 1 and 2 will arrive at the

binding neuron 3 if and only if neuron 1 (representing the

low-level feature) is participating in driving neuron 2 (repre-

senting the high-level feature). This is of critical importance

because it is assumed that all neurons have relatively fast

synaptic time constants, as well as synaptic weights appropri-

ately scaled to the synaptic time constant, so that postsynaptic

neurons only fire when presynaptic spikes arrive simul-

taneously. In this case, binding neuron 3 may fire if and only

if neuron 1 is participating in driving neuron 2. In other

words, the binding neuron 3 may fire if and only if the low-

level feature encoded by neuron 1 is part of the high-level fea-

ture or stimulus encoded by neuron 2. In this case, the binding

neuron 3 will carry measurable information about the
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Figure 3. (a) Simplest example of a binding neuron. There are three linked neurons forming a three-neuron binding circuit with non-zero axonal transmission delays
between the neurons. Neuron 1 is in a lower layer and represents a lower-level feature such as a vertical bar, neuron 2 is in a higher layer and represents a higher-
level feature such as a letter T, and neuron 3 is the binding neuron whose activity represents that the lower-level feature is part of the higher-level feature. In an
ideal network, the synapses would have fast synaptic time constants so that multiple presynaptic spikes need to arrive simultaneously at a postsynaptic neuron in
order for the neuron to reach its voltage threshold and fire. By examining the magnitudes of the axonal delays shown in the figure, it can be seen that the spikes
from neurons 1 and 2 will arrive at neuron 3 simultaneously and cause it to fire at the correct time if and only if neuron 1 is participating in driving neuron
2. Consequently, the activity of binding neuron 3 will effectively represent the fact that the lower-level feature (the vertical bar) represented by neuron 1 is
part of the higher-level feature (the letter T) represented by neuron 2. (b) PNG representations of features and binding relations. Rather than by individual neurons,
it is likely that lower- and higher-level visual features such as the vertical bar and letter T, respectively, are represented by their own PNGs. Moreover, the hierarchical
binding relationship between the lower- and higher-level features is likely to be also represented by its own PNG. In this case, the simplified three-neuron binding
circuit shown in (a) would be part of the more complex neural response set-up illustrated in (b). Reproduced with permission from Eguchi et al. [9]. Copyright &
2018 American Psychological Association. Reproduced [or Adapted] with permission. The official citation that should be used in referencing this material is [9].
No further reproduction or distribution is permitted without written permission from the American Psychological Association. (Online version in colour.)
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hierarchical binding relationship between the lower- and

higher-level visual features.

Eguchi et al. [9] demonstrated in simulations that such

three-neuron binding circuits, with the relationship between

the axonal delays shown in equation (2.1), do indeed develop

when the network is trained on a set of visual stimuli using

STDP to modify the synaptic connections. In particular, in

such binding circuits, the low-level feature neuron 1 was in a

lower network layer and encoded a relatively simple visual

feature, while the high-level feature neuron 2 was in a higher

network layer and encoded a more complex visual feature

that appeared to incorporate the simple feature encoded by

neuron 1. Moreover, the three neurons did indeed fire in the

way hypothesized when current was artificially injected into

the network. That is, high-level feature neuron 2 emitted a

spike D(2,1) after low-level feature neuron 1, and the binding

neuron 3 emitted a spike D(3,2) after high-level feature neuron

2. Some of the simulation results carried out by Eguchi et al.
[9] are shown below. An important note is that the synaptic

time constants for the excitatory-to-excitatory connections
actually used in the original study were, in fact, set to the rela-

tively slow value of 150 ms as this same network was later used

for a task requiring the development of translation invariance

using trace learning (as applied by Evans & Stringer [25]).

A faster synaptic time constant would ensure that the effect

of an incoming spike would decay rapidly, and, therefore,

the simultaneous arrival of multiple incoming spikes would

be required for activation of a binding neuron. Consequently,

we would expect that a faster synaptic time constant would

further encourage the neurons to act as coincidence detectors,

and such a set-up could result in the emergence of many

more binding neurons. It should also be noted that these

authors trained and tested their spiking network on the

rather impoverished stimulus set shown in §4.2.1. In particular,

they did not test the firing responses of such three-neuron bind-

ing circuits on a large set of realistic visual objects translating

across different retinal locations, with multiple objects being

presented together simultaneously during testing. These

kinds of more realistic simulation are needed to enable a

proper test of whether such binding neurons consistently fire
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if and only if the low-level feature neuron 1 is participating in

firing the high-level feature neuron 2.

Nevertheless, to reiterate, according to the overarching

hypothesis the binding neuron should fire ‘if and only if’ the

neuron encoding the lower-level feature is participating in

driving the neuron encoding the higher-level feature. Only in

this condition will the binding neuron represent the hierar-

chical binding relationship between the two features. This

emergent firing property of the binding neuron relies on the

spiking dynamics of the model, and, in particular, the oper-

ation of the binding neuron as a ‘coincidence detector’ that

requires multiple spikes to arrive independently to fire. In a

more standard rate-coded neural network, which does not

explicitly simulate the timings of action potentials or spikes,

such a binding mechanism would not be possible. The spiking

network architecture and dynamics described above enable the

binding neuron to selectively not respond when the neurons

encoding the lower- and higher-level features are co-active in

a non-causal fashion. For example, if the letters T and L are pre-

sented together, then the neuron representing the vertical bar

of the T and the neuron representing the letter L will both be

active, but the former will not participate in driving the

latter. In this case, the binding neuron linking the vertical bar

of the T to the letter L will not fire because the afferent spikes

do not arrive simultaneously.

However, in reality, it is more likely that the lower- and

higher-level visual stimuli would be represented by PNGs

in their own right. Similarly, the hierarchical binding relation-

ship between these features could be represented also by a

PNG. Such an arrangement is illustrated in figure 3b.

A key advantage of the general polychronous binding

mechanism (illustrated in figure 3) over FIT is that the former

binding mechanism, which relies on the emergence of poly-

chronization within a biological spiking neural network,

could operate at every spatial scale and over the entire retinal

field of vision. In this way, the proposed binding mechanism

could provide a rich hierarchical representation of the visual

features across a scene at every spatial scale, as well as the

hierarchical binding relations between these features, in a

manner consistent with the hierarchical phenomenology of pri-

mate vision described by Duncan & Humphreys [4]. This also

differs from the binding-by-synchrony hypothesis, in which

the features can only be segmented into a small number of

separate groups.

The proposed solution to the binding problem could be

considered a form a combination coding, in that binding neur-

ons learn to respond to the combination of a low and high level

with high specificity. Overall, however, the representation of a

high-level feature and its comprising binding relations form a

distributed code across binding neurons. In the context of hard-

wired versus on-demand binding, the proposed solution is

currently a form of hard-wired binding, representing binding

relations that have previously been exposed to the network.

How the mechanism generalizes to represent novel binding

relations is yet to be explored.
2.3. Bottom-up projection of visual information
about low-level elemental features to higher
network layers

Eguchi et al. [9] also hypothesized that the kind of mechanisms

described above could also lead to visual information at smaller
spatial scales being projected up to the higher layers of the net-

work, which they called the holographic principle. The traditional

view of processing in the primate ventral visual pathway is that

the scale and complexity of visual features that are represented

grow as one ascends the hierarchy of processing stages or

layers. For example, it is widely thought that neurons in early

cortical visual areas such as V1 and V2 represent local oriented

bars and edges, while neurons in higher cortical areas such as

the anterior inferior temporal cortex (TE) encode whole objects

and faces. However, surely subsequent brain areas such as the

PFC that are responsible for decision-making and behaviour

must be guided by visuospatial representations at every spatial

scale? If such behavioural brain areas only receive inputs from

the later stages of the visual system, then there must be some

way in which information about visual features at every spatial

scale, including the binding relations between these features, is

projected up to the higher visual layers for readout by later

behavioural brain systems. Neurophysiology experiments on

primates seem to support this proposal.

For example, Rainer et al. [18] recorded the responses of

neurons in the PFC, a brain area that receives inputs from the

higher cortical visual stages and which is involved in

decision-making. It was found that individual PFC neurons

responded differentially depending on the location of the

target stimulus, which is analogous to different sets of low-

level features driving the target representation. This indicates

that PFC is encoding the spatial configuration of visual objects

rather than just the identity of the whole objects themselves.

A very simple mechanism that can lead to information

about a lower-level visual feature, including its hierarchi-

cal binding relationship with a higher-level visual feature,

being projected up to a higher network layer is illustrated in

figure 4a. This is similar to the network architecture shown

in figure 3a. However, the binding neuron 3, which represents

that the lower-level feature (such as a vertical bar) is part of the

higher-level feature (such as the letter T), is now located in

the higher layer along with neuron 2 encoding the higher-

level feature. In this situation, information about the lower-

level feature, and its hierarchical binding relationship with

the higher-level feature, has now been projected up to the

higher layer. In fact, Eguchi et al. [9] found that a large pro-

portion of the three-neuron binding circuits that they developed

in their simulations were of this general form, with the binding

neuron situated in the higher layer.

This kind of upward projection of visual information

about lower-level visual features, and their hierarchical bind-

ing relations, may operate at every stage of processing in the

visual hierarchy, and operate simultaneously across the

visual field. Indeed, figure 4b shows how the general process

may be repeated through successive network layers. This

figure considers a hierarchy of three visual features: the

vertical bar is part of a letter T, which in turn is part of the

word CAT. The vertical bar is represented by neuron 1 in

the lowest layer, the letter T is represented by neuron 2

in the middle layer, and the word CAT is represented by

neuron 5 in the highest layer. A hierarchy of such stimulus

representations could develop through competitive learning

operating in successive network layers during visual training

on written text. In this example, binding neuron 3 (represent-

ing that the vertical bar is part of the letter T) is situated in the

middle layer. Next, neuron 6 in the highest network layer

receives combined inputs from binding neuron 3 and

neuron 5. Consequently, neuron 6 will represent that the
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Figure 4. The general binding mechanism illustrated in figure 3 permits information about low-level visual features to be projected up to the higher layers of the
network, where such information may be used by later brain systems to guide decision-making and behaviour. (a) A three-neuron binding circuit which is similar to
that shown in figure 3a. However, now the binding neuron 3 is located in the higher layer along with neuron 2 representing the higher-level feature. In this case,
the binding neuron 3 in the higher layer represents the presence of the lower-level feature (e.g. vertical bar) represented by neuron 1, as well as the fact that the
lower-level feature is part of the higher-level feature (e.g. letter T) represented by neuron 2. Thus, information about the presence of the lower-level feature, and the
fact that it is part of the higher-level feature, has been projected up to the higher network layer. (b) This process could continue up through successive network
layers. Here neuron 6 is a form of binding neuron that receives inputs from neurons 3 and 5, and represents the fact that the lower-level feature (e.g. vertical bar) is
part of the higher-level feature (e.g. letter T), which in turn is part of the highest level feature (e.g. word CAT). Consequently, information about the lowest level
feature is projected up to the highest network layer. Reproduced with permission from Eguchi et al. [9]. Copyright & 2018 American Psychological Association.
Reproduced [or Adapted] with permission. The official citation that should be used in referencing this material is [9]. No further reproduction or distribution is
permitted without written permission from the American Psychological Association.
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lowest level feature (the vertical bar) is part of the higher

feature (the letter T), which in turn is part of the highest

level feature (the word CAT). In this way, information

about visual features at every spatial scale (vertical bar,

letter T and word CAT), including the hierarchical binding

relations between all of these features, may be projected up

to the highest network layer for readout by later behavioural

brain systems. However, it should be noted that, in order for

binding neuron 6 to fire, the highest level feature (e.g. the

word CAT) must be presented to the network; neuron 6

will not fire to the presence of the lowest level feature (e.g.

the vertical bar) alone. This theory is therefore consistent

with the experimental observation that neurons in the

higher stages of the ventral visual pathway tend to be prefer-

entially activated by more complex visual forms than neurons

in early cortical areas such as V1 and V2 which can respond

to relatively simple oriented bars and edges.

