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a b s t r a c t

With the development of super-resolution imaging techniques, it is crucial to understand protein structure 
at the nanoscale in terms of clustering and organization in a cell. However, cluster analysis from single- 
molecule localization microscopy (SMLM) images remains challenging because the classical computational 
cluster analysis methods developed for conventional microscopy images do not apply to pointillism SMLM 
data, necessitating the development of distinct methods for cluster analysis from SMLM images. In this 
review, we discuss the development of computational cluster analysis methods for SMLM images by ca
tegorizing them into classical and machine-learning-based methods. Finally, we address possible future 
directions for machine learning-based cluster analysis methods for SMLM data.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Understanding protein structure in terms of clustering and orga
nization in a cell is imperative because it is known to be closely related 
to its function in the cell [1]. Identifying protein clusters on a mole
cular scale is important to precisely determine the protein-to-protein 
interactions, but it has been limited to conventional diffraction-limited 
optical microscopy [2]. However, it has become possible to map high- 
resolution protein structures in a cell on a molecular scale using re
cently developed super-resolution fluorescence microscopy (SRM) [3].

The past decade has witnessed the development of SRM tech
niques that overcome the diffraction-based far-field resolution limits 
of conventional light microscopy [4]. Various SRM techniques have 
been developed by several research groups, and they can be roughly 
categorized into two groups: one group employs the engineering of 
illumination patterns, and the other group uses single-molecule lo
calization. The representative methods for the first group are sti
mulated emission depletion (STED) microscopy [5] and structured 
illumination microscopy (SIM) [6]. Briefly, STED sharpens the point- 
spread function (PSF) by employing an additional donut-shaped 

depletion beam, thereby improving the resolution of the microscope. 
In SIM, a sample is subjected to a structured illumination pattern 
with a known high spatial frequency in order to shift the sub-re
solution structure of an unknown sample to a detectable lower 
frequency and thus restore the nanostructure. Representative single- 
molecule localization microscopy (SMLM) methods include sto
chastic optical reconstruction microscopy (STORM) [7] and (fluor
escence) photoactivation localization microscopy ((F)PALM) [8]. 
These methods can achieve single-molecule localization with high 
precision by temporally separating the activation of individual 
fluorescent emitters to avoid their overlapping based on their sto
chastic “on–off” fluorescence photoswitching [9]. This high-resolu
tion image reveals a pointillistic nature and requires a new method 
for cluster analysis because an SMLM image is reconstructed from 
individually localized points obtained by the detection and locali
zation of single fluorescent molecules [10].

The analysis method for SMLM data is expected to differ from 
conventional cluster analysis methods for intensity grid-valued pixel- 
based images obtained from conventional microscopy because it is 
known that the computational cluster analysis methods developed for 
conventional microscopy images do not apply to pointillism SMLM 
data [1]. Therefore, in this review, we focus on the development of 
computational cluster analysis methods for SMLM images by 
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categorizing them into classical methods and machine learning-based 
methods.

2. Classical cluster analysis methods for SMLM images

Classical cluster analysis methods for SMLM images can be ca
tegorized into four groups: 1) global clustering, 2) complete clus
tering, 3) tessellation-based methods, and 4) image-based cluster 
analysis (Fig. 1, Table 1).

2.1. Global clustering approach

The global clustering analysis method provides a global de
scription of protein clustering or organization by providing spatial 
statistics. This ensemble method includes nearest neighbor analysis 
(NNA), Ripley’s K function, and pair correlation function (PCF).

NNA is the simplest metric for determining the level of clustering 
within data by calculating the distances between each molecule’s 
position and its neighbor. The level of clustering within the data can be 
determined by comparing these distances with the calculated dis
tances from a random distribution of molecules. For example, the 
mean nearest-neighbor distance for a clustered distribution is sig
nificantly lower than that for a random distribution. Bar-On et al. used 
NNA to analyze the distribution of syntaxin molecules in the cell 
membrane [11]. From the analysis, they could observe the non
homogeneously distributed single syntaxin molecules in the mem
brane and the concentrated molecules in the area adjacent to clusters.

