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Abstract: Due to the increasing use of the different composite materials in lightweight applications,
such as in aerospace, it becomes crucial to understand the different damages occurring within them
during life cycle and their possible inspection with different inspection techniques in different life
cycle stages. A comprehensive classification of these damage patterns, measuring signals, and
analysis methods using a taxonomical approach can help in this direction. In conjunction with the
taxonomy, this work addresses damage diagnostics in hybrid and composite materials, such as fibre
metal laminates (FMLs). A novel unified taxonomy atlas of damage patterns, measuring signals, and
analysis methods is introduced. Analysis methods based on advanced supervised and unsupervised
machine learning algorithms, such as autoencoders, self-organising maps, and convolutional neural
networks, and a novel z-profiling method, are implemented. Besides formal aspects, an extended use
case demonstrating damage identification in FML plates using X-ray computer tomography (X-ray
CT) data is used to elaborate different data analysis techniques to amplify or detect damages and to
show challenges.

Keywords: composite materials; fibre metal laminates; damage diagnostics; automated feature
extraction; machine learning; X-ray computer tomography

1. Introduction

Damage diagnostics is still a challenging task requiring export knowledge and ad-
vanced analysis algorithms, moreover in the context of hybrid and laminate materials. This
work addresses taxonomies of damages, defects, measuring methods, measuring signals,
and analysis methods for damage diagnostics of composite and hybrid materials with some
selected use cases, shown in Figure 1. The taxonomy is multilevel with material properties
on the lowest level, composite characteristics on the midlevel, and structure properties on
the highest level. Damages have an impact on the properties at all three levels, which are
then measured with different measuring methods. The measuring data are finally analysed
by different algorithms.

With the advancements in science, technology, and engineering, there is a vast amount
of well-established information available in almost all the respective domains. As research
breaks through in these different field progresses, the amount of knowledge and infor-
mation that is gained also increases. This makes it significantly important to classify the
information and the gained knowledge into different well-established classes and in an
orderly arrangement. The need for classification has been well realised in various engineer-
ing disciplines. The systematic organisation of the investigated subjects helps to organise
and structure knowledge in the field of science and technology. Classification helps to

Materials 2022, 15, 4645. https://doi.org/10.3390/ma15134645 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15134645
https://doi.org/10.3390/ma15134645
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-8774-6141
https://doi.org/10.3390/ma15134645
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15134645?type=check_update&version=2


Materials 2022, 15, 4645 2 of 43

facilitate the organisation of existing knowledge. The maturation of various knowledge
fields has been facilitated through knowledge classification in the following ways [1]:

• Classification of the knowledge field objects provides common terminology, thus
making it easier to share knowledge. The gaps within a knowledge field can be
identified through classification [2–4].

• A better understanding of the various inter-relationships between the objects of a
knowledge field can be achieved through classification, which can support decision-
making processes [2].
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As the content of knowledge in each discipline increases, further knowledge sharing
is becoming increasingly difficult. Disciplines develop different classification systems to
facilitate knowledge sharing, which provides a common terminology for communication
by allocating entities or subjects to initial undefined classes where the individuals in a class
are closely related [3,5]. To create a good classification system, it is crucial to understand
its characteristics and what is needed to develop one that can support researchers and
practitioners in generalising, communicating, and applying the findings of knowledge upon
completion [3]. Classification enables easy identification and makes it easy to understand
diversity better. It helps us to understand the relationships between different classes and
groups within a subject or domain being examined, further enabling us to uncover and
unravel the hidden relationships. It could also provide a significant solution to the storage
of a vast amount of data and make the retrieval easier, enabling us to make sense of the
world by improving our ability to find important content in an information-rich world [6].

Taxonomy is defined as “a scheme of classification” [7], and the concept was orig-
inally proposed by Carolus Linnaeus [8]. In general, it deals with the development of
a classification system. Taxonomies have contributed to maturing the knowledge field
in various domains. Nevertheless, the taxonomy proposed by Carolus Linnaeus keeps
being extended [9], and taxonomies related to materials are expected to evolve over time,
incorporating new knowledge and discoveries. In addition, due to the wide spectrum
of knowledge available, especially in terms of failure mechanisms and damage patterns
in different materials, there is still a need to classify knowledge in many subareas. The
detectability and evaluation of these damages are extremely important for damage diagno-
sis and include numerous analysis methods and techniques. These defects and analysis
methods are well known; however, there seems to be a lack of an organisation or classifica-
tion of these. To the knowledge of the authors, no systematic literature review has been
conducted to date to establish a comprehensive classification of these damage patterns,
analysis methods, and measuring signals, including their definitions leading to a unified
taxonomy atlas. Although many definitions of the damage patterns have been proposed
in history, it appears that these definitions have been designed or have evolved without
following a proper structure or classification that could explain their origin and occurrences.
To the best of our knowledge, no systematic approach or systematic literature review has
been conducted to identify, analyse, and classify the different damage patterns in materials.



Materials 2022, 15, 4645 3 of 43

A comprehensive classification and knowledge of these damage patterns, analysis methods,
and the corresponding measuring signals could evolve from a better understanding of
taxonomies or definitions designed and would be very useful for the development of new
taxonomies and the evolution of existing ones. The main contribution of this paper is
to develop an approach to create a unified taxonomy for damage diagnosis and for the
classification of damages in composite materials using the example of fibre metal laminates
(FMLs), followed by an extended use case demonstrating damage detection using X-ray
computer tomography (X-ray CT) data to elaborate different data analysis techniques to
amplify or detect damages.