As discussed above, the traditional view of hierarchical

processing in the ventral visual pathway is that successive

stages of processing learn to represent stimuli of increasing

scale and complexity. Specifically, neurons in lower cortical

visual areas such as V1 and V2 encoding lower-level visual

features such as oriented bars and edges typically have small

receptive fields of about 18 or 28. As one ascends the visual

hierarchy, stimulus representations tend to become more trans-

form invariant. That is, a neuron in a higher stage of

processing that represents an object or face may respond to

its preferred stimulus across different retinal locations, or view-

points or distances (in effect scales) [26–28]. Given such

transform invariance, how do the higher visual areas represent

the exact location of a complex stimulus?

The upward projection of information about visual fea-

tures at every spatial scale, including the binding relations

between these features, provides a mechanism by which the

higher stages of the visual cortex may localize visual features,

and, consequently, the objects comprised of those features in (reti-

nal) space. Moreover, as described by Duncan & Humphreys [4],

the primate brain produces a rich hierarchical representation
of the visual world, in which we see a hierarchy of visual fea-

tures as well as the binding relations between these features.

In particular, we are aware of where all of the features at

every spatial scale are located in space.

The holographic upward projection of visual information

described above provides a mechanism by which the higher

stages of processing in the visual brain may represent such

fine-grained spatial information about a visual scene. Then,

when this kind of low-level visuospatial information is pro-

jected upwards to higher layers, including information

about the binding relations between the lower- and higher-

level visual features, this will enable the higher visual

layers to represent where (parts of) complex stimuli such as

objects and faces are located in space.

2.4. Binding neuron activation through local increases
in spike density

The original hypothesis of Eguchi et al. [9] was that polychro-

nous activity depended on precise spatio-temporal patterns

of individual spikes emitted at specific times with millisecond

precision. For example, in the binding circuit illustrated in

figure 3a, it was assumed that neuron 1 would emit a single

spike at time zero, then neuron 2 would emit a single spike

3 ms after neuron 1 and then binding neuron 3 would emit a

single spike 3 ms after neuron 2. However, we now propose

that the binding mechanism could still operate in a somewhat

similar manner but instead use local increases in spike density

at appropriate moments in time. That is, instead of neuron 2

emitting a single spike exactly 3 ms after neuron 1, the kind

of binding mechanism illustrated in figure 3a could still operate

even if neuron 2 simply displays an increase in the number of

spikes emitted around that time, i.e. a temporally localized

increase in the spike rate. Examples of how this might look

are shown in figure 5, which shows a number of spike raster

plots recorded from the PFC of an awake behaving monkey

as the animal was presented with a visual stimulus. It is evident

that each spike raster plot shows fluctuations in the local spike
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Figure 5. Neurophysiological evidence from single unit recording carried out in
monkey prefrontal cortex (PFC) using chronically implanted multi-electrode
arrays. This figure presents three spike raster plots recorded from the PFC of an
awake behaving monkey as the animal looked at a visual stimulus. That is, each
row shows the series of spikes emitted by a different individual unit through
1000 ms as the monkey viewed the stimulus. It can be seen that each spike
raster plot shows fluctuations in the local spike density through time, with some
localized clusters of spikes. We hypothesize that these localized variations in
spike density reflect underlying polychronous activity within this brain region
and other reciprocally connected areas. (Online version in colour.)
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density through time, with some localized clusters of spikes.

This kind of neuronal behaviour, in which there appears to

be some kind of regular underlying temporal variation in

spike rate, is quite typical in visually responsive neurons

in monkey cortex. We hypothesize that these localized vari-

ations in spike density through time reflect underlying

spatio-temporal activity patterns across subpopulations of

neurons, which include neurons carrying information about

the (hierarchical) binding relations between visual features.

This broader concept, based on local variations in spike
density, represents a generalization of the original notion of

polychronization in which neurons had to emit single spikes

at particular times. However, even with this more flexible

form of polychronization, the binding mechanisms illustrated

in figure 3a should still operate in a similar manner as long

as the increases in neuronal spike rate are sufficiently tem-

porally localized. That is, neuron 2 displays a localized

increase in spike rate around 3 ms (approx. 2–4 ms) after a loca-

lized increase in the spike rate of neuron 1, and binding neuron

3 displays a localized increase in spike rate around 3 ms

(approx. 2–4 ms) after a localized increase in the spike rate of

neuron 2. We, therefore, suggest that the temporal structure

displayed in the spike rasters shown in figure 5 reflects this

more generalized form of polychronous activity within the

PFC and other reciprocally connected brain areas. In future

work, we will use multi-unit recording techniques in monkeys,

in which the spiking activity of many neurons is recorded sim-

ultaneously, to look for the existence of neurons using this

more general form of polychronization to carry measurable

information about the (hierarchical) binding relations between

visual features.
3. Neural network model and analysis of
network performance

In this section, we describe the original neural network model

and performance analyses employed in the simulation study

by Eguchi et al. [9]. Then, in §4.1, we present some novel simu-

lation results investigating the emergence of polychronization

through successive network layers using a simplified version

of this model. Finally, in §4.2, we review some of the original

simulation results of Eguchi et al. [9] showing the emergence

of feature-binding representations within PNGs.

3.1. Neural network model
3.1.1. Network architecture
The neural network model investigated by Eguchi et al. [9] is

shown in figure 6. It simulates successive stages of processing

within the primate ventral visual pathway. Specifically, it

consists of four hierarchical layers of neurons that correspond

to cortical visual areas V2, V4, posterior inferior temporal

cortex (TEO) and anterior inferior temporal cortex (TE).

Within each network layer, there are subpopulations of inter-

connected excitatory and inhibitory neurons. There are plastic

(modifiable) bottom-up (feedforward) and top-down (feed-

back) synaptic connections between excitatory neurons in

successive layers, as well as plastic lateral synapses between

excitatory neurons within each layer. The inhibitory neurons

within each layer have non-plastic connections to and from

the excitatory neurons. The inhibitory interneurons effec-

tively implement lateral competition between the excitatory

neurons within a layer. This supports competitive learning

among the excitatory neurons within each layer, whereby

individual excitatory neurons learn to respond to particular

visual features or stimuli presented during training. There

were 64 � 64 ¼ 4096 excitatory neurons and 32 � 32 ¼ 1024

inhibitory neurons within each layer. The excitatory connec-

tivity between layers was topographical, with excitatory

neurons in each layer receiving connections from excitatory

neurons within a corresponding local region of the lower or

higher layer. Table 1a shows the different numbers of afferent
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Figure 6. The four-layer neural network model of the primate ventral visual pathway investigated by Eguchi et al. [9]. The network architecture consists of a
hierarchy of four layers of neurons 1 – 4 that correspond to cortical visual areas V2, V4, posterior inferior temporal cortex (TEO) and anterior inferior temporal
cortex (TE). Within each of these four network layers, there are subpopulations of interconnected excitatory and inhibitory neurons. Layer 0 contains a layer of
excitatory neurons, whose firing rates reflect the outputs of Gabor filters that mimic the responses of bar/edge-detecting V1 simple cells after convolution
with the visual input image. Although the firing rates of the layer 0 neurons are set according to the outputs of the Gabor filters, their actual spike times
are randomized according to a Poisson distribution. Thus, there is no spatio-temporal structure imposed on the spiking activity of the input layer; this has to
emerge gradually as visual signals propagate through the hierarchy of higher layers 1 – 4. Layer 0 neurons have purely bottom-up (feedforward) connections
to layer 1. Each of the following layers 1 – 4 consists of 64 � 64 ¼ 4096 excitatory neurons and 32 � 32 ¼ 1024 inhibitory neurons. The excitatory plastic (mod-
ifiable) synaptic connections (shown in red) in the model include bottom-up (feedforward) and top-down (feedback) connections between excitatory neurons in
successive layers, and lateral connections between excitatory neurons within the same layer (shown by the curved red arrows). Within each layer, the subpopulation
of excitatory neurons send non-modifiable projections to the subpopulation of inhibitory neurons, which in turn send non-modifiable connections back to the
excitatory neurons. The inhibitory interneurons effectively implement lateral competition between the subpopulation of excitatory neurons within a layer.
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connections onto each postsynaptic neuron, as well as the

fan-in radius of these connections, for the different types of

excitatory–excitatory, excitatory–inhibitory and inhibitory–

excitatory connections between and within the four layers

of the network.

3.1.2. Differential equations
The following subsections describe the cell, synapse and plas-

ticity equations used in the simulations of [9], as well as the

additional simulations described in this paper.