A similar analysis is Ripley’s K function, which calculates the 
average number of neighboring molecules around a single molecule 

within a given radius [12]. This calculation is repeated by increasing 
the radius, and the calculation result is compared with the expected 
values for a random distribution to determine the average cluster 
radius. This approach was used to quantify the clustering of mem
brane receptors, including tyrosine kinase Lck and EGFR, from SMLM 
images [13,14].

However, Ripley’s K function-based methods have several issues, 
including the requirement of calibration data that can strongly affect 
the output, no consideration of the individual localization precisions, 
and the limited judgment of their performance [15]. These short
comings can be overcome by a model-based Bayesian approach re
cently developed by Rubin-Delanchy et al. [15]. By completely taking 
the individual localization precisions for each emitter into account, 
this Bayesian approach enables accurate quantification of clustering 
behavior in SMLM images.

Another ensemble method is PCF, which is calculated to obtain 
the probability of finding localizations at a given distance from an
other localization. This method can provide not only great sensitivity 
to the changes in molecular clustering but also a correction to the 
overcounting, which results from multiple blinking of the same 
probe, by comparing the experimental data with the completely 
randomly distributed data [12,16,17]. Hartley et al. used PCF to de
termine the density of hybrid nanoconjugates crosslinked CD20 on 
the surface of malignant B cells [18]. The cluster size and the average 
number of molecules in the clusters were analyzed in their study to 
correlate with apoptosis induction after the treatment with the na
noconjugates. Such a global approach allows us to understand the 
level of organization or clustering; however, it is an ensemble 
method that provides limited statistical information on the data.

Fig. 1. Classical cluster analysis methods for single-molecule localization microscopy (SMLM) images. (A) Pointillism localization data generated from SMLM. (B) Global clustering. 
(C) Complete clustering. (D) Tessellation-based methods. (E) Image-based cluster analysis.
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2.2. Complete clustering approach

A complete clustering approach can overcome the limitation of a 
global approach by extracting rich information from the data at the 
single-cluster level, such as the number and shape of individual 
clusters. It includes density-based spatial clustering of applications 
with noise (DBSCAN) and SuperStructure.

First, DBSCAN is the most commonly used complete clustering 
method that directly groups localizations into discrete clusters. It 
can not only determine a cluster but also identify noise by calcu
lating the number of points within a given neighborhood radius. 
Given a minimum number of localizations as a threshold and a ra
dius of search as an input, if there are more localizations than the 
threshold within a given radius of search, it is classified as a cluster, 
whereas it is classified as noise if there are a smaller number of 
localizations within a given radius of the search. The identified 
clusters were further categorized into several groups based on their 
size and the number of localizations. This method was applied to 
differentiate the phosphorylated from the nonphosphorylated T-cell 
receptor (TCR)-CD3 clusters in intact T cells, demonstrating that the 
molecular density within a TCR-CD3 cluster can determine signal 
initiation [19]. However, a cluster generated from multiple blinks 
could result in cluster artifacts by overcounting the multiple blinks 
of a fluorophore, which was not easily differentiable from a real 
cluster consisting of protein assemblies in this method. Baumgart 
et al. overcame this limitation by varying the labeling density, such 
as in the titration of fluorescent antibodies, to distinguish random 
from clustered distributions of molecules, which is insensitive to the 
blinking statistics of the used fluorophores [20]. Nanodomain pat
terns for the dopamine transporter (DAT) and nanocluster formation 
in resting and activated immune cells were analyzed based on this 
method by ruling out multiple observations of single fluor
ophores [20,21].

Another complete clustering approach is SuperStructure, which 
is an extended DBSCAN by detecting the number of localizations 
within a neighborhood radius [22]. However, in contrast to DBSCAN, 
SuperStructure is a parameter-free detection and quantification 
method that extracts connectivity information from the change rate 
(Nc(ε) curve) of the number of localizations with the neighborhood 
radius, which is overlooked in DBSCAN. This method was demon
strated to investigate protein organization, such as nuclear proteins 
involved in RNA processing and ceramide membrane lipids involved 
in cellular trafficking [22].