We, therefore, attempted to develop a taxonomy method in view of the findings of
this study and literature review and from our own experience. The purpose of this paper is
to explore the characteristics of damage patterns in materials and their analysis methods,
leading to a taxonomy. Here, the authors do not intend to propose or present a final
classification method for classifying different damages and analysis methods but to explore
the different aspects that could lead to a taxonomy for the classification of different damage
patterns occurring within composite and hybrid materials and their detectability using a
suitable analysis method for a damage diagnosis.

With this paper, we want to foster a discussion amongst researchers, scientists, engi-
neers, and other practitioners about different damage patterns and their characteristics that
could provide the impetus to distinguish different damages and possibly further provide an
extension to the identification of these damage patterns with automated damage detection
using machine learning methods based on measurement results of non-destructive testing
(e.g., X-ray CT, ultrasonic testing).

2. Current State of the Art

The importance of taxonomy has been well recognised in recent decades. This section
highlights the history of the methodologies implemented and the current developments.

Various classification structures, such as hierarchy tree and faceted analysis [10], have
been used recently to develop taxonomies in knowledge fields, such as education [11],
psychology [12], computer science [13], and cyberattack [14]. Taxonomy has also been
implemented to manage information and data in maintenance management [15] and for
classifying business applications [16] and for smart grid predictive maintenance [17].

There have been numerous applications of taxonomy in recent times, and its im-
plementation is also evident in newly emerging fields of engineering, such as additive
manufacturing (AM) [18] and characterisation of engineering design problems [19].

Composite materials, such as fibre-reinforced polymers (FRPs) and fibre metal lami-
nates (FMLs), have wide applications in the aerospace industry due to their high reliability
and higher strength-to-weight ratio. The use of these lightweight materials has led to a
reduction in the overall weight of aircraft while being in confirmation with the required
levels of structural rigidity, further leading to an increased fuel economy. Since these mate-
rials have extensive applications in the aerospace and civil aviation industry, the detection
and evaluation of the different damage patterns occurring within these become extremely
crucial to avoid any possible catastrophic accident. Damages within a composite material
can occur at various levels, ranging from damages within the matrix, such as matrix cracks
and broken fibres, to failure of laminated elements, resulting in delaminations. The extent
of these damages basically determines the residual strength and repeated load life of the
material. The detectability and diagnosis of damage patterns are critical to the design
of damage-tolerant aerospace structures. Due to a variety of damage patterns occurring
within laminates, a comprehensive classification of these damages would enable the struc-
turing of the established knowledge and uniformity in terms of the definitions of these
damage patterns.

Besides formal and systematic classification and structuring of damages and their
physical patterns, the practical measuring and diagnostics of damages are fundamental.
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There is a wide range of measuring techniques that can be used to record damage features
contained in measuring signals. A damage diagnostics system consists of:

1. A measuring technique;
2. A set of analysis methods;
3. Data;
4. Experts.

Most damage diagnostic applications can be found in structural health monitoring
(SHM) systems used for monitoring mechanical structures [20,21] and structural dam-
ages [22]. Main measuring techniques are based on mechanical distortion (strain, stress,
forces), guided waves (based on ultrasonic waves), and acoustic emission [23]. Testing
methods can be classified into destructive and non-destructive techniques. In-depth in-
spection uses typically X-ray imaging and X-ray tomography [24]. However, detecting
damages by visual inspection in composite and hybrid materials is a challenge. For this
reason, automated and advanced damage detection methods are required either to aid
visual inspection (highlighting regions of interest or damage region candidates) or to per-
form fully automated damage diagnostics. With respect to the damage pattern taxonomy
introduced in this paper, this is, even more, a challenge. Therefore, there are basically the
following levels of (automated) damage diagnostics:

1. Detection of a single damage;
2. Classification of the damage;
3. Localisation of a damage;
4. Prediction of the cause of a damage;
5. Prediction of the development of a damage formation.

3. Taxonomy of the Damage Patterns in Composite Materials

The first step in the design of a new taxonomy is to clearly define the units of clas-
sification. In materials engineering, damages could be classified based on their mode of
occurrence, size, location, extent, and so on. For example, damages could be classified
as in-process or manufacturing-related defects or could be classified as in-service defects.
The initial classes established based on the mode of occurrence could further be subdi-
vided into multiple damage-specific classes, such as impact damages, damages due to
environmental influences, damage due to tensile or compressive forces, porosities or voids
defects, and defects due to stacking, based on different types. They could then be further
classified into sub-sub classes based on their size, location, pattern, and so on. A thorough
understanding of the subject matter is required to define clear taxonomy classes that are
commonly accepted within a field [25,26]. Once an existing definition of the domain or the
subject matter being examined is adopted or is clearly defined, the descriptive terms must
also be specified, which can be used to describe and differentiate subject matter instances.
To perform a comparison of subject matter instances, an appropriate description of these
bases, which can be viewed as a set of attributes that can be used for the classification of
the subject matter instances, is important [25,26].