Cell equations
In the model developed by Eguchi et al. [9], each neuron is mod-

elled as a conductance-based leaky integrate and fire (LIF)

neuron. A neuron’s membrane potential is updated according to

tgm
dVi(t)

dt
¼ Vg

0 � Vi(t)þ RgIi(t): ð3:1Þ

The cell membrane potential for a given neuron Vi(t)
(indexed by i) is driven up by current from excitatory conduc-

tance-based synapses, and down towards the inhibitory

reversal potential by current from inhibitory conductance-

based synapses. Neurons decay back to their resting state

over a time course determined by the properties of their mem-

brane. Here tm represents the membrane time constant, defined

as tm ¼ Cm/g0, where Cm is the membrane capacitance, g0 is

the membrane leakage conductance and R is the membrane

resistance (R ¼ 1/g0). V0 denotes the resting potential of the

cell. Class-specific values (excitatory and inhibitory) are

indexed by g for the above neuron parameters. Ii(t) represents

the total current input from the afferent synapses (described in

equation (3.2)).
The total synaptic current injected into a neuron is given

by the sum of the conductances of all afferent synapses (excit-

atory and inhibitory), multiplied by the difference between

the specific synapse class reversal potential (V̂g) and the

neuron membrane potential (Vi(t)). The conductance of a

given synapse is given by gij, where j and i are the indices

of the pre- and postsynaptic neurons, respectively,

Ii(t) ¼
X
g

X
j

gij(t)(V̂g � Vi(t)): ð3:2Þ

Synaptic conductance equations
The synaptic conductance of a particular synapse, gij(t), is

governed by a decay term tg and a Dirac delta function-

based change (equation (3.4)) when spikes arrive from the

presynaptic neuron j as follows:

dgij(t)
dt
¼ �

gij(t)
tg
þ lDgij(t)

X
l

d(t� Dtij � tl
j): ð3:3Þ

The conduction delay for a particular synapse is denoted

by Dtij, which ranges from 0.1 to 10.0 ms, and each presyn-

aptic neuron spike is indexed by l. A biological scaling

constant l has been introduced to scale the synaptic efficacy

Dgij which lies between unity and zero. The Dirac delta

function is defined as follows:

d(x) ¼ 1 if x ¼ 0
0 otherwise

�
where

ð1

�1

d(x) dx ¼ 1: ð3:4Þ

Synaptic learning equations
In the model investigated by Eguchi et al. [9], STDP operates at

all of the bottom-up, top-down and lateral connections from

excitatory cells to excitatory cells throughout layers 1–4. The



Table 1. Model parameters. Most integrate and fire parameters were taken from Troyer et al. [30] (derived originally from McCormick et al. [31]) as indicated
by §. Plasticity parameters (denoted by †) are taken from Perrinet et al. [29]. Parameters marked with * were tuned for the reported simulations.

layer 1 2 3 4

(a) network parameters

number of excit. neurons within each layer 64 � 64 64 � 64 64 � 64 64 � 64

number of inhib. neurons within each layer 32 � 32 32 � 32 32 � 32 32 � 32

number of feedforward (FF) afferent excit. connections per excit. neuron (EfE) 30 100 100 100

fan-in radius for FF afferent excit. connections to each excit. neuron (EfE) 1.0 8.0 12.0 16.0

number of feedback (FB) afferent excit. connections per excit. neuron (EbE) f0,10g f0,10g f0,10g —

fan-in radius for FB afferent excit. connections to each excit. neuron (EbE) 8.0 8.0 8.0 —

number of lateral (LAT) afferent excit. connections per excit. neuron (ElE) f0,10g f0,10g f0,10g f0,10g
fan-in radius for LAT afferent excit. connections to each excit. neuron (ElE) 4.0 4.0 4.0 4.0

number of LAT afferent excit. connections per inhib. neuron (ElI) 30 30 30 30

fan-in radius for LAT afferent excit. connections to each inhib. neuron (ElI) 1.0 1.0 1.0 1.0

number of LAT afferent inhib. connections per excit. neuron (IlE) 30 30 30 30

fan-in radius for LAT afferent inhib. connections to each excit. neuron (IlE) 8.0 8.0 8.0 8.0

(b) parameters for Gabor filtering of visual images

phase shift (c) 0, p

wavelength (l) 2

orientation (u) 0, p/4, p/2, 3p/4

spatial bandwidth (b) 1.5 octaves

aspect ratio (g) 0.5

(c) cellular parameters

excit. cell somatic capacitance (CE
m) and inhib. cell somatic capacitance (C I

m) 500 pF, 214 pF §

excit. cell somatic leakage conductance (gE
0) and inhib. cell somatic leakage conductance (g I

0) 25 nS, 18 nS §

excit. cell membrane time constant (tE
m) and inhib. cell membrane time constant (t I

m) 20 ms, 12 ms §

excit. cell resting potential (VE
0) and inhib. cell resting potential (V I

0) 274 mV, 282 mV §

excit. firing threshold potential (QE) and inhib. firing threshold potential (Q I) 253 mV, 253 mV §

excit. after-spike hyperpolarization potential (VE
H) and inhib. after-spike hyperpolarization

potential (V I
H)

257 mV, 258 mV §

absolute refractory period (tR) 2 ms §

(d) synaptic parameters

synaptic neurotransmitter concentration (aC) and proportion of unblocked NMDA receptors (aD) 0.5 †

presynaptic STDP time constant (tC) and postsynaptic STDP time constant (tD) f5, 25, 125g ms †

synaptic learning rate (r) 0.1 †

range of synaptic conductance delay [0.1, 10.0] ms †

synaptic conductance scaling factor for FF excitatory connections from Gabor filters to layer 1

excit. cells (lGfE . DgGfE)

[0, 0.4] nS *

synaptic conductance scaling factor for FF excit. connections to excit. cells in layers 2, 3 or 4

(lEfE . DgEfE)

[0, 1.6] nS *

synaptic conductance scaling factor for FB excit. connections to excit. cells in layers 1, 2 or 3

(lEbE . DgEbE)

[0, 1.6] nS *

synaptic conductance scaling factor for LAT excit. connections to excit. cells in layers 1, 2, 3 or 4

(lElE . DgElE)

[0, 1.6] nS *

synaptic conductance scaling factor for LAT connections from excit. cells to inhib. cells in layers

1, 2, 3 or 4 (lElI . DgElI)

40 nS *

synaptic conductance scaling factor for LAT connections from inhib. cells to excit. cells in layers

1, 2, 3 or 4 (l IlE . Dg IlE)

80 nS *

(Continued.)
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Table 1. (Continued.)

layer 1 2 3 4

excitatory reversal potential (V̂
E
) 0 mV §

inhibitory reversal potential (V̂
I
) 270 mV §

synaptic time constant for all FF, FB and LAT connections from Gabor filters and excit. cells to

excit. cells (tGfE, tEfE, tEbE, tElE)

150 ms *

synaptic time constant for LAT connections from excit. cells to inhib. cells (tElI) 2 ms §

synaptic time constant for LAT connections from inhib. cells to excit. cells (tIlE) 5 ms §

(e) parameters for numerical simulation by forward Euler timestepping scheme

numerical step size (Dt) 0.02 ms
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equations for STDP at these excitatory–excitatory (E! E)

synapses were adapted from [29]. The form of STDP operating

at a synaptic connection from presynaptic cell j to postsynaptic

cell i is as follows.

The recent presynaptic activity, Cij(t), is modelled by

dCij(t)
dt

¼ �
Cij(t)
tC
þ aC(1� Cij(t))

X
l

d(t� Dtij � tl
j): ð3:5Þ

The variable Cij(t) represents the concentration of neuro-

transmitter (glutamate) released into the synaptic cleft [29]

and is bounded by [0, 1] for 0 � aC � 1. Cij(t) is governed

by a decay term tC and is driven up by presynaptic spikes

according to the model parameter aC. The inclusion of the

axonal transmission delay Dtij from presynaptic neuron j to

postsynaptic neuron i in equation (3.5) ensures that Cij(t) is

driven when the spike from presynaptic neuron j actually

arrives at the postsynaptic neuron i.
The recent postsynaptic activity, Di(t), is governed by

dDi(t)
dt

¼ �Di(t)
tD
þ aD(1�Di(t))

X
k

d(t� tk
i ): ð3:6Þ

The variable Di(t) represents the proportion of N-methyl-D-

aspartate (NMDA) receptors unblocked by recent depolariz-

ation from back-propagated action potentials [29]. Di(t) is

governed by decay term tD and is driven up by postsynaptic

spikes according to the model parameter aD. Postsynaptic

neuron spikes are indexed by k.

The strength of the synaptic weight, Dgij(t), is governed

by

tDg

dDgij(t)
dt

¼ r (1� Dgij(t))Cij(t)
X

k

d(t� tk
i )

"

�Dgij(t)Di(t)
X

l

d(t� Dtij � tl
j)

#
, ð3:7Þ

with time constant tDg
.

The above STDP model operates as follows. If the variable

representing presynaptic activity C is high (due to recent pre-

synaptic spikes having arrived at the postsynaptic neuron) at

the time of a postsynaptic spike, then the synaptic weight is

increased (LTP). Alternatively, if the variable representing

postsynaptic activity D is high (from recent postsynaptic

spikes) at the time of a presynaptic spike arriving at the

postsynaptic neuron, then the weight is decreased (LTD).
The model parameters used in the simulations performed

by Eguchi et al. [9] were chosen to be as biologically accurate

as possible and are given in table 1.
3.1.3. Training the network on visual stimuli
In the simulations carried out by Eguchi et al. [9], visual

images were first preprocessed by a set of Gabor filters that

mimicked the responses of simple cells in V1 [32–34]. That

is, individual Gabor filters responded to a bar or edge

element with a particular orientation and retinal location.

The outputs of the Gabor filters were used to set the firing

rates of excitatory input neurons in layer 0. However, the

actual spikes of the input cells were set to occur at random-

ized timings according to a Poisson distribution. So the

original study did not impose any initial spatio-temporal

structure on the spiking activity in layer 0.

The Gabor input filters used were computed by the

following equation:

g(x, y, l, u,c, b, g) ¼ exp � x02 þ g2y02

2s2

� �
cos 2p

x0

l
þ c

� �
ð3:8Þ

with the following definitions:

x0 ¼ x cos uþ y sin u

y0 ¼ �x sin uþ y cos u

and s ¼ l(2b þ 1)

p(2b � 1)

ffiffiffiffiffiffiffiffi
ln 2

2

r
,

9>>>>=
>>>>;

ð3:9Þ

where x and y specify the position of a light impulse in the

visual field [35]. The parameter l is the wavelength (1/l

is the spatial frequency), s controls the number of such

periods inside the Gaussian window based on l and spatial

bandwidth b, u defines the orientation of the feature, c

defines the phase and g sets the aspect ratio that determines

the shape of the receptive field. In the experiments carried out

by Eguchi et al. [9], an array of Gabor filters was generated at

each of 128 � 128 retinal locations with the parameters given

in table 1.

The outputs of the Gabor filters were used as the basis to

generate Poisson spike trains as follows:

P{input cell(x, y, f)spikes at t} ¼
g(x, y, f) � {max rate scaling factor} � Dt, ð3:10Þ

where f is the index of a Gabor filter used for the simulation

and max_rate_scaling_factor is the maximum input neuron
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firing rate (set to 100 in the simulation studies). The outputs

of the Gabor filters are used to set the firing rates of layer 0

excitatory input neurons. However, the spike times of the

layer 0 neurons are randomized according to a Poisson distri-

bution. The layer 0 neurons then propagate activity to the

layer 1 excitatory neurons according to the synaptic connec-

tivity given in table 1. That is, each layer 1 neuron receives

connections from 30 randomly chosen layer 0 neurons loca-

lized within a topologically corresponding region of the

retina. These connection distributions are defined by a

radius shown in table 1.