Another complete clustering analysis method to overcome the 
limitations of DBSCAN is fast optimized cluster algorithm for loca
lizations (FOCAL) [23]. Because DBSCAN scales with the number of 
localizations such as O(n log (n)), it can be slow for analyzing dense 
structures. Additionally, the choice of parameters strongly affects 
performance. These limitations can be overcome using the grid- 
based clustering algorithm, FOCAL. In contrast to DBSCAN, FOCAL 
scales such as O(n) have only one set parameter, allowing a fast and 
efficient analysis. Additionally, FOCAL is effective for filtering out 
focus clusters, which could increase the local background and de
teriorate localization precision [23].

Recently, a persistence-based clustering method has also been 
developed to overcome the limitations of density-based clustering 
analysis with a single density threshold. For complex biological 
structures with varying densities, a single-density threshold is in
sufficient, and persistence can be utilized to identify clusters [24]. By 
employing both persistence-based clustering [25] and persistent 
homology [26], Pike et al. developed the topological mode analysis 
tool (ToMATo) to quantify complex biological nanostructure [24]. By 
demonstrating this method to various biological structures, in
cluding receptor clustering in platelets, nuclear pore components, 
endocytic proteins, and microtubule networks, the authors reported 
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that their method outperforms existing approaches, including 
DBSCAN [24].

2.3. Tessellation-based method

The next category of cluster analysis for SMLM images is a tes
sellation-based method that includes Delaunay triangulation and 
Voronoi tessellation. These examples are generally used in mathe
matics and computational geometry. This method creates a tessel
lated surface in which tiles are generated from localizations to 
determine the presence of clusters.

First, the Delaunay triangulation method creates triangular tiles 
in which the localizations comprise the corners or vertices [12]. In 
this approach, the process of organizing localizations in a triangular 
mesh is repeated until all triangles in the mesh satisfy the Delaunay 
criterion, which specifies a rule to determine a favorable re
presentation of the spatial relationships between points. It can not 
only determine the highly clustered points in the tile area but also 
separate noise by defining the lowest density of points forming the 
cluster. This method was successfully used to segment individual 
DNA nucleoid clusters from the 3D STORM data of the mitochondrial 
cristae [27].

In contrast to Delaunay triangulation, Voronoi creates polygonal 
regions called Voronoi cells, in which molecules are localized at the 
center of the tiles according to the Euclidean distance between 
points [1]. There is no intersection between Voronoi cells when the 
equidistant Voronoi edges are generated from the two nearest mo
lecules. Such segmentation of molecular clusters in an SMLM image 
can be used to describe the density and organization of molecules 
[1]. This method has been recently implemented in open-source 
software, such as SR-Tesseler [28], ClusterVisu [29], and SharpViSu 
[30]. For example, SR-Tesseler was recently used to quantify clus
tering characteristics, such as cluster area, localization number per 
cluster, and cluster density, for Ca2+ handling regulators, including 
dihydropyridine receptor (DHPR), ryanodine receptor 2 (RyR2), 
phospholamban (PLN), and sarco/endoplasmic reticulum Ca2+-AT
Pase 2A (SERCA2A) in TAC hearts [31]. It should be noted that loca
lizations on the border of a cluster can be excluded, and the multiple 
localizations from a blinking fluorophore cannot be differentiable 
from the true molecular cluster since such a tessellation-based 
method can determine the presence of highly clustered points by the 
tile area [1].

2.4. Image-based cluster analysis

The aforementioned approaches, including global clustering, 
complete clustering, and tessellation-based methods, are based on 
the coordinates of localizations; hence, noise localizations can be 
unavoidably included for cluster analysis, interrupting the identifi
cation of actual molecular clusters. Although they can be filtered out 
based on their density, they can be more easily filtered out by ren
dering localization points based on various photoswitching proper
ties, such as photon number and photoswitching rates, because the 
localizations from noise exhibit distinct photoswitching properties. 
In addition, the empty area within a cluster can be filled by ren
dering the localization points, allowing straightforward cluster 
analysis. Therefore, reconstructed and rendered SMLM images are 
preferable for cluster analysis rather than localization co
ordinate data.