Since taxonomy is a classification of different subjects, it could have multiple ap-
proaches, such as a tree or a hierarchy. Taxonomies leading to a single top class that
includes all the sub and sub-sub classes (i.e., a hierarchical relationship with inheritances)
are known as a hierarchy [10]. For example, consider the hierarchy of students in an
institution wherein the top-class student has two subclasses of graduate student and under-
graduate student. These subclasses can further be divided into sub-sub classes and so forth.
Mutual exclusivity property (i.e., an entity can only belong to one class) is ensured in a true
hierarchy, which makes it easier to understand and represent; however, it cannot represent
multiple inheritance relationships. In situations where it is necessary to include multiple
and diverse criteria for differentiation, the use of hierarchy is not suitable. It is mandatory
to define the classes and the differentiating criteria between the classes, including a good
knowledge of the subject matter to be classified for hierarchical classification [10].
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A tree classification structure is also similar to a hierarchy; however, it has no inher-
itance relationship between classes, and the common types of relationships between the
classes are generally part–whole, cause–effect, and process–product. An example of a tree
classification could be a country, its provinces, and its cities [10].

In order to classify different damage patterns occurring within composite materials,
the use of hierarchy is more conceivable to highlight all the sub and sub-sub classes, which
makes it easier to understand and interpret. The following taxonomy structure has been
prepared to accumulate the various kinds of damage patterns occurring under different
modes of occurrence (Figure 2). Based on the literature review, the major modes of damage
occurrences were found to be in service or during the operation and defects resulting
from manufacturing processes. These include damages occurring in civil infrastructures
and structures, such as aircraft and wind turbines. Since the proposed classification
categorises damages based on their mode of occurrence, here, these have been classified
as manufacturing-related damages and in-service damages. Manufacturing damages
include anomalies, such as porosity, prepreg defects, defects related to stacking, foreign
object embedment, delamination due to the cutting process, and thermal residual stresses
resulting from processing discrepancies. They also include such items as inadvertent edge
cuts, surface gouges, scratches, pits, and damaged fastener holes due to repairs.
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3.1. In-Service Damages
3.1.1. Impact Damages

Impact damages include various damage patterns. These patterns include matrix
cracking, delamination between the metal and prepreg plies, fibre breakage, metal cracks,
and so forth, and are also common to natural fibre composites under impact. The term
prepreg refers to a composite material with pre-impregnated bundles of fibres in a polymer
matrix (resin) that has been partially cured to be used in a laminate or sandwich structures.
These prepreg plies are then directly used in the autoclaving mould for the fabrication
of FMLs without the requirement of any additional resin. Damages to components, such
as core crush, impact damages, and disbonds, are quite often easy to detect with a visual
inspection. Due to their thin face sheets provided, these are significantly larger in extent and
are visible with the naked eye. However, there are impact damages that are often difficult
to detect with the naked eye as these damages are significantly smaller in size and often
do not show any signs of damage on the top and bottom skins of the composite material,
thus making them undetectable with a visual inspection. Such damages are often referred
to as damages resulting from low-velocity impacts. These damages have internal small
delamination, interlaminar debonding, and matrix cracking and could also be accompanied
by fibre breakages. Therefore, if these damages are allowed to go unchecked, they could
result in the growth of the damage due to liquid or moisture ingression into the core, thus
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further deteriorating the overall service life of the material [27]. The failure mode of a
composite material is basically a two-stage process. Damage is initiated in areas that require
low energy consumption, such as the matrix or interface failure, which then continues to
a second stage, which requires significantly higher energy, such as fibre breakage. In the
first stage, damage begins in areas or regions with lower strength, such as the matrix fibre
interface [28]. The interface between the matrix and fibres plays a significant role in stress
transfer. For instance, if the fibres are weakly held by the matrix, the composite starts to
form a matrix crack at relatively low stress. On the other hand, if the fibres are strongly
bonded to the matrix, matrix cracking is delayed, and the composite fails catastrophically
because of fibre fracture as the matrix cracks [29]. These matrix cracks could result in
intralaminar cracks, which, upon propagation through the prepreg ply, reach the interface
between the prepreg layer and the metal ply. At this point, they could give rise to another
damage pattern commonly known as delamination, which can be observed in the case of
laminated structures.

The further classification of these damages could be challenging as these damages
could be present in all the specimens and therefore make a classification based on the
presence or absence of these damage patterns difficult. For example, one might think that it
is reasonable to classify damage patterns based on various factors, such as impact energy or
impact velocities and so on. However, the extent of these damage patterns is indeed based
upon the configuration of the specimens. For an instance, two specimens with an identical
layup configuration but with different properties of the constituting elements, such as fibre
density, prepreg properties, and different layup elements, will experience different damage
patterns under identical impact parameters. Due to the differences in damage patterns,
these damages cannot be classified into one category or class. For a classification to be
based upon impact energies or impact velocities, the material configuration has to be made
constant as the extent of damages would differ according to the material configuration.
Figure 3 shows that a CFRP–steel (carbon-fibre-reinforced polymer and steel) composite,
so-called fibre metal laminate (FML), shows cross-sectional views before after low-energy
impacts. Damage patterns with different metal volume fractions are different, although the
impact parameters are kept constant.
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Figure 3. Carbon-fibre-reinforced plastic and steel laminate in a side view (a) and typical impact in
FML from impact with low energy (b).