3.2. Analysis of network performance
3.2.1. Information analysis of average firing rate responses of

single cells
Eguchi et al. [9] measured how much information is carried in

the firing rates of cells in the fourth (output) layer of the

network about the identity of visual stimuli presented to the

model. If a neuron responds selectively with a high firing

rate to only one particular stimulus, and responds to that

stimulus across all transforms, then the firing rate response of

the neuron carries maximal information about the presence

of that visual stimulus. In the simulations performed in the

original study, each presentation of a stimulus was considered

a different transform because each stimulus presentation

caused the input layer 0 neurons to emit a different random-

ized sequence of spikes according to the Poisson distribution.

That is, the exact timings of the input neuron spikes were differ-

ent for each presentation of the same stimulus. Hence different

presentations of the same visual stimulus to the network were

treated as ‘transforms’ of that stimulus.

The amount of stimulus-specific information that a

specific cell carries is calculated using the following formula

with details given by Rolls & Milward [36]:

I(s, R) ¼
X
r[R

P(r j s) log2

P(r j s)

P(r)
, ð3:11Þ

where s is a particular stimulus, r is the response of a cell to a

single stimulus and R is the set of responses of a cell to the set

of stimuli.

The maximum information that a cell could carry in its

firing rate response is given by the formula

maximum cell information ¼ log2 (n) bits, ð3:12Þ

where n is the number of different visual stimuli.

3.2.2. Information analysis of temporal spike patterns emitted by
polychronous neuronal groups

Eguchi et al. [9] also applied information theory to quantify

the amount of information carried by PNGs about the iden-

tity of visual stimuli presented to the network. However, to

simplify the analysis, the authors only investigated the infor-

mation carried by simple PNGs consisting of two spikes

emitted by a pair of neurons.

The original study used the spike trains recorded during

multiple stimulus presentations to the network to compute

the probabilities that a given spike-pair will occur in response

to the presentation of each of the stimuli s. These probabilities

are based on the frequency of occurrence of the spike-pair

across multiple transforms (presentations) of each stimulus s.

From these frequency distributions the following probability
table for each stimulus category s was constructed:

ProbTable(i, j, d) ¼ P{(presynaptic cell j spikes at time t� d) j
(postsynaptic cell i spikes at time t)},

ð3:13Þ

where i and j are the indices of two neurons under consider-

ation, t is the time at which the cell i emits a spike and d is

the time interval that neuron i emits a spike after neuron j.
Eguchi et al. [9] considered values of d within the range of [0,

10 ms], where this time interval was divided into 10 equal

bins of 1 ms.

The original study then applied the information analysis

methodology of §3.2.1 to analysing the information carried

by spike-pair PNGs, and in doing so regarded the probability

table given by equation (3.13) as R, the set of responses to the

set of stimuli, used in equation (3.11). Thus, equation (3.11)

was used to compute the information carried by spike-pair

PNGs about the presence of a particular stimulus s. Using

this approach, the authors were able to quantify how selec-

tive such spike-pair PNGs were for particular stimuli. If a

particular spike-pair PNG responds invariantly to the trans-

forms (presentations) of a particular stimulus s but not to

the other stimuli, then the spike-pair PNG carries maximum

information about the presence of its preferred stimulus.
4. Performance of spiking neural network
models

4.1. The emergence of polychronization through
successive network layers

We begin by presenting some new simulation results from a

simplified two-layer bottom-up (feedforward) spiking neural

network model. These simulation results take a more detailed

look at the gradual emergence of polychronization through

successive layers than was carried out by Eguchi et al. [9].

The results presented can be contrasted with simulations

carried out Diesmann et al. [19], which demonstrated the emer-

gence of synchronization through successive layers of spiking

neurons. For synchronization to emerge, it was necessary for

Diesmann et al. [19] to incorporate either no axonal trans-

mission delays or axonal delays all of the same length. In the

new simulations presented here we show that incorporating

randomized distributions of axonal delays, say spread in the

interval [1, 30] ms, into the bottom-up connections flips

the model from synchronous to polychronous behaviour.

This important mechanism, in turn, permits the emergence

of binding neurons embedded within these polychronous

stimulus representations, as described elsewhere in this paper.

The two-layer neural network model simulated is shown in

figure 7. The model consists of a one-dimensional input layer

consisting of 1000 excitatory neurons. The spike times of

active input layer neurons are taken from a Poisson distribution

(equation (3.10)) with a mean firing rate of 50 Hz. The input

layer sends bottom-up synaptic connections to layer 1, which

in turn sends connections to the output layer 2. Layers 1 and

2 each consist of 1000 LIF excitatory spiking neurons. The

bottom-up connections to layers 1 and 2 are modified during

learning according to the STDP rule implemented by Eguchi

et al. [9]. The equations governing the cellular and synaptic

dynamics, including synaptic plasticity, are given in §3.1.2.

Neurons in the first LIF layer receive connections from the



excitatory
layer 2
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excitatory synapses
random connectivity
distributions of delays
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Figure 7. A two-layer feedforward spiking neural network model. The model consists of a one-dimensional input layer consisting of 1000 excitatory neurons. The
spike times of active input layer neurons are taken from a Poisson distribution (equation (3.10)) with a mean firing rate of 50 Hz. The input layer sends bottom-up
synaptic connections to layer 1, which in turn sends connections to the output layer 2. Layers 1 and 2 each consist of 1000 LIF excitatory spiking neurons. The
bottom-up connections to layers 1 and 2 are modified during learning according to the STDP rule implemented by Eguchi et al. [9]. Neurons in the first LIF layer
receive connections from the input layer neurons with a connection probability of 0.2, while neurons in the second LIF layer receive connections from neurons in the
first LIF layer with a probability of 0.02. Axonal transmission delays between the input layer and the first LIF layer are uniformly distributed between 1 and 10 ms,
while axonal delays between the first LIF layer and the second LIF layer are uniformly distributed between 1 and 30 ms. Copyright & 2018 American Psychological
Association. Reproduced [or Adapted] with permission. The official citation that should be used in referencing this material is [9]. No further reproduction or
distribution is permitted without written permission from the American Psychological Association.
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input layer neurons with a connection probability of 0.2, while

neurons in the second LIF layer receive connections from neur-

ons in the first LIF layer with a probability of 0.02. Axonal

transmission delays between the input layer and the first LIF

layer are uniformly distributed between 1 and 10 ms, while

axonal delays between the first LIF layer and the second LIF

layer are uniformly distributed between 1 and 30 ms. All

neuron, synapse and learning parameters that are not

described in this subsection are the same as the values

originally used by Eguchi et al. [9] shown in table 1. We refer

to this model as a two-layer model because there are two

layers of LIF spiking neurons that receive plastic bottom-up

connections, which are modified during training.

The network is trained and tested with a single input

stimulus, which is represented by activating all of the neur-

ons in the input layer. Each of the activated input neurons

has its average spike rate set to 50 Hz.

The response of the network to the stimulus is initially

tested before training. Ten such simulations are run, in each

of which the stimulus is applied to the input layer and activity

allowed to propagate up through layers 1 and 2. Each such

simulation activates the same stimulus pattern in the input

layer, but uses a different seed to generate the spikes according

to a Poisson distribution. This ensures that the spike times of

the activated input neurons are randomized across the simu-

lations. We identified which neurons in the higher layers 1

and 2 responded to the stimulus across all 10 simulations.

For each such neuron, the time of its first spike after the stimu-

lus was presented was recorded in each of the simulations.

Then, for each neuron, we calculated the mean and standard

deviation of the time of its first spike over the 10 stimulus pre-

sentations. The standard deviation of the first spike times

provided a measure of the amount of temporal variation in

the neuron’s spike response.

The network is then trained by presenting the single

stimulus to the network 10 times using different seeds to gen-

erate the Poisson input spike times on each presentation.

During training, synaptic weights are updated using the

equations described in §3.1. The STDP time constants are

set to tC ¼ 100 ms and tD ¼ 150 ms, while the learning rate

is set to r ¼ 0.1.
After training, the network is again tested by running 10

separate simulations as described above for the pretraining

test.

Figure 8 shows the emergence of polychronization after

training and through successive network layers. Each marker

in the scatter plot corresponds to an individual neuron in the

higher layers 1 and 2 that was activated by the stimulus

across all test presentations. Four sets of simulation results

are presented as follows: pretraining layer 1 neurons (blue

dots), pretraining layer 2 neurons (orange crosses), post-train-

ing layer 1 neurons (green dots) and post-training layer 2

neurons (red crosses). For each neuron, the mean time of its

first spike across all 10 simulations in which a stimulus is pre-

sented (abscissa) is plotted against the standard deviation in

these first spike times (ordinate). In these simulations, the

axonal transmission delays between the input layer and layer

1 are uniformly distributed between 1 and 10 ms, while

axonal delays between layer 1 and layer 2 are uniformly distrib-

uted between 1 and 30 ms. First, it can be seen that the number

of neurons spiking on all test presentations increases after train-

ing for both layers 1 and 2. It is also evident that training the

network leads to a significant reduction in the standard devi-

ations of first spike times in layers 1 and 2, demonstrating an

increase in temporal precision after training. Moreover, the

standard deviations are lower in the second layer than in the

first layer, demonstrating that the emergence of polychroniza-

tion takes place inductively over layers as hypothesized.

Interestingly, the mean first spike times of the second layer

neurons are not synchronous but are instead spread out in

time (polychronous). The incorporation of broad distributions

of axonal delays into the network ensures that individual neur-

ons in the higher layers emit their first spikes at different times

with respect to each other, thus giving rise to the emergence

of polychronization.

Figure 9 shows the frequency distributions of standard

deviations in the first spike times of neurons in layers 1 and 2

in response to a stimulus presentation. This figure represents

the same simulation data as shown in figure 8. As in figure 8,

it can be seen that the temporal precision in the first spike

times is increased by both training the network and through

successive layers of processing.