For example, French et al. used high-resolution, rendered STORM 
images for cluster analysis of mitochondria and purinosomes 
[32,33]. Each rendered STORM image of mitochondria and purino
somes was median filtered and intensity thresholded using Otsu's 
thresholding algorithm to remove the background noise localiza
tions. The boundaries of the filtered clusters were then identified 
using 8-point connectivity and dilated for erosion. The identified 

clusters were further analyzed for the colocalization of mitochondria 
and purinosomes based on their boundary-to-boundary distances. 
Such a rendered image-based cluster analysis was also successfully 
demonstrated for the analysis of the nearest distance between the 
Xist and EZH2 clusters to investigate X-chromosome inactivation. 
Each image was separately processed by medial filtering, and the 
identified clusters of EZH2 were cross-correlated with EZH2 locali
zation coordinates to calculate the nearest neighbor's distance [34]. 
This method has also been shown to quantify the ultrastructural 
changes of various organelles, such as mitochondria, dense tubular 
system (DTS), autophagosomes, α-granules, and dense granules, in 
platelet during the platelet activation and division process [35,36]. It 
was also successfully employed to identify and quantify the phase 
separation in polymer blend films on the nanoscale [37]. The iden
tified boundaries of each phase were further processed for the 
analysis of specific interfacial lengths and areas.

The kernel density estimation (KDE) is another image-based 
approach. Based on the pixel information, KDE determines the lo
calization density at a certain position as the kernel density. The 
points are clustered using kernel size and density as user-defined 
inputs. Slotman et al. employed the KDE approach to investigate the 
spatial organization of recombinase RAD51 and its meiosis-specific 
paralog DMC1 during meiotic DNA double-strand break repair (DSB) 
[38]. In their study, the single-molecule localization data were fitted 
to a 2D KDE function to define DNA repair foci at different cell stages. 
This KDE-based cluster analysis not only demonstrated variability in 
foci composition but also defined functional consensus configura
tions during the DSB process.

Collectively, such a rendered SMLM image-based cluster analysis 
is quite similar to the conventional cluster analysis for pixel-based 
images obtained from conventional microscopy, even though a 
rendered SMLM image-based cluster analysis uses much higher re
solution images with high pixel numbers. This method was found to 
be particularly useful for removing small objects, possibly back
ground signals, in a simple way, even though each localization co
ordinate information can be lost in this method.

3. Machine learning based cluster analysis methods for SMLM 
images

Machine learning is a subfield of artificial intelligence that en
ables systems to learn from experience and improve without being 
explicitly programmed. It focuses on developing an algorithm that 
can access data and use it to learn for itself. The type of algorithm 
can be determined by its input data and desired output data. Various 
machine learning algorithms have been demonstrated to be useful 
and effective for cluster analysis of SMLM images [39]. To under
stand these works, we first describe machine learning algorithms 
that are useful for cluster analysis and then discuss each reported 
work (Fig. 2, Table 1).

3.1. Backgrounds for machine learning algorithms

3.1.1. Classical machine learning-based algorithm
Over the past decade, deep neural network-based algorithms, 

such as recurrent neural networks and convolutional neural net
works, have been dominant in solving AI-related problems. The main 
reason for this is that deep learning demonstrates superior perfor
mance in various tasks. Although deep learning shows such high 
performance, there are still some advantages to using classical ma
chine learning algorithms. Classical machine learning algorithms 
work better on small datasets. In addition, they are cost-effective 
and easy to interpret. Some notable classical machine-learning al
gorithms are useful for the cluster analysis of SMLM data.

First, a decision tree is a machine learning algorithm that pro
duces an output from yes-or-no questions. It uses a tree-like 
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Fig. 2. Machine learning algorithms used in cluster analysis for single-molecule localization microscopy (SMLM) images. (A) Decision tree. (B) K-nearest neighbors. (C) K-means 
Clustering. (D) Support vector machine. (E) Typical architecture of convolutional neural network. (F) The architecture of PointNet [43].
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structure where each internal node denotes a test on an attribute, 
each branch represents an outcome of the test, and each terminal 
node contains a class label. Decision trees classify instances by 
sorting them from the root to a leaf node, which provides the clas
sification of the instance. It is prone to overfitting and instability 
despite being simple to understand and necessitating minimal data 
preparation. This is because small variations in the data can result in 
a completely different tree being generated. Random forest is an 
ensemble learning method that constructs several levels of decision 
trees during training.