Considering all the details of different material configurations will increase the com-
plexities for a suitable classification drastically. In order to make the material configuration
constant, the volume fraction of the constituting components, which could be besides
prepreg, prepreg fibres, and also metal sheets used in FML, has to be made constant. Their
volume fraction, orientation, properties, and so on have to be identical for facilitating a
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classification based on the variety of damage patterns occurring under a variety of impact
parameters. This would not lead to a generalised classification scheme, which is applicable
to a variety of materials with different configurations under consideration. Damage criteria
or damage extent classified as high-energy impact damage would fail to justify the damage
patterns occurring in thicker specimens under identical parameters as the difference in
layup configurations would lead to different damage patterns. The extent of damages
occurring under high-velocity impacts on thicker specimens would be significantly less
than that on thinner specimens. For the same impact energy, it was observed that different
fibre metal laminate structures showed significantly different damage patterns [30] (as
in Figure 3). Classification based on the quantification of these damage patterns is also
significantly difficult as the extent of these damage patterns is highly dependent on the
material configuration and specifications of the specimen being examined. Hence, it was
realised to draw similarities from approaches applied in medicine. In clinical practice, for
example, the patient’s illness severity is evaluated on the basis of the assessment of the
health conditions (e.g., serious illness or critical illness). The classification of a disease
or illness could also be based upon the severity of the symptoms. For example, fever or
headache could be classified as mild fever, moderate fever, or severe fever. Each individual
classified level could involve various symptoms, which could all be common in between,
thus making it significantly difficult to distinguish the different classes from each other
based on the presence and absence of these damage elements. To further facilitate the
classification, it therefore becomes crucial to distinguish these classes based on the severity
of the damages in a similar way to what is being practised in the clinical domain. In the
case of impact damages, these therefore could be similarly further classified into three
different classes—low-intensity, medium-intensity, and high-intensity damages—as shown
in Figure 4.
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Glass-reinforced aluminium, known as GLARE, is a fibre metal laminate (FML) con-
sisting of alternating S2-glass/FM94-epoxy composite plies and 2024-T3 aluminium layers.
Panels made of GLARE FMLs are hybrid composites that offer higher damage tolerance
characteristics and lower specific mass than monolithic aluminium panels, the reason
why they have gained interest from the aerospace industry and have seen widespread
applications, especially on the Airbus A380 fuselage and empennage-leading edges [31–33].
Figure 5 shows an X-ray CT image of a GLARE 3-4/3 specimen with impact damage
acquired using the GE Phoenix v|tome|x M system. Different signs of damage patterns,
which include interfacial debonding, matrix cracking, and delamination, are clearly visible.
Additionally, a glass insert below the outer aluminium layer of the backside of the FML was
used to demonstrate the damage behaviour of an integrated foreign object (e.g., a sensor)
during impact.
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be observed with X-ray CT. After an impact damage with a hemispherical impactor of
10 mm diameter, a plastic deformed dent with a depth of about 130 µm remains on the
impacted aluminium layer. The deformation continues over the entire panel thickness and
leads to bending and yielding of the backside aluminium layer and to debonding, especially
of the GF–Al interfaces beneath but also in the area of the partially broken glass insert.

The specimen in Figure 4 can be correlated and classified under the medium intensity
damage class with the characteristics of delamination between plies with signs of matrix
cracking, debonding, and visible damage on the back skin.

Figure 6 represents a specimen with a crack in one of its constituting aluminium layers.
Such metal cracks could be attributed to impacts and excessive loads, leading to intralami-
nar cracking in the metal layer as, initially, the loads are being carried by the metal layers.
Due to this, cracks occur earlier in FMLs than in monolithic materials, such as aluminium.
After a fatigue crack has initiated, fibre bridging retards the growth rate, substantially
increasing the lifetime to longer cracks compared with monolithic materials. These fatigue
cracks can eventually lead to delamination at the interface with fibre layers, which are listed
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as the most detrimental mechanisms. However, delaminations distribute high stresses over
a large area, which allows the bridging fibres to remain intact and contributes to the crack
bridging. Epoxies, which are very tough and have high delamination resistance, result
in premature fibre failure, further reducing the fatigue life, which has been commonly
observed in metals [31]. It has been reported in experimental studies that delaminations
only occur at interfaces between plies with different fibre orientations under impact [34].
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Figure 6. XRCT images of the GLARE specimen with aluminium breakage.

If two adjacent plies have the same fibre orientation, no delamination will be intro-
duced at the interface between them during impact [34].

A GLARE 3-3/2 specimen was fabricated with an artificial fibre breakage. The motive
was to replicate the actual fibre breakage occurring in a real-case scenario and identify the
detectability of such damages. However, since fibre breakage does not relate to any change
in the density of the local damaged region, its detectability with the X-ray CT methods is
quite challenging.

3.1.2. Excessive Loads

The application of excessive loads could lead to cracking within the laminates. These
cracks could be classified as interlaminar, intralaminar and translaminar cracks. Figure 7
shows a schematic diagram of these failure mechanisms.
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Interlaminar Cracks

Interlaminar cracks are often denoted as delamination, which consists of separation
between the constituting plies within a stacked laminate. Delamination can occur at the free
edges or cuts or at an exposed surface through the thickness. The laminate develops normal
and shear stresses through the thickness at the friction or traction-free surface, extending
a short distance into the laminate plane, leading to local cracking in the interlaminar
planes [29]. This kind of damage is considered to be the most critical failure mode in a
composite material. This is due to the lack of reinforcement fibres in the ‘through thickness’
direction within a composite material; hence, the ply interfaces are the weakest element
within it [35].
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Intralaminar Cracks