0.0200

pre-training, layer: 1, total: 185

means against standard deviations of first spike times for neurons active
for all pre- and post-training test presentations

pre-training, layer: 2, total: 24
post-training, layer: 1, total: 780
post-training, layer: 2, total: 969

0.0175

0.0150

0.0125

0.0100
s.

d.
 (

s)

0.0075

0.0050

0.0025

0.03 0.04 0.05 0.06
time (s)

0.07 0.08

Figure 8. Scatterplot showing the emergence of polychronous spatio-temporal structure in neuronal spike times after training and through successive network
layers. Each marker corresponds to an individual neuron in either of the higher layers 1 or 2 that was activated by the stimulus across all test presentations.
The following four sets of simulation results are presented: pretraining layer 1 neurons (blue dots), pretraining layer 2 neurons (orange crosses), post-training
layer 1 neurons (green dots) and post-training layer 2 neurons (red crosses). For each neuron, the mean time of its first spike across all 10 simulations in
which a stimulus is presented (abscissa) is plotted against the standard deviation in these first spike times (ordinate). In these simulations, the axonal transmission
delays between the input layer and layer 1 are uniformly distributed between 1 and 10 ms, while axonal delays between layer 1 and layer 2 are uniformly dis-
tributed between 1 and 30 ms. It is evident that training the network leads to a significant reduction in the standard deviations of first spike times in layers 1 and
2. Thus, training the network using STDP reduces the degree of temporal variation in the first spike times. Moreover, layer 2 neurons have reduced standard
deviations in their first spike times compared with layer 1 both before and after training. So successive layers of processing also reduce the degree of temporal
variation in the first spike times as hypothesized. Copyright & 2018 American Psychological Association. Reproduced [or Adapted] with permission. The official
citation that should be used in referencing this material is [9]. No further reproduction or distribution is permitted without written permission from the American
Psychological Association.
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Figure 10 shows the performance of the network with

uniform axonal delays of 1ms in all connections from layer

1 to layer 2. The plot is styled as in figure 8. It is evident

that the mean spike times in layer 2 are much more synchro-

nous (clustered close together in time) than the polychronous

behaviour (spread out in time) seen in figure 8. Hence, com-

paring these results shows that increasing the range of

axonal transmission delays between layer 1 and layer 2

makes the spike times of the layer 2 neurons polychronous

rather than synchronous.
4.2. Selected simulation results from Eguchi et al. [9]
In this section, we review some of the simulation results from

Eguchi et al. [9]. The simulation study carried out by these

authors demonstrated the emergence of stimulus-specific

PNGs, binding neurons, and the bottom-up projection of

visual information about lower-level features to the highest

network layers.
4.2.1. Training and testing the network model on a set
of visual stimuli

Eguchi et al. [9] trained and tested their network on the three

visual stimuli shown in figure 11, which included a circle, a

heart and a star.

During the initial training phase, the three stimuli were

repeatedly presented in turn to the network. At each stimulus
presentation, the Gabor filters (equation (3.8)), which mimic

the responses of bar/edge-detecting simple cells in cortical

visual area V1, were convolved with the image of the stimu-

lus. The outputs of the Gabor filters were used to set the

firing rates of the input neurons in layer 0. Crucially, the

spike times of the input neurons were randomized according

to a Poisson distribution (equation (3.10)). These spikes were

then propagated up through the network layers according to

the model equations described in §3.1. As the visual signals

propagated through the network, the plastic excitatory con-

nections (which included the connections from the Gabor

filters to layer 1 excitatory neurons, as well as the bottom-

up, top-down and lateral connections between excitatory

neurons across layers 1–4) were modified according to the

STDP learning rule (3.7).

When testing the model, the same three stimuli were pre-

sented to the network with STDP turned off. For each

stimulus presentation, the spike train responses of all fourth

(output) layer neurons were recorded.

4.2.2. Stimulus information carried by the average firing rates
of neurons and spike-pair PNGs in the output layer
of the network

Eguchi et al. [9] analysed the stimulus information carried

either in the average firing rates of fourth (output) layer neur-

ons or the spike-pair PNGs in the output layer. The

maximum amount of information that can be carried by a
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Figure 9. Histogram showing the frequency distributions of standard devi-
ations in the first spike times of neurons in layers 1 and 2 in response to
a stimulus presentation. This figure represents the same simulation data as
in figure 8. For each neuron, we compute the standard deviation in its
first spike across all 10 simulations in which a stimulus is presented. The fol-
lowing four sets of simulation results are presented: pretraining layer 1 (blue
line), pretraining layer 2 (orange line), post-training layer 1 (green line) and
post-training layer 2 (red line). In these simulations, the axonal transmission
delays between the input layer and layer 1 are uniformly distributed between
1 and 10 ms, while axonal delays between layer 1 and layer 2 are uniformly
distributed between 1 and 30 ms. As in figure 8, it can be seen that training
the network using STDP reduces the degree of temporal variation in the first
spike times, and that successive layers of processing also reduce the degree of
temporal variation.
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Figure 10. Performance of network with 1 ms axonal transmission delays
between layer 1 and layer 2. Plot styled as in figure 8. It is evident that
with uniform axonal delays of 1 ms in all connections from layer 1 to layer
2 the mean spike times in layer 2 are much more synchronous (clustered
close together in time) than the behaviour (spread out in time) seen in
figure 8 with a broad distribution of axonal delays in the interval [0, 30]
ms. Hence, comparing these results shows that incorporating a broad dis-
tribution of axonal delays drives the system to reliable spiking over a
greater temporal range.
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single neuron or spike-pair PNG is log2(n), where n is the

number of stimuli. In these simulations, there were three

stimuli as shown in figure 11. Therefore, the maximum poss-

ible information is log2(3) � 1.58 bits. Network performance

was investigated with different combinations of feedforward

(FF), feed-back (FB) and lateral (LAT) connectivity between

excitatory neurons in layers 1–4. Specifically, the original

study presented results for the full network architecture

FF þ FB þ LAT before training, and results after training

with the following different forms of connectivity: FF, FF þ
FB, FF þ LAT, FF þ FB þ LAT.

Figure 12a shows the stimulus information carried in the

average firing rates of fourth (output) layer neurons. For each

plot, the single cell information carried by 300 output neurons

is shown, where the neurons are arranged along the abscissa in

rank order. It is evident that very few output neurons in the

FF þ FB þ LAT model reached the maximal information of

1.58 bits before training. However, after training, all four net-

work architectures developed 50–100 neurons with maximal

stimulus information. Nevertheless, it is evident that the net-

work incorporating all three categories of connections, which

is closer to the connectivity observed in the visual cortex,

gave the lowest performance when analysing the information

carried by the average firing rates of neurons.

Figure 12b shows the information carried by spike-pair

PNGs in the output layer. It can be seen that the full network
architecture with FF þ FB þ LAT connections produced the

most spike-pair PNGs with maximal information. The full

network architecture has developed almost 1000 spike-pair

PNGs that carry the maximum information of 1.58 bits.

These simulation results thus demonstrate the large-scale

emergence of stimulus-specific PNGs after training the net-

work on the set of visual stimuli shown in figure 11. In

contrast to the results shown in figure 12a, when analysing

the stimulus information carried by the spike-pair PNGs,

the best performance is achieved by the full network architec-

ture incorporating FF þ FB þ LAT connections, which is

closest to the actual architecture of the visual cortex.

Interestingly, the number of spike-pair PNGs with maximal

stimulus information that emerged after training in the full net-

work architecture was about an order of magnitude greater

than the number of output neurons that carried maximal

stimulus information in their average firing rates. This occurred

even though the stimulus representations in the input layer 0

had randomized spike times set according to a Poisson distri-

bution. In this case, the polychronous neuronal activity

emerged naturally and robustly through the hierarchy of

network layers. Eguchi et al. [9] concluded that these obser-

vations provided evidence for the potential presence of

polychronous stimulus representations in the visual brain,

which may also offer increased representational capacity.

However, as discussed in §1, there is a potential issue with

the simulation results of the original study showing the

emergence of spike-pair PNGs carrying high levels of

stimulus-specific information. Specifically, if two neurons

respond selectively to a preferred stimulus with high firing

rates and do not respond to any other stimuli, then it may be

possible to identify spike-pair PNGs that appear to carry

high levels of stimulus-specific information even if the spike
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Figure 11. The set of three visual stimuli presented to the network during training and testing in the simulation study of Eguchi et al. [9]. The stimulus set included
a circle, a heart and a star. Reproduced with permission from Eguchi et al. [9].
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Figure 12. (a) Stimulus information carried in the average firing rates of fourth (output) layer neurons. Eguchi et al. [9] analysed the information carried in the
average firing rates of fourth (output) layer neurons according to the procedure described in §3.2.1. They investigated network performance with different com-
binations of feedforward (FF), feed-back (FB) and lateral (LAT) connectivity between excitatory neurons in layers 1 – 4. Results after training are shown for network
architectures with the following kinds of synaptic connectivity: FF, FFþFB, FFþLAT, FFþFBþLAT. Results before training are shown only for the full network
architecture FFþFBþLAT. For each plot, the maximum single cell information carried by 300 output neurons is shown, where the neurons are arranged along the
abscissa in rank order. It is evident that very few output neurons in the FFþFBþLAT model reached the maximal information of 1.58 bits before training. However,
after training, all four network architectures developed about 50 – 100 neurons with maximal stimulus information. (b) Stimulus information carried by spike-pair
PNGs in the output layer. Eguchi et al. [9] also analysed the information carried by spike-pair PNGs in the output layer according to the procedure described in
§3.2.2. It can be seen that the full network architecture with FFþFBþLAT connections produced the most spike-pair PNGs with maximal information. The full
network architecture has developed almost 1000 spike-pair PNGs that carry the maximum information of 1.58 bits. These simulation results thus demonstrate the
large-scale emergence of stimulus-specific PNGs after training the network on the set of visual stimuli shown in figure 11. Reproduced with permission from Eguchi
et al. [9]. Copyright & 2018 American Psychological Association. Reproduced [or Adapted] with permission. The official citation that should be used in referencing
this material is [9]. No further reproduction or distribution is permitted without written permission from the American Psychological Association.
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times are random. Because of this, we have presented new

simulation results taking a closer look at the emergence of

polychronization through a hierarchy of network layers in §4.1.
4.2.3. How the stimulus information carried by spike-pair PNGs
in the output layer is affected by key model parameters

Eguchi et al. [9] explored how the stimulus information carried

by spike-pair PNGs in the output layer is affected by varying

two important model parameters: the STDP time constants

and the number of synaptic contacts between each pair of

pre- and postsynaptic neurons. This part of their investigation

used the full network architecture with all three kinds of synaptic

connectivity, that is, FF þ FB þ LAT.

Figure 13a shows how the stimulus information carried by

spike-pair PNGs in the output layer was affected by varying
the STDP time constants. In the results shown, the STDP time

constants were varied over the values tC ¼ tD ¼ 125 ms,

25 ms or 5 ms. It was found that many more spike-pair PNGs

carrying maximal information about stimulus identity emerged

in the network when the STDP time constants were shortest.

Short-duration STDP time constants are needed to maintain

the temporal precision of the STDP, which is in turn required

to promote the development of stimulus-specific PNGs. How-

ever, as the STDP time constants are increased, the synaptic

plasticity becomes less dependent on the precise timings of

spikes, and begins to operate more like a classical rate-coded

Hebbian learning rule. In this case, the emergence of

stimulus-specific PNGs is degraded.