K-nearest neighbors algorithm (KNN) is a non-parametric su
pervised learning method that uses proximity to make classifica
tions or predictions for grouping individual data points. The KNN 
tries to predict the correct class for the test data by calculating the 
instance between the test data and all training points. Then, the K 
number of points is chosen to be closest to the test data, followed by 
the computation of the probability for each class based on these K 
training points. The class with the highest probability was selected. 
KNN can be used for a regression problem where the value is de
termined by the mean of K-selected training points.

K-means clustering is an unsupervised learning algorithm used 
to identify clusters of data objects in a dataset. This algorithm first 
selects k centroids, where k denotes the chosen number of clusters. 
Centroids are data points that represent the center of a cluster. Each 
data point was assigned to the closest centroid, and the position of 
the centroids was updated based on the newly assigned points. The 
algorithm continues the reassignment process repeatedly until the 
positions of the centroids are stable. The k-means clustering algo
rithm is easy to construct and compute, and it can be applied to a 
large dataset. However, it is too sensitive to the initial choice of the 
value “k” and centroids, and it often fails on complex datasets be
cause its concept is based on separable spherical clusters, with the 
mean convergent towards the cluster center.

Support vector machine (SVM) is one of the most popular su
pervised machine algorithms that can be utilized for both classifi
cation and regression but is commonly used in classification. SVM 
was designed for binary classification problems. It identifies a hy
perplane that separates data points into different classes. SVM can 
be easily extended to complex instances that are not linearly se
parable by mapping training examples to a higher-dimensional 
space, where they become linearly separable using a kernel trick. 
SVM has been successful in various applications, such as medical 
imaging and natural language.

3.1.2. Image classification algorithm based on deep learning
One of the fundamental problems in computer vision is de

termining whether image data contains specific objects, features, or 
activities. The image-classification algorithm assigns an input image 
to one label from a fixed set of categories. More complicated com
puter vision tasks, such as object detection and segmentation, can 
utilize architectures developed for image classification.

Although there are classical machine algorithms for image 
classification, the most common architecture in recent years is 
neural network-based models. It is typically composed of feature 
networks and a small number (typically two or three) of additional 
fully connected layers (or convolution layers). The output of the 
entire model architecture is a one-dimensional vector whose 
number is the same as the number of classes. Each element in the 
final vector represents the probability of each class, and the class 
with the highest probability was selected as the final prediction. 
Although a series of fully connected layers can be sufficient for a 
feature network for a small dataset, CNN-based architectures such 
as ResNet [40], EfficientNet [41], or Vision Transformer (ViT)-based 
architectures [42] generally show much better accuracy for com
plex datasets.

3.1.3. Deep learning algorithm on point cloud
A point cloud is a set of data points in three-dimensional space. 

Each point may represent a 3D scene environment, the 3D shape of a 
target object, or the distribution of particles. Such data have been 
widely used for robot navigation, scene classification, and cluster 
analyses. Detailed algorithms should be considered with the point 
cloud input for clustering points and object classification. There are 
several common approaches based on the deep learning of a point 
cloud. One approach is to use a 3D-convolution layer to capture the 
features of point clouds. The points are generally sparse, so the point 
cloud can be divided into several voxel grids, and the number of 
points in each grid is considered valid data. In another approach, 
PointNet [43] uses a symmetric function to impose permutation 
invariants of points during the input phase and computes the fea
tures of points using a multi-layer perceptron architecture. Another 
approach is to consider the point cloud as a graph structure, where 
each point serves as a node. Various graph neural networks can be 
used to analyze reformulated input data.