Intralaminar failure, which is also denoted as ply splits, consists of the formation
of in-plane cracks, which are parallel to the reinforcement direction. These cracks may
cut across the whole laminate thickness in worst-case scenarios. This usually occurs in
unidirectional laminates; however, in multiaxial laminates, ply splits can be effectively
bridged by using contiguous plies with different orientations from that where the split
initially occurred. These splits, upon propagation through the laminate thickness, reach an
interface, which can then lead to delamination, highlighting that there exists some level of
interaction between the intralaminar and interlaminar failure, which is highly dependent
on the configuration [35]. These cracks can form from defects within a given ply and can
grow, traversing the thickness of the ply, running parallel to the fibres in that ply within
laminates with different fibre orientations. The very same cracks are invariably referred to
as matrix microcracks, transverse cracks, intralaminar cracks, and ply cracks and are caused
by tensile loading, fatigue loading, thermal cycling, and changes in temperature [29].

Translaminar Cracks

Translaminar cracks are the ones resulting from the tensile loads and are associated
with the tensile or compressive failure of the reinforcement fibres. These cracks are through
the thickness cracks where the fibres are broken [27]. The initiation and propagation of
translaminar cracks depend on three different failure mechanisms, namely, fibre/matrix
debonding, fibre failure, and fibre pull-out, which is directly associated with the fracture
toughness. The values of fracture toughness associated with translaminar failure are usually
larger (two orders of magnitude) than the value featuring interlaminar cracks. Thus, these
translaminar cracks are often neglected in the design process and may still play a role in
the failure of notched composite elements [35]. These translaminar cracks could further be
divided into surface cracks and internal cracks based on their location within the composite
(Figure 8).
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3.1.3. Damages Due to Environmental Factors
Moisture Absorption

Since composite materials are being extensively used in multiple domains and have
numerous structural applications, these materials are often exposed to extreme environ-
ments. The environmental effects on such composite materials may pose a threat to the
structure and must be taken into consideration during the design process to avoid failure.
The susceptibility of these materials to environmental factors depends upon the compo-
sition and the configuration of the laminates; therefore, different materials have different
sensitivities to environmental factors. The effects of various environmental factors, such as
moisture and temperature, can limit the overall performance and deteriorate the mechan-
ical properties during service and the overall usefulness of the material. Such damages
are often significant in tropical and subtropical environments, which could cause cracking
of the material due to moisture entrapment and could further lead to rapid degradation
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by corrosion. Water, when absorbed by the matrix within a material, acts as a plasticiser,
further softening the material and reducing the properties of the laminates. This moisture
upon absorption can migrate along the fibre–matrix interface and could thereby affect the
adhesion, reducing the matrix-dominated properties, such as transverse strength, fracture
toughness, and impact resistance [36]. It has been reported that with increasing moisture
content, the ultimate tensile strength and elastic moduli decrease in 90-degree laminates,
which could be as high as 50–90% [37,38]. Hot and humid climate conditions may also
affect the performance of the composites and could be another factor responsible for the
moisture entrapment. Such defects could lead to a steep reduction in the tensile strength of
the material. Excessive and prolonged exposure of the material to harsh climatic conditions
could lead to erosion of the resin in areas closer to the surface and could lead to a reduction
in service life and could be catastrophic [36].

Biological Attack

A biological attack consists of a fungal or algal growth. The fungal growth can be
attributed to the presence of moisture or wet conditions, which act as a catalyst and lead
to marine fouling. However, this fungal growth is occurring at the surfaces, and it does
not seem to affect the mechanical properties of the composite and can be removed by
scraping. Usually, fungal growth initiates in semimoist conditions and in regions closer to
the water–air interface. A repetitive cyclic wetting and drying of the composites can lead to
a decrease in the strength of the material [36].

Surface inhibitors and surface chemicals can avoid fungal growth, therefore leading
to increased resistance of the material to environmental factors, further increasing the
service life.

Temperature Effects—Low and High Temperatures and Thermal Stresses

Elevated temperatures for a prolonged period can affect the overall properties of the
composite. With an increase in temperature, a loss of stiffness is observed due to matrix
softening. The susceptibility of the matrix to softening is dependent not only on the resin
but also on the layup. In the presence of moisture, an elevated temperature could also
lead to the oxidation of the fibres. Elevated temperature cycles (thermal cycling) between
extreme temperatures can also lead to macro- and microcracking within a composite,
resulting in a loss of strength [36]. Nanofillers could help combat thermal cracking. The
crack bridging effect of the composite material has been found to increase with the addition
of nanofillers, such as silicon carbide whiskers, to combat thermomechanical stresses [39].

Overheat conditions generated from a lightning strike could cause catastrophic dam-
age within a laminate. A lightning strike can vaporise the matrix resin and could further
create areas of delamination and fibre fracturing in various aircraft components, such as
ailerons, composite rudders, wings, and stabiliser tips [36].

Composites and hybrid materials are also subjected to cryogenic temperatures. Due to
extremely low temperatures, the composite material starts to behave as a brittle material,
leading to a decrease in the shear strength of the material. The temperature effects on the
mechanical properties of the composites can also be attributed to the different thermal
expansion coefficients of the constituting elements, leading to internal stresses. These
internal stresses change their magnitude with changes in temperature, producing matrix
cracking at very low temperatures in some cases.