Figure 13b shows how varying the number of synaptic con-

nections between each pair of pre- and postsynaptic excitatory

neurons affected the stimulus information carried by spike-pair
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contacts. Eguchi et al. [9] showed results for a model in which each pair of pre- and postsynaptic neurons had two connections with different randomly assigned
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neurons in order to promote the emergence of polychronization within the network. Reproduced with permission from Eguchi et al. [9].
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PNGs in the output layer. The underlying hypothesis here is

that a presynaptic neuron might make multiple synaptic con-

tacts on a postsynaptic neuron, perhaps as the axon from the

presynaptic neurons weaves its way through the dendritic

tree of the postsynaptic neuron, and that each of these synaptic
contacts might have a somewhat different axonal/synaptic

transmission delay associated with it. Could STDP then

selectively strengthen one (or a small subset) of these connec-

tions with a particular transmission delay instead of the

other connections with different transmission delays in order
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to promote the development of polychronous stimulus rep-

resentations? Results are shown in figure 13b for simulations

with either one or two connections between each pair of pre-

and postsynaptic neurons. It is evident that far more PNGs

carrying maximal stimulus information emerge in the simu-

lations with two connections between each pair of pre- and

postsynaptic neurons. Thus, as hypothesized, having multiple

(e.g. two) synaptic contacts with different transmission delays

between each pair of pre- and postsynaptic excitatory neurons

permits STDP to selectively strengthen the connection (or

subset of connections) with a particular transmission delay

that will enhance the emergence of stimulus-specific PNGs.
Figure 14 shows how STDP selectively strengthens con-

nections with particular delays between pairs of pre- and

postsynaptic neurons with multiple synaptic contacts. Results

are presented for simulations in which each pair of pre- and

postsynaptic excitatory neurons has two synaptic contacts

with different transmission delays randomly chosen from the

interval [0, 10] ms. For each pair of neurons, the corresponding

plot shows that one synaptic connection with a particular delay

is strengthened, while the other connection with a different

delay is weakened. Thus, it can be seen that STDP selectively

strengthens or weakens synaptic connections according to

the durations of their transmission delays during visual
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training. This, in turn, helps to promote the emergence of

stimulus-specific PNGs.

4.2.4. The development of binding neurons during visual
training

Eguchi et al. [9] demonstrated that embedded within the

stimulus-specific PNGs that emerged in the full network

architecture during training on the circle, heart and star

shown in figure 11 were binding neurons of the kind illus-

trated in figures 3a and 4a. Simulation results are presented

in figure 15. Each row shows an example of a stimulus-

selective PNG, where the PNGs shown in rows (a)–(c)

respond selectively to the circle, heart and star, respectively.

Each row shows an example of a stimulus-selective PNG.

Figure 15a(i),b(i),c(i) shows the neurons in the PNG, where

the neurons are represented by circles and the strengthened

connections between the neurons are represented by lines.

The neurons are plotted along the abscissa according to the

relative timings of their spikes within the PNGs, which was

determined by the axonal transmission delays of the strength-

ened connections between the neurons. The right plots

show the patterns of input Gabor filters with the strongest

bottom-up connectivity to the lower- and higher-level feature

neurons shown in figure 15a(i),b(i),c(i).

Rows (a) and (c) of figure 15 represent examples of the

hypothesized three-neuron binding circuits illustrated in figures

3a and 4a. For example, consider the three-neuron binding cir-

cuit illustrated in row 3. Neuron 12686 is situated in layer 3

and represents the lower-level feature, neuron 18657 is situated

in the output layer 4 and represents the higher-level feature, and

neuron 18396 is a binding neuron that represents the binding

relationship between the lower- and higher-level features. It

can be seen that the axonal transmission delay from the

lower-level feature neuron 12686 to binding neuron 18396 is

equal to the transmission delay from the lower-level feature

neuron 12686 to higher-level feature neuron 18657 plus the

transmission delay from the higher-level feature neuron 18657

to binding neuron 18396. Given this pattern of axonal trans-

mission delays between the three neurons, the spikes emitted

by the lower-level feature neuron 12686 and higher-level feature

neuron 18657 will arrive simultaneously at, and hence fire, bind-

ing neuron 18396 if and only if the lower-level feature neuron

12686 is actually participating in firing the higher-level feature

neuron 18657. Row (c) presents another similar example of a

three-neuron binding circuit. Figure 15a(ii),c(ii) confirm that

the layer 3 neurons (left) represent lower-level features, while

the layer 4 neurons (right) represent higher-level features of

their preferred visual stimuli.

4.2.5. Bottom-up projection of visual information about lower-
level features to higher layers of the network

The simulations of Eguchi et al. [9] demonstrated the bottom-

up propagation of visual information about lower-level fea-

tures to the higher network layers according to the

holographic principle described in §2.3 and illustrated in

figure 4a. In the examples of three-neuron binding circuits

shown in figure 15a,c, the lower-level feature neuron is situ-

ation in layer 3, the higher-level feature neuron is situated in

layer 4 and the binding neuron is located in layer 4. Thus, the

binding neuron is located in the same layer as the higher

level feature neuron. The simulation results shown in figure

15 are examples of the kind of bottom-up projection of visual
information shown in figure 4a. This kind of bottom-up

projection of visual information about lower-level features to

the higher network layers could make more fine-grained

visuospatial information available at the end of the visual

pathway for readout by subsequent brain areas involved in

decision-making and behaviour.
5. Discussion
In this paper, we have discussed a new approach to solving the

feature-binding problem in visual neuroscience that relies on

the emergence of polychronization within biological spiking

neural networks. This problem is described by authors in differ-

ent ways, but broadly refers to the ability of the visual brain to

represent the hierarchical relationships between lower- and

higher-level visual features within a scene. Solving this problem

is essential for understanding how the brain builds an inte-

grated and coherent representation of the visual world. We

suggest that solving how feature binding is accomplished by

the brain will be necessary for the future development of

artificial general intelligence and machine consciousness.

Simulation studies carried out by Eguchi et al. [9] have

reported that fixed spatio-temporal patterns of spikes emerge

automatically within the higher layers of a spiking neural net-

work, and are repeated across different presentations of the

same stimulus, even when the stimulus input representations

have entirely randomized spike timings. These authors investi-

gated the emergence of both large-scale PNGs consisting of

many neurons and spike-pair PNGs consisting of just two

neurons that carried high levels of stimulus-specific infor-

mation. However, as discussed in §1, there is a potential

issue with the latter results. That is, if two neurons respond

with high firing rates to a preferred stimulus, but do not

respond to any other stimuli, then it would still be possible

to find spike-pair PNGs that carry high levels of stimulus-

specific information in a random spike train. Consequently,

given this possibility, in §4.1 we have presented some new

simulation results that take a closer look at the emergence of

polychronization through successive network layers. These

simulation results show how precise spatio-temporal spike pat-

terns may emerge naturally and automatically in the higher

layers even though the input stimulus patterns have random-

ized spike times.

The hypothesis that such PNGs might develop was

strongly inspired by the work of Diesmann et al. [19], which

showed the emergence of synchronization in the higher

layers of a hierarchical feedforward spiking neural network.

For Diesmann et al. [19] to demonstrate the emergence of syn-

chrony, these authors had to implement either no axonal

transmission delays or axonal delays of the same duration.

However, in the brain axonal transmission delays within the

visual cortex are not all of the same duration. The key result

introduced by Eguchi et al. [9] and further investigated in this

paper is that incorporating distributions of axonal delays, say

in the interval [0, 10] ms, flips the network behaviour from

the emergence of synchronization in the higher layers to the

emergence of polychronization. Consistent with this theoretical

result, neurophysiology studies have observed the presence of

polychronous activity in the brain [13,23,24].

Why is polychronization important? When Eguchi et al. [9]

trained their spiking neural network model of the primate ven-

tral visual pathway using STDP to modify the synaptic
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connections, they reported seeing the emergence of poly-

chronous stimulus representations. In particular, embedded

within these PNGs were feature-binding neurons that rep-

resented the hierarchical binding relationships between

lower- and higher-level visual features. These authors reported

the emergence of three-neuron binding circuits in the general

form illustrated in figure 3a. These kinds of feature-binding

representations could emerge simultaneously at every level

of the hierarchy of network layers, which encode visual fea-

tures at different spatial scales, and everywhere across the

visual field. However, the three-neuron binding circuits

shown in figure 3a are only the simplest possible realization

of the basic approach to feature binding using polychroniza-

tion. For example, many other kinds of more complex

feature-binding representations may emerge such as those

illustrated in figure 16. Moreover, as illustrated in figure 3b,

the representations of the lower- and higher-level features, as

well as the feature-binding representations, may also take the

form of PNGs. Furthermore, the connectivity between these

features and feature-binding representations could be poly-

synaptic instead of the simple mono-synaptic connectivity

shown in figure 3a. It is quite clear, then, that we are at the

beginning of exploring the nature of the polychronous rep-

resentations of features and feature-binding relationships that

may emerge within spiking neural networks.

Eguchi et al. [9] also proposed that information about

lower-level visual features could be projected upwards to

the higher network layers, where it would be available for

subsequent brain systems involved in decision-making and

behaviour. The simplest way in which this was hypothesized

to occur was illustrated in figure 4a. This proposed mechan-

ism was demonstrated in the simulation results shown in

figure 15a,c. Here it could be seen that the binding neuron

representing the hierarchical relationship between a lower-

level feature and a higher-level feature emerged in the same

higher layer as the neuron representing the higher-level fea-

ture. In this way, information about the lower-level feature,

including its binding relationship to the higher-level feature,

was projected up to the same higher layer representing the

higher-level feature. However, many other more complex

circuit architectures could develop during visual training

that could project visual information about lower-level fea-

tures upward to higher network layers as shown in figure

4b. Experimental evidence for the upward projection of fine-

grained visuospatial information to higher brain areas has
been provided by neurophysiology studies in monkeys. The

PFC is a brain area that is strongly implicated in decision-

making and behaviour. It receives inputs from the end of

the ventral visual pathway. Rainer et al. [18] showed that

information about the location of a target object was encoded

in the responses of neurons in the PFC. This observation

implies that visual neurons in the PFC encode the spatial con-

figuration of objects rather than just the identity of the whole

objects themselves.

An outstanding question is how later decision-making

areas of the brain, such as the PFC, might readout and use

visual information encoded by PNGs in the visual cortex.

Given fast synaptic time constants, the responses of real neur-

ons in the brain will be sensitive to the timings of incoming

spikes. In particular, a postsynaptic neuron will be more

likely to fire if the afferent spikes from a subpopulation of

presynaptic neurons arrive at the postsynaptic neuron near

simultaneously. Given the presence of random axonal trans-

mission delays between neurons, say within the interval [0,

10] ms, the postsynaptic neuron will have the greatest prob-

ability of firing when the presynaptic neurons emit their

spikes in a specific spatio-temporal sequence that ensures the

spikes arrive at the postsynaptic neuron together. Thus,

PNGs would appear to be the natural way in which neurons

should be expected to encode information in the visual brain

for subsequent readout by decision-making brain areas.