3.2. Machine learning based cluster analysis methods for SMLM images

3.2.1. Methods for constructing clustered data
Several studies have been conducted on the construction of 3D 

structures from SMLM images. This reconstructed point cloud can be 
used for cluster analysis. Blundell et al. used a convolutional neural 
network (CNN) to retrieve 3D structures from SMLM images [44]. 
The input for CNN is batches of images obtained from SMLM, and the 
direct output of the network is six rendering parameters, which 
represent the position and orientation. The 3D structure of the ob
ject can be obtained using a differentiable renderer with these 
parameters. The authors demonstrated their method, HOLLy, for 
reconstructing the 3D structures of the CEP152 complex, which is a 
part of the centriole. The central torus for the CEP152 complex 
converged after training sets of ∼ 2000 2D SMLM images, which was 
consistent with the previously reported structure of this protein 
complex, confirming the performance of this method.

Tobin et al. proposed a machine-learning-based clustering ana
lysis method to detect clustered and unclustered molecules using a 
k-means clustering algorithm [45]. Tobin et al. used the k-means 
clustering algorithm to quantify the fraction of the targeted mole
cules residing in clusters. In their study, a k-means-like clustering 
algorithm was employed to quantify the fraction of human epi
dermal growth factor receptor 2 (HER2) molecules in clusters, whose 
level has recently been considered an important indicator of breast 
cancer. In this algorithm, the cluster radius and average localization 
precision were used as parameters from the pair-correlation ana
lysis. They described the clustering features of membrane HER2 re
ceptor molecules using this method.

Williamson et al. developed a supervised machine learning ap
proach for cluster analysis that is fast and accurate [46]. The purpose 
of the suggested algorithm is to classify SMLM points as either 
clustered or non-clustered. The distances to the nearest neighbor
hood points were computed for each query point and then used as 
input data for the neural networks. The difference between these 
models is the number of neighborhood points and layer operations. 
The simple model uses only a fully connected layer, whereas the 
more complex model uses one-dimensional convolution and LSTM 
(long short-term memory) [47] layers for better accuracy. They de
monstrated this method using simulated and experimental SMLM 
data of the cytosolic kinase Csk and the transmembrane adapter PAG 
in primary human T cell immunological synapses, since it has been 
suggested that Csk is regulated through its association with PAG. 
From this analysis, changes in Csk and PAG clustering were observed 
in naive and previously stimulated T cells.

One could suggest employing a computational and analytical 
framework similar to the single-particle reconstruction (SPR) 
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analysis of electron microscopy (EM) images to reconstruct the 3D 
image from a 2D SMLM image. Sieben et al. developed a computa
tional and analytical framework that reconstructs and coaligns 
multiple proteins from 2D super-resolution fluorescence images, 
which is similar to SPR analysis for EM images used in structural 
biology [48]. One of the key steps is to align two protein volumes 
obtained from different images. They carried out orientational fil
tering using a support vector machine classifier to identify the top- 
view and side-view projections of the reference protein from a 
combination of 12 calculated shape descriptors. They remarked that 
this method is advantageous for direct application to other datasets 
using the same reference once the model is trained as a reference 
protein. They reconstructed the 3D four-color map of the human 
centriole, revealing their relative locations, dimensions, and or
ientations using the SMLM images of several proteins within the 
purified human centrosomes immunolabeled for Cep152, Cep164, 
Cep57, and Cep63.

3.2.2. Methods for cluster identification and classification
Khater et al. [49] developed a computational pipeline for ana

lyzing the large image datasets generated by SMLM images. They 
applied it to analyzing 3D point clouds of SMLM localizations of the 
caveolar coat protein caveolin-1(Cav1). Random decision forest al
gorithms were used to identify features that distinguish the regions 
of interest of PC3 and PC3-PTRF. After filtering out low-degree blinks, 
unsupervised k-means clustering algorithms were applied to iden
tify the different blobs. They demonstrated that this method could 
successfully define not only the molecular structure of plasma 
membrane-associated caveolae but also the coat protein Cav1 loca
lization signatures for scaffolds. They demonstrated that this 
method could successfully identify plasma membrane-associated 
coat protein Cav1 scaffolds that combine to form caveolae and larger 
scaffolds by defining Cav1 localization signatures for scaffolds and 
caveolae.