A polymer used within a laminate has an operating temperature limit, which is slightly
below its glass transition temperature, where the polymer transits from a glasslike substance
to a rubbery state and suffers a substantial reduction in mechanical properties [36]. The
temperature effect on the fibre–matrix interface as strong as that of the fibre treatment and
resin properties has been reported [40].
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3.2. Repairs/Maintenance-Related Damages

Repairs and maintenance-related damages are damages occurring during repairs.
These mainly account for fastener holes, reworked areas, and other surface damages, such
as surface marks due to surface treatments using specialised chemicals and so on.

3.3. Manufacturing/Process-Related Damages
3.3.1. Foreign Object Embedment

To our knowledge, foreign object embedment refers to an embedment of a component
that does not constitute the laminate or composite and has a different material composition
than that of the composite or laminate. For structural health monitoring purposes, compos-
ite materials can also be fabricated with an integrated sensor network. A micro-oscillator as
an integrable sensor for structure-borne ultrasound has been investigated, where the sensor
response has been discussed in regard to its usability for SHM [41]. Inefficient integration
of these sensors could lead to delamination and debonding between different plies. It
could also lead to a lack of adhesion in localised areas where the sensors are located, thus
initiating a local site for damage propagation. Figure 9 shows an X-ray CT image of a
specimen with an integrated dummy sensor. This sensor was identified in the image due to
the difference in density in comparison with the laminate’s constituting metal and prepreg
plies. Prepregs are often covered with a transparent backing film at the bottom to protect
them from environmental influences or contamination. Improper removal of this film could
lead to an embedment of the film into the composite, leading to inhomogeneities and even
delamination, which could be catastrophic and pose a serious problem. Figures 10 and 11
show X-ray CT images of specimens with artificially created delamination using a Teflon
tape. These specimens were fabricated by embedding a Teflon tape into the laminate to
understand its detectability using X-ray CT methods. In Figure 11, delamination in the
dark region can be seen, which can be attributed to the embedment of the Teflon tape. This
tape resulted in a lack of adhesion in between the layers, thus resulting in delamination at
the edges, which intensified during the cutting process due to thermomechanical stresses.
These delaminations further lead to the entrapment of the metal fragments resulting from
the cutting process.

Improper handling could account for the embedment of a backing film and could
also leave greasy finger marks on the surface of the prepreg, which could accompany dirt
and so on. Common examples of manufacturing-related flaws include a contaminated
bonding surface or inclusions, such as a prepreg separation film or a backing paper that is
inadvertently left between plies during layup [27].
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Particle Entrapment

To the authors’ understanding, particle entrapment is another type of manufacturing-
related defect that occurs within the composite materials during the manufacturing process.
It is mainly a fabrication-related defect arising due to poor standardisation of the fabrication
process or techniques and often occurs during the fabrication of the component. In general,
particle entrapment could include various elements, such as dirt or any foreign particulate
substances getting embedded into the composite due to the fabrication in a dusty or
unfavourable environment, which could also include residues from the production process
(Figure 12). Such foreign particle inclusions are considered to be contaminants and can
pose a serious risk on the structural integrity of the specimen and deteriorate the overall
mechanical performance.

Such defects could also arise from the lack of training or fabrication skills of the
technicians in the fabrication department. Improper cutting processes could also lead to
the entrapment of the metal particles into the composite, leading to internal contamination.
The inclusion of foreign bodies in the matrix is another defect that happens during the
manufacturing process of the prepreg plies, which range from dust to metal particles
and other similar contaminants. Inadvertent (nonprocess) damage can occur in parts or
components during assembly or transport or during operation.
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The laminate cutting process could also result in some delamination around the edges.
This is due to the high thermal stress acting on the edges of the laminate during the cutting
operation. During this process, tiny metal particles or metal fragments resulting from
the process could get into the laminate itself, which could be detrimental to the overall
structure. Figure 13 shows X-ray CT images of the laminate with metal fragments getting
embedded into the laminate.
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Figure 13. X-ray CT images of a GLARE specimen with metal fragments from the cutting process
embedded into the laminate.

Human error is also a contributing factor to manufacturing defects. From the authors’
experience, manufacturing defects can also account for an improper stacking of the con-
stituting plies within a laminate, which is a result of human error. This could result in a
faulty layup configuration of the laminate or improper orientation of the plies. Human
error could also account for missing plies within a laminate.

Other sources of manufacturing defects can also include improper machining, us-
ing substandard material, inadequate tooling, mishandling, and mislocation of holes or
details [27].

3.3.2. Thermal/Residual Stresses
Wrinkle

The effect of manufacturing on polymer composites resulting in decreased mechanical
performance is basically due to ply/fibre waviness or wrinkling conditions. Fibre waviness
is known as a fibre deviation from a straight alignment and/or as a wave-formed ply in a
unidirectional laminate, which might be due to the detrimental manufacturing effect that
generally occurs during consolidation/curing and infiltration and/or as a result of the
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draping process. Fibre buckling or buckles are referred to as out-of-plane fibre waviness,
which happens due to stability issues when the ply undergoes compression loading [42].
For monolayer composites, the fabric deforms in and out of the plane, taking the shape of a
waved curve that can vary in length, number, and magnitude; such defects are known as
wrinkles. For multilayer materials, different radii between the inner layers and the outer
layers at the corner result in an inner layer buckling to cope with the compressive force [43].
This gives rise to another pattern of wrinkles that are seen in multilayer materials. The
properties of the wrinkles, such as number and magnitude, depend on the bending stiffness
of the fabric, where the magnitude of these wrinkles increases along with the bending
stiffness, which has also been proven [44,45].