Furthermore, the holographic principle proposes that infor-

mation about visual features at all spatial scales, including

the binding relations between these features, is projected

upwards to such decision-making areas. Evidence for this

emerged in the neural network simulations of Eguchi et al.
[9]. Future experimental studies may investigate whether

such an upward projection of visual information occurs in

the brain by analysing the visuospatial information present in

the PFC about not only the identity of visual objects but also

the detailed spatial structure of these objects. For example,

single/multi-unit recording studies in the PFC area of the

monkey brain could test for the presence of visual neurons

that encode the parts of objects as well as their spatial relation-

ships with the whole object. The upward projection of such

detailed visuospatial information to brain systems that produce

behavioural responses is consistent with the hierarchical

phenomenology of human vision described by Duncan &

Humphreys [4]. Obviously, such hierarchical visual represen-

tations are useful, and in fact essential, for guiding behaviour
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in natural spatial environments. Moreover, it has been known

since the early experimental studies of Edward Tolman [37]

that even non-primates such as rats naturally learn about the

structure of their environment and produce behaviour that

seems to draw upon this knowledge [37,38]. We posit that

the kind of hierarchical visual representations that develop in

our brain-inspired models, which encode not only visual fea-

tures at every spatial scale but also the binding relations

between these features, are necessary to enable the brain to

learn a sufficiently rich model of causal relations in the world

for guiding decision-making and behaviour.

An extraordinary aspect of the hierarchical feature-

binding hypothesis of Eguchi et al. [9] is that this theory pro-

poses a key functional role for axonal transmission delays,

which theoretical neuroscientists and engineers may have pre-

viously considered to be merely sources of noise or processing

delay in the primate visual system. Instead, these axonal delays

are essential to the emergence of polychronization and feature-

binding representations. It is therefore highly interesting to

note that other simulation studies have found that axonal trans-

mission delays may play an important functional role in quite a

different aspect of brain function, that is, path integration of

allocentric spatial representations in the brain. Specifically,

Walters et al. [39] found that incorporating axonal transmission

delays into their model of the head direction system allowed

the model to learn to update its internal representation of

head direction using vestibular angular head velocity signals

at approximately the correct speed during head rotations in

the dark. Taken together, these varied simulation studies indi-

cate that axonal transmission delays may play an important

role in information processing across a variety of different

brain areas and functions.

However, the simulation study carried out by Eguchi et al.
[9] was limited by the use of a relatively impoverished set of

visual stimuli used to train and test the network as shown in

figure 11. In particular, these authors did not test the firing

responses of three-neuron binding circuits that emerged in

their model on a large set of more realistic visual stimuli

translating across different retinal locations. Nor did they pre-

sent multiple stimuli at the same time to the network during

testing, which is a further important test of feature binding as

discussed by [2] and illustrated in figure 1. In such richer

visual test environments, sometimes the low-level feature

neuron 1 may fire without stimulating the high-level feature

neuron 2 because the lower-level feature is part of a different

visual object, or the high-level feature neuron 2 (with a larger

receptive field) may fire without the low-level feature neuron

1 (with a smaller receptive field) being activated because the

visual object is presented at a different retinal location. These

kinds of more realistic simulation are needed to enable a

proper test of whether such binding neurons consistently

fire if and only if the low-level feature neuron 1 is participat-

ing in firing the high-level feature neuron 2. Hence this

remains an important property to test for in future simulation

studies with more ecologically realistic visual test scenes con-

taining multiple objects that undergo natural transformations

such as changes in retinal location, orientation or scale.

Furthermore, the role of population-wide oscillations in

the coding of information is left unaddressed in this paper.

Population oscillations may emerge naturally in the cortex

through interactions between populations of excitatory and

inhibitory neurons. Moreover, the literature indicates impor-

tant functional roles for population oscillations [14] within
cortical neural networks. In particular, there is experimental

evidence that spatio-temporal patterns of spiking activity

may occur in fixed temporal relationships to underlying

population oscillations, where the timings of spikes relative

to the population oscillation carry stimulus information

[13]. In this case, the PNGs may sit on top of, and in fact

be organized by, the underlying population oscillation. In

future simulation work, we will investigate the interaction

between population oscillations and both precise input

spike timing and emergent polychronization.

The simulation results discussed in this paper show how

representations of visual features at every spatial scale, as

well as the hierarchical binding relations between these fea-

tures, may develop through the emergent polychronization

within biological spiking neural networks and be projected

up to the higher network layers for readout by later behav-

ioural brain systems. These theoretical findings, which are

supported by neurophysiology studies such as Abeles et al.
[23], Prut et al. [24] and Rainer et al. [18], are consistent

with the rich hierarchical phenomenology of primate vision

as described by Duncan & Humphreys [4] in §1. We claim

that such a semantically rich hierarchical visuospatial rep-

resentation is essential to the ability of the brain to make

sense of its sensory world and behave intelligently within

it. Understanding this ability of biological vision is therefore

a key step towards the development of machines that can also

perceive and understand their environment and behave flex-

ibly within it—i.e. what is commonly referred to as artificial

general intelligence.
Ethics. Animals were group housed and kept on a 12 h light–dark
cycle, with access to water for 12–16 h on testing days and with
free water access on non-testing days. All procedures were
conducted under licences from the United Kingdom (UK) Home
Office in accordance with the UK The Animals (Scientific Procedures)
Act 1986.

Data accessibility. Data from the novel simulations presented in this
paper are available at: https://github.com/jamesisbister/ANewAp-
proachToSolvingTheFeatureBindingProblemInPrimateVisionNovel-
Data. Simulations were made using the Spike CUDA/Cþþ Neural
Network Simulator, available at: https://github.com/OFTNAI/
Spike. Simulations from the original study used the following execu-
table: https://github.com/OFTNAI/Spike/blob/master/Experiments/
ConductanceExperiment1.cpp.

Authors’ contributions. The following superscripts are used to denote
which parts of the investigation each author contributed to: 1original
study of Eguchi et al. (2018); 2novel simulations; 3neurophysiology
data. Conceptualization: J.B.I.2, A.E.1, J.M.G.3, S.S.1,2,3. Data curation:
J.B.I.1,2, A.E.1, J.M.G.3. Formal analysis: J.B.I.1,2, A.E.2, J.M.G.3. Fund-
ing acquisition: J.B.I.1,2, N.A.1, M.J.B.3, S.S.1,2. Investigation: J.B.I.2,
A.E.1, J.M.G.3. Methodology: J.B.I.1,2, A.E.1, N.A.1, J.M.G.3, M.J.B.3,
S.S.1,2. Project administration: J.B.I.2, A.E.1, J.M.G.3, M.J.B.3, S.S.1,2.
Resources: M.J.B.3, S.S.1,2. Software: J.B.I.1,2, A.E.1, N.A.1, J.M.G.3.
Supervision: M.J.B.3, S.S.1,2. Validation: J.B.I.2, A.E.1. Visualization:
J.B.I.2, A.E.1, J.M.G.3. Writing—original draft: J.B.I., N.A., S.S.
Writing—review and editing: J.B.I., N.A., S.S., M.J.B.

Competing interests. We declare we have no competing interests.

Funding. The project was funded by: The Oxford Foundation for
Theoretical Neuroscience and Artificial Intelligence. J.B.I. was sup-
ported by the Economic and Social Research Council (ESRC)
(grant no. ES/J500112/1) and the Engineering and Physical Science
Research Council (EPSRC) (grant no. EP/N509711/1). N.A. was
supported by the Biotechnology and Biological Sciences Research
Council (BBSRC) (grant no. BB/J014427/1). J.M.G. and M.J.B. were
supported by the Medical Research Council (MRC) (grant no.
MR/K005480/1) and a Wellcome Trust Strategic Award (grant no.
WT101092MA).

https://github.com/jamesisbister/ANewApproachToSolvingTheFeatureBindingProblemInPrimateVisionNovelData
https://github.com/jamesisbister/ANewApproachToSolvingTheFeatureBindingProblemInPrimateVisionNovelData
https://github.com/jamesisbister/ANewApproachToSolvingTheFeatureBindingProblemInPrimateVisionNovelData
https://github.com/OFTNAI/Spike
https://github.com/OFTNAI/Spike
https://github.com/OFTNAI/Spike/blob/master/Experiments/ConductanceExperiment1.cpp
https://github.com/OFTNAI/Spike/blob/master/Experiments/ConductanceExperiment1.cpp


23
References
rsfs.royalsocietypublishing.org
Interface

Focus
8:20180021
1. Rosenblatt F. 1961 Principles of neurodynamics;
perceptrons and the theory of brain mechanisms.
Washington, DC: Spartan Books.

2. von der Malsburg C. 1999 The what and
why of binding: the modeler’s perspective. Neuron 24,
95 – 104. (doi:10.1016/S0896-6273(00)80825-9)

3. Treisman AM, Gelade G. 1980 A feature-integration
theory of attention. Cogn. Psychol. 12, 97 – 136.
(doi:10.1016/0010-0285(80)90005-5)

4. Duncan J, Humphreys GW. 1989 Visual search and
stimulus similarity. Psychol. Rev. 96, 433 – 458.
(doi:10.1037/0033-295X.96.3.433)

5. Kreiter AK, Singer W. 1996 Stimulus-dependent
synchronization of neuronal responses in the visual
cortex of the awake macaque monkey. J. Neurosci.
16, 2381 – 2396. (doi:10.1523/JNEUROSCI.16-07-
02381.1996)

6. Evans BD, Stringer SM. 2012 Transformation-
invariant visual representations in self-organizing
spiking neural networks. Front. Comput. Neurosci. 6,
46. (doi:10.3389/fncom.2012.00046)

7. Evans BD, Stringer SM. 2013 How lateral
connections and spiking dynamics may
separate multiple objects moving together.
PLoS ONE 8, e69952. (doi:10.1371/journal.pone.
0069952)

8. Dong Y, Mihalas S, Qiu F, von der Heydt R, Niebur E.
2008 Synchrony and the binding problem in
macaque visual cortex. J. Vis. 8, 30.1 – 30.16.
(doi:10.1167/8.7.30)

9. Eguchi A, Isbister JB, Ahmad N, Stringer S. 2018 The
emergence of polychronization and feature binding
in a spiking neural network model of the primate
ventral visual system. Psychol. Rev. (doi:10.1037/
rev0000103)

10. Bi G-q, Poo M-m. 1998 Synaptic modifications in
cultured hippocampal neurons: dependence on
spike timing, synaptic strength, and postsynaptic
cell type. J. Neurosci. 18, 10 464 – 10 472. (doi:10.
1523/JNEUROSCI.18-24-10464.1998)

11. Markram H, Lubke J, Frotscher M, Sakmann B. 1997
Regulation of synaptic efficacy by coincidence of
postsynaptic APs and EPSPs. Science 275, 213 – 215.
(doi:10.1126/science.275.5297.213)

12. Izhikevich EM. 2006 Polychronization: computation
with spikes. Neural. Comput. 18, 245 – 282. (doi:10.
1162/089976606775093882)

13. Havenith MN, Yu S, Biederlack J, Chen N-H, Singer
W, Nikolić D. 2011 Synchrony makes neurons fire in
sequence, and stimulus properties determine who is
ahead. J. Neurosci. 31, 8570 – 8584. (doi:10.1523/
JNEUROSCI.2817-10.2011)

14. Singer W. 2017 Neuronal oscillations: unavoidable
and useful? Eur. J. Neurosci. (doi:10.1111/ejn.13796)
15. Berry M, Warland D, Meister M. 1997 The structure
and precision of retinal spike trains. Proc. Natl Acad.
Sci. USA 94, 5411 – 5416. (doi:10.1073/pnas.94.
10.5411)

16. Berry M, Meister M. 1998 Refractoriness and neural
precision. J. Neurosci. Off. J. Soc. Neurosci. 18,
2200 – 2211. (doi:10.1523/JNEUROSCI.18-06-
02200.1998)

17. Uzzell V, Chichilnisky E. 2004 Precision of spike
trains in primate retinal ganglion cells.
J. Neurophysiol. 92, 780 – 789. (doi:10.1152/jn.
01171.2003)

18. Rainer G, Asaad WF, Miller EK. 1998 Selective
representation of relevant information by neurons in
the primate prefrontal cortex. Nature 393,
577 – 579. (doi:10.1038/31235)

19. Diesmann M, Gewaltig M-O, Aertsen A. 1999 Stable
propagation of synchronous spiking in cortical
neural networks. Nature 402, 529 – 533. (doi:10.
1038/990101)

20. Abeles M. 1982 Local cortical circuits: an
electrophysiological study, ch. 7, pp. 67 – 75. Berlin,
Germany: Springer-Verlag.