In their subsequent work, they performed blob identification on 
SMLM images of Cav1 antibodies in prostate cancer cells [50]. Based 
on their previous work [49], the SMLM data are processed to be 
represented as a 3D point cloud, which is divided into several blobs 
(clusters). These are the input data for the machine learning-based 
classification algorithms. In this study, both unsupervised and su
pervised learning techniques were used. The CAVIN1/PTRF mask was 
used to label blobs as either PTRF+ or PTRF- classes used for su
pervised learning. This mask was also used to assign learned and 
matched groups as S2 scaffolds, caveolae, S1B scaffolds, and S1A 
scaffold blobs for unsupervised learning. The main purpose of these 
algorithms is to calculate the graphlet frequency distribution (GFD), 
which is a combinatorial object obtained from graph theory. The 
class of blobs is decided based on the GFD of each blob using a 
random forest classifier. They demonstrated this method to define 
the changes in the structural organization in caveolae and scaffolds 
independently of the association with CAVIN1/PTRF.

They also identified biological structures from the SMLM data 
using three different machine learning-based methods [51]. For the 
detection of caveolae and scaffolds, they developed and compared 
three binary classification methods to identify whether a given 3D 
cluster of Cav1 proteins is a caveola. The input SMLM dataset is a 
three-dimensional point cloud, and it is reformulated to be suitable 
for each classification method. The first method employs a random 
forest, which uses expert features obtained by hand-designed fea
tures from a point cloud. The second method employs a CNN-based 
architecture that uses multi-view 2D images as input data. The third 
method uses the PointNet [43] architecture, which takes a point 
cloud as input data. Although the latter methods are more modern 
and newly developed, the first method exhibits higher accuracy in 
their study, probably because of the relatively small size of the ex
perimental dataset.

4. Future direction

Although classical cluster analysis methods demonstrate sa
tisfactory results, there is still room for development, especially in 
multiple blinking artifacts correction in clustering analysis. Multiple 
blinking can cause repeated localizations with various numbers from 
a single molecule, resulting in artificial clustering, followed by 
misidentification of cluster localization and size measurement. This 
limitation can be overcome by applying the recently developed 
blinking-caused artifact correction approaches to classical clustering 
analysis methods. Although the artifact-free analysis of membrane- 
protein nanoclusters developed by Baumgart et al. was discussed 
above as a method to resolve the problem of blinking fluorophore 
overcounting, other blinking-caused artifact correction approaches 
can be employed for cluster analysis as well [20]. One example in
cludes the quantitative PALM analysis method developed by Anni
bale et al. based on the detailed knowledge of the fluorophore 
photophysical behavior [52]. Based on the systematic investigation 
of the effect of blinking and fluorescence dark times on PALM ima
ging, this method enables reliable quantification of photoblinking 
molecules in a biological sample from PALM images. Another 
blinking-caused artifact correction method for PALM images is 
‘model-based correction’ (MBC) developed by Jensen et al.[53], 
which utilizes calibration-free estimation of realistic photophysics 
fluorescent protein models to provide corrected localization data 
with enhanced localization precision. Although this method cannot 
be utilized to correct STORM or other SMLM methods, another re
cently developed method can also be applied to STORM data. Bohrer 
et al. developed a distance distribution correction (DDC) algorithm 
to eliminate multiple blinking-caused artifacts in general SMLM 
images [54]. Based on the true pairwise distance distribution of 
different fluorophores, this method could produce a set of localiza
tions without blinking artifacts. Therefore, the application of such 
recently developed blinking-caused artifact correction approaches to 
classical cluster analysis may enable not only accurate reconstruc
tion and quantification of single molecules but also accurate quan
titative cluster analysis without overclustering.