Thermal effects during curing (differential thermal contraction) can lead to the devel-
opment of surface wrinkles, particularly if the layers are thin and lack out-of-plane support.
These surface wrinkles are of particular concern under bending, buckling, or compression,
as there is no lateral support on the wrinkled layers in these instances, and therefore, fibre
buckling is further promoted [46].

Blister

Blisters are another damage pattern commonly seen within laminates. These are
regions in the laminate that are identified by plies deforming out of the plane from the
laminate and are caused by the expansion of trapped gases within the laminate (Figure 14).
These could occur due to chemical attacks or localised heating of the matrix [27]. Moisture
trapped within a composite material during rapid heating can result in plasticisation,
hydrolysis, and blistering [47].
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The initiation of a blister depends on four principal criteria, which include steam
pressure, resin stress–strain behaviour, temperature, and initiation sites. Blistering occurs
when there is excessive moisture in the resin and when the temperature is high enough for
the moisture pressure to exceed the strength of the material. It follows that a temperature–
moisture concentration envelope may be developed that delineates conditions under which
blistering would not occur for the safe operation of the part [48].

3.3.3. Stacking Fault
Prepreg Folds

After the formation of the wrinkle curves, the application of the normal forces on the
stack of layers can result in these curve sides collapsing on the other, further multiplying
the thickness of the local area depending on the number of layers folded [45]. This leads to
a local increase in fibre volume fraction at the defect location in areas where these folds
are present. Within each prepreg fold, two additional plies are added over the laminate
thickness [49].
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Based on the location of the prepreg folds, these folds could further be classified as
surface folds and internal folds (Figure 15). Surface folds are the prepreg folds occurring in
the layers closer to the surface of the laminate, whereas the folds inside can be classified as
internal folds.
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3.3.4. Prepreg Defects
Prepreg Variability

Prepreg variability can be attributed to multiple reasons originating from the manu-
facturing or fabrication cycles, or it could also be due to various in-service factors, such as
thermal stresses, drape or layup over a surface, and so forth. A comprehensive classification
of different damages resulting from prepreg variability is shown below in Figure 16.
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Variability in the Reinforcement/Prepreg as Received

Variability in the prepreg reinforcement could also lead to non-conformance with the
required prepreg standard. Incoming materials can have variability and have a significant
and direct impact on the quality in terms of mass/unit area and, hence, the ply and laminate
thickness. It may also have a direct impact on void content provided that the process design
does not account for the variability of the incoming materials [50].
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Variability in terms of mass/unit area of the prepreg can also be noted especially in the
prepreg stored on a roller drum. Due to this, prepregs are often accompanied by a tendency
to have a higher mass/unit area on one side of the roll than the other, which is probably
associated with the stiffness and alignment of the rollers used in the prepreg process [50].
Fibre misalignment within a prepreg could also lead to localised regions with high-stress
concentrations, which could lead to a complete failure. These misalignments can most
likely be attributed to the wrapping of the prepreg onto a storage drum. As the path length
on the outside of the drum is longer than that on the inside surface, the fibres on the inside
must buckle to accommodate these path differences, thus leading to wrinkles. As the
prepreg is unwrapped and flattened, the extremely viscoelastic nature of the prepreg makes
it difficult for these wrinkles to be fully and immediately relieved, therefore making it
reasonable to assume that the fibre waviness seen in a flat prepreg can be largely attributed
to the rolling of the prepreg onto a storage drum after the manufacturing process [50].

Variability Due to Consolidation and Resin Flow

Resin-rich zones causing unwanted residual stress, deformation, and part-to-part
variation are regarded as the most common phenomenon in the liquid composite moulding
process [51–53].

The resin-rich zones are formed during resin transfer in the moulding process [54]. A
part is referred to as resin rich if too much resin is used. This adds weight to the composite.
A part is called resin starved if insufficient resin is applied during the wet layup process
or too much resin has bled off during the curing process. Such areas are indicated by
fibres showing on the surface and could lead to regions with nonimpregnated resin, which
could cause fibre misalignment and, as a result, significantly reduce the strength. A 60:40
fibre-to-resin ratio is considered optimum [27]. Resin insufficiency or oversufficiency could
also lead to porosities or voids within the material. Figure 17 shows X-ray CT images of
specimens with inhomogeneities in the prepreg resin fractions. The visible dark patches in
the images are the regions with resin being washed out using an acetone solution.
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Variability Due to Drape and Layup

The layup of the prepreg or the polymers with embedded fibres can result in different
defects arising from the draping of the composite onto a particular surface. If the tows or
bundles of the nominally straight fibres are draped over a surface with a simple radius, the
fibres on the inside and on the side closer to the surface will experience different loading
conditions [50]. The fibres on the outside will undergo tensile loading, and the fibres on the
inside are loaded in compression. This leads to the buckling of the fibres. This makes it
extremely critical to figure out the right geometry for the fabrication, which could lead to a
lower buckling of these fibres.