21. Gewaltig MO, Diesmann M, Aertsen A. 2001
Propagation of cortical synfire activity: survival
probability in single trials and stability in the mean.
Neural Netw. 14, 657 – 673. (doi:10.1016/S0893-
6080(01)00070-3)

22. Bienenstock E. 1995 A model of neocortex. Netw.
Comput. Neural Syst. 6, 179 – 224. (doi:10.1088/
0954-898X_6_2_004)

23. Abeles M, Bergman H, Margalit E, Vaadia E.
1993 Spatiotemporal firing patterns in the
frontal cortex of behaving monkeys. J. Neurophysiol.
70, 1629 – 1638. (doi:10.1152/jn.1993.70.4.1629)

24. Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H,
Abeles M. 1998 Spatiotemporal structure of cortical
activity: properties and behavioral relevance.
J. Neurophysiol. 79, 2857 – 2874. (doi:10.1152/jn.
1998.79.6.2857)

25. Evans B, Stringer S. 2012 Transform-invariant visual
representations in self-organizing spiking neural
networks. Front. Comput. Neurosci. 6, 46. (doi:10.
3389/fncom.2012.00046)

26. Wallis G, Rolls ET. 1997 Invariant face and object
recognition in the visual system. Prog. Neurobiol.
51, 167 – 194. (doi:10.1016/S0301-0082(96)
00054-8)

27. Booth MC, Rolls ET. 1998 View-invariant
representations of familiar objects by neurons in the
inferior temporal visual cortex. Cereb. Cortex 8,
510 – 523. (doi:10.1093/cercor/8.6.510)

28. Perry G, Rolls ET, Stringer SM. 2010 Continuous
transformation learning of translation invariant
representations. Exp. Brain Res. 204, 255 – 270.
(doi:10.1007/s00221-010-2309-0)

29. Perrinet L, Delorme A, Samuelides M, Thorpe SJ.
2001 Networks of integrate-and-fire neuron using
rank order coding A: how to implement spike time
dependent Hebbian plasticity. Neurocomputing
38 – 40, 817 – 822. (doi:10.1016/S0925-2312(01)
00460-X)

30. Troyer TW, Krukowski AE, Priebe NJ, Miller KD. 1998
Contrast-invariant orientation tuning in cat visual
cortex: thalamocortical input tuning and correlation-
based intracortical connectivity. J. Neurosci.
Off. J. Soc. Neurosci. 18, 5908 – 5927. (doi:10.1523/
JNEUROSCI.18-15-05908.1998)

31. McCormick DA, Connors BW, Lighthall JW, Prince
DA. 1985 Comparative electrophysiology of
pyramidal and sparsely spiny stellate neurons of the
neocortex. J. Neurophysiol. 54, 782 – 806. (doi:10.
1152/jn.1985.54.4.782)

32. Jones JP, Palmer LA. 1987 The two-dimensional
spatial structure of simple receptive fields in cat
striate cortex. J. Neurophysiol. 58, 1187 – 1211.
(doi:10.1152/jn.1987.58.6.1187)

33. Cumming BG, Parker AJ. 1999 Binocular neurons in
v1 of awake monkeys are selective for absolute, not
relative, disparity. J. Neurosci. 19, 5602 – 5618.
(doi:10.1523/JNEUROSCI.19-13-05602.1999)

34. Lades M, Vorbruggen J, Buhmann J, Lange J, von
der Malsburg C, Wurtz R, Konen W. 1993 Distortion
invariant object recognition in the dynamic link
architecture. IEEE Trans. Comput. 42, 300 – 311.
(doi:10.1109/12.210173)

35. Petkov N, Kruizinga P. 1997 Computational models
of visual neurons specialised in the detection of
periodic and aperiodic oriented visual stimuli: bar
and grating cells. Biol. Cybern. 76, 83 – 96. (doi:10.
1007/s004220050323)

36. Rolls ET, Milward T. 2000 A model of invariant
object recognition in the visual system: learning
rules, activation functions, lateral inhibition, and
information-based performance measures. Neural.
Comput. 12, 2547 – 2572. (doi:10.1162/
089976600300014845)

37. Tolman EC. 1948 Cognitive maps in rats and men.
Psychol. Rev. 55, 189 – 208. (doi:10.1037/h0061626)

38. Alvernhe A, Save E, Poucet B. 2011 Local remapping
of place cell firing in the Tolman detour task.
Eur. J. Neurosci. 33, 1696 – 1705. (doi:10.1111/
j.1460-9568.2011.07653.x)

39. Walters D, Stringer S, Rolls E. 2013 Path integration
of head direction: updating a packet of neural
activity at the correct speed using axonal
conduction delays. PLoS ONE 8, e58330. (doi:10.
1371/journal.pone.0058330)

http://dx.doi.org/10.1016/S0896-6273(00)80825-9
http://dx.doi.org/10.1016/0010-0285(80)90005-5
http://dx.doi.org/10.1037/0033-295X.96.3.433
http://dx.doi.org/10.1523/JNEUROSCI.16-07-02381.1996
http://dx.doi.org/10.1523/JNEUROSCI.16-07-02381.1996
http://dx.doi.org/10.3389/fncom.2012.00046
http://dx.doi.org/10.1371/journal.pone.0069952
http://dx.doi.org/10.1371/journal.pone.0069952
http://dx.doi.org/10.1167/8.7.30
http://dx.doi.org/10.1037/rev0000103
http://dx.doi.org/10.1037/rev0000103
http://dx.doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://dx.doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://dx.doi.org/10.1126/science.275.5297.213
http://dx.doi.org/10.1162/089976606775093882
http://dx.doi.org/10.1162/089976606775093882
http://dx.doi.org/10.1523/JNEUROSCI.2817-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.2817-10.2011
http://dx.doi.org/10.1111/ejn.13796
http://dx.doi.org/10.1073/pnas.94.10.5411
http://dx.doi.org/10.1073/pnas.94.10.5411
http://dx.doi.org/10.1523/JNEUROSCI.18-06-02200.1998
http://dx.doi.org/10.1523/JNEUROSCI.18-06-02200.1998
http://dx.doi.org/10.1152/jn.01171.2003
http://dx.doi.org/10.1152/jn.01171.2003
http://dx.doi.org/10.1038/31235
http://dx.doi.org/10.1038/990101
http://dx.doi.org/10.1038/990101
http://dx.doi.org/10.1016/S0893-6080(01)00070-3
http://dx.doi.org/10.1016/S0893-6080(01)00070-3
http://dx.doi.org/10.1088/0954-898X_6_2_004
http://dx.doi.org/10.1088/0954-898X_6_2_004
http://dx.doi.org/10.1152/jn.1993.70.4.1629
http://dx.doi.org/10.1152/jn.1998.79.6.2857
http://dx.doi.org/10.1152/jn.1998.79.6.2857
http://dx.doi.org/10.3389/fncom.2012.00046
http://dx.doi.org/10.3389/fncom.2012.00046
http://dx.doi.org/10.1016/S0301-0082(96)00054-8
http://dx.doi.org/10.1016/S0301-0082(96)00054-8
http://dx.doi.org/10.1093/cercor/8.6.510
http://dx.doi.org/10.1007/s00221-010-2309-0
http://dx.doi.org/10.1016/S0925-2312(01)00460-X
http://dx.doi.org/10.1016/S0925-2312(01)00460-X
http://dx.doi.org/10.1523/JNEUROSCI.18-15-05908.1998
http://dx.doi.org/10.1523/JNEUROSCI.18-15-05908.1998
http://dx.doi.org/10.1152/jn.1985.54.4.782
http://dx.doi.org/10.1152/jn.1985.54.4.782
http://dx.doi.org/10.1152/jn.1987.58.6.1187
http://dx.doi.org/10.1523/JNEUROSCI.19-13-05602.1999
http://dx.doi.org/10.1109/12.210173
http://dx.doi.org/10.1007/s004220050323
http://dx.doi.org/10.1007/s004220050323
http://dx.doi.org/10.1162/089976600300014845
http://dx.doi.org/10.1162/089976600300014845
http://dx.doi.org/10.1037/h0061626
http://dx.doi.org/10.1111/j.1460-9568.2011.07653.x
http://dx.doi.org/10.1111/j.1460-9568.2011.07653.x
http://dx.doi.org/10.1371/journal.pone.0058330
http://dx.doi.org/10.1371/journal.pone.0058330

	A new approach to solving the feature-binding problem in primate vision
	Introduction
	Theory
	The emergence of polychronization within a biological spiking neural network model of the primate visual system
	How the emergence of polychronization may offer an approach to solving feature binding in primate vision
	Bottom-up projection of visual information about low-level elemental features to higher network layers
	Binding neuron activation through local increases in spike density

	Neural network model and analysis of network performance
	Neural network model
	Network architecture
	Differential equations
	Training the network on visual stimuli

	Analysis of network performance
	Information analysis of average firing rate responses of single cells
	Information analysis of temporal spike patterns emitted by polychronous neuronal groups


	Performance of spiking neural network models
	The emergence of polychronization through successive network layers
	Selected simulation results from Eguchi et al. [9]
	Training and testing the network model on a set  of visual stimuli
	Stimulus information carried by the average firing rates of neurons and spike-pair PNGs in the output layer of the network
	How the stimulus information carried by spike-pair PNGs in the output layer is affected by key model parameters
	The development of binding neurons during visual training
	Bottom-up projection of visual information about lower-level features to higher layers of the network


	Discussion
	Ethics
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	References