Further development in machine-learning-based methods is also 
expected. There have been remarkable results on the cluster analysis 
of SMLM images using algorithms in machine learning, but the 
common methods usually come from classical machine learning 
algorithms. Deep learning algorithms in computer vision, including 
image classification, object detection, and segmentation, have led to 
drastic improvements in their performance and resulted in varied 
applications, which may contribute to cluster analysis. There is a 
notable effort for adopting deep-learning-based algorithms in this 
field, but extraordinary results have not yet been achieved. Modern 
deep neural networks have various options for the model archi
tecture, training methods, and type of input data. Any newly de
veloped architecture for image data or a graph neural network 
would be helpful for cluster analysis. Therefore, further attempts are 
expected to be made to exploit recent deep learning-based methods 
for analyzing clusters in SMLM images. Any newly developed ar
chitecture for image data or point cloud data would be helpful for 
various algorithms related to cluster analysis. For example, image 
segmentation is a general computer vision algorithm; however, it 
has not been utilized for cluster analysis in SMLM. Old and new 
high-performance deep-learning-based segmentation algorithms 
may be helpful for cluster classification and colocalization.

Additionally, cluster analysis in SMLM image data can be assisted 
by a graph neural network (GNN) because the clusters in the point 
cloud can also be considered graph structures. The GNN is a deep- 
learning-based method designed to be conducted on data described 
by graphs. GNN can be applied to diverse algorithms, including node 
classification, graph classification, graph visualization, and graph 
clustering. Because GNN has recently become a popular research 
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topic in deep learning, cluster analysis in SMLM could take ad
vantage of these results.

The application of a recently developed 3D analysis method to 
cluster analysis in the SMLM may generate new perspectives and 
results. The observed data in SMLM images can have a three-di
mensional structure explicitly or implicitly, which can be re
presented as a 3D point cloud. There are various deep learning 
methods for 3D point clouds, including 3D shape classification, point 
cloud segmentation, and object detection and tracking. The appli
cations of these deep-learning methods would expand our under
standing of the target 3D structure, which cannot be obtained using 
conventional analysis methods.

We expect that different cluster analysis methods would reveal 
distinct performance depending on the type of structures in SMLM 
images, necessitating the evaluation of their performances for 
comparison. For example, Nieves et al. reported a framework to 
evaluate cluster analysis performances of DBSCAN, ToMATo, and KDE 
by scoring the result of clustering algorithms based on the metrics, 
including the Adjusted Rand Index (ARI) and Intersection over Union 
(IoU) [55]. Such a framework to compare the success of clustering 
results in different cluster analyses would not only provide guide
lines for choosing the method but also contribute towards the de
velopment of future methodologies.

Collectively, further development of cluster analysis for SMLM 
data in such a way is anticipated to provide fruitful structural in
formation about targets, allowing extensive opportunities for its 
application.

5. Conclusion

The recent development of SMLM methods, such as STORM and 
PALM, has increased the demand for new methods for cluster ana
lysis, due to their distinct pointillism data. Modern computational 
cluster analysis methods for SMLM images can be categorized into 
classical and machine learning-based methods.

Classical cluster analysis methods for SMLM images include the 
global clustering analysis method, the complete clustering analysis 
method, the tessellation-based method, and the reconstructed 
image-based method. The global clustering analysis method pro
vides a global description of protein clustering or organization by 
providing spatial statistics. The complete clustering approach ex
tracts rich information from the data at the single-cluster level, such 
as the number of clusters and the shape of individual clusters. The 
tessellation-based method creates a tessellated surface in which tiles 
are generated from the localizations to determine the presence of 
clusters. The image-based method uses the image itself for cluster 
analysis instead of the coordinates of localization.

Various machine learning-based methods have also been 
exploited for cluster analysis. Classical machine learning algorithms, 
such as decision trees, random forests, and KNN, are used for cluster 
identification, and the k-means clustering algorithm has been useful 
to group related points in the SMLM image as a cluster. Algorithms 
based on neural networks have also been used for cluster classifi
cation. A CNN-based architecture is effective for image-type data, 
and 3D convolution or PointNet is applied for point cloud processing.

Although these machine learning-based cluster analysis methods 
have shown satisfactory results, it is expected that there will be 
more attempts to exploit recent deep learning-based methods for 
analyzing clusters in SMLM images. Such a further improvement of 
cluster analysis for SMLM images with the modern deep learning- 
based methods is expected to clarify demanding questions in a wide 
range of biology by providing ultrastructural information about 
targets, finally playing a significant role in super-resolution image 
analysis.
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