Variability Due to Residual Stresses/Thermal Distortion

Thermal stresses and excursions associated with the curing processes lead to internal
residual stresses in all the composite components [50]. A balanced set of stresses in the
fibres and matrix is crucial for the overall integrity of the specimen. The fibres and matrix
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have different thermal expansion coefficients, which could lead to stresses within a matrix
itself and could initiate fibre–matrix disbands. The coefficients parallel and perpendicular
to the fibre will lead to stresses between different plies with different alignments [50].
Non-homogeneity of the resin consistency and nonuniformity of the resin zones would
worsen the effects of residual and thermal stresses. Since a laminate consists of different
constituting elements comprising metal and prepreg plies, differences in stresses through
the thickness are also evident, leading to thermoelastic distortion resulting from differences
in in-plane and through-thickness thermal expansion coefficients.

3.3.5. Porosity and Voids

Void formation has several causes, such as mechanical air entrapment during resin
flow, which is identified as the main cause [55]; gas created during the chemical reactions
in the curing cycles [56], and nucleation of dissolved gases within the resin [57]. The
inhomogeneous fibre architecture results in nonuniform permeability of the fibre preform,
causing local variation in the resin velocity, leading to air entrapment. The capillary effect
prevailing at the microscale exacerbates the local velocity [58].

Voids are formed at three different scales: macro, meso, and micro. Voids in between
the fibres in a bundle or a tow are referred to as micro-voids, in between the tows as
meso-voids, and in larger zone of the preform (visible to the naked eye) as macro-voids.
Microscale flow at the tow level relating to the heterogeneous medium of the preform con-
trols the micro- and meso-void formation, whereas macroscopic or global flow considering
the preform as a homogeneous medium dictates the formation of the macro-voids. The
macroscopic and microscale flows interact with each other and are strongly coupled [59,60].

Voids have been called differently in the literature. For instance, a macro-void is
known “dry spot”; a meso-void as “interbundle”, “intertow”, or “channel” void; and a
micro-void as “intrabundle”, “intratow”, or “tow” void [59]. Figure 18 shows a schematic
of void formation in longitudinal and transverse flows in liquid composite moulding.
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moulding of a dual-scale fibrous preform, exhibiting a competition between the viscous flow and
the capillary flow—inclined arrows show the transverse impregnation of the tow; micrographs
showing [60] (b) micro- and (c) meso-voids inside and between tows, respectively [61].

4. Taxonomy of Features

Damage diagnostics and prediction are a complex system that consists of different levels:

1. Measuring principle and physical interaction mechanisms;
2. Sensor and signal measurement: physical variable→ signal;
3. Sensor data calibration;
4. Signal preprocessing;
5. Sensor data normalisation;
6. Data reduction;
7. Damage detection and localisation;
8. Damage characterisation.

Therefore, there are different features:

• DMF: Damage pattern features (as introduced in the previous sections) characterising
damages from the material science of view;

• BSF: Basic signal features (e.g., statistical features);
• IF: Intermediate features (e.g., frequency spectrum), signal codings, ROI markings,

local-point damage detection;
• SFD: Damage features in the signal; that is, any deviation of a signal from a baseline

(no damage) signal is a signal-damage feature (in time, spatial, or frequency domain),
typically low level and still ambiguous;

• OF: Output features of a (automated) diagnostic system, that is, damage features
referencing some subset of the DMF set;

• GOF: Geometrical features as a subset (e.g., damage position, damage shape).

Features as an output from a damage detector function are typically only indicators
that are weakly correlated to the damage patterns as a result of ambiguity, uncertainty, and
specialised detection models. For example, a binary output from a damage detector can
cover a broad range of damages and cannot distinguish between, for example, resin defects
and impact damages with delaminations.

5. Taxonomy of Measuring Signals and Methods in Composite Materials

There are three basic output features in the damage detection process: the existence,
location, and extent of the damage. Measuring signals are commonly used to discriminate
and compute these basic damage features. In addition to the consideration of the basic
classification of damages in composites, the automated detectability of the various damages
and defects by metrological methods is of great importance. Therefore, a classification
of various mathematical properties of measurement signals will be considered in this
section. Finally, the analysis methods with which damage and defect characteristics can
be inferred from the measurement signals are considered in the following section. Input
and output features must be distinguished. The input features are essential properties of
the measurement signal (the input variables x), which make it possible to infer the output
features (the output variables y), that is, the damage and defect features or any related
information in the temporal and spatial domain.

There is a measuring signal sm delivered by a specific measuring method m that is a
result of and depends on the physical interaction of a specimen under test d, some kind
of excitation signal se, and the environment E (not further characterised). The measuring
signal can be time dependent and is always a composition of a function of the physical
variables f (vx) to be measured and a noise signal g(vn). The physical variable can be of
primary interest (e.g., temperature) or of secondary interest. The activation sa can be
injected explicitly only for a specific measurement by an actuator or already be existing by
environmental excitations, for example, acoustic waves as a result of machine operation.
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Some physical variables are statistical aggregates (e.g., material temperature, moisture, and
pressure). These variables can be measured directly without excitation.

There is a known or unknown model M that defines the relationship of the excitation
signal se and the resulting measuring signal sm with some parameters p (e.g., damages,
defects, or other environmental variables).

sm = sm(vx, vn, E, t) = f (vx) + g(vn)
M(m, d, p, E) : se → sm

(1)

Most physical effects in damage diagnostics are related to wave interaction (e.g.,
guided ultrasonic waves (GUW) or light and X-ray waves). The measuring signal is
dependent on the wave interaction with the specimen material and any kind of damage.
This means that the signal sm contains material and damage-relevant features in the time
or spatial domain. Common signal classes with respect to physical effects and measuring
techniques are summarised in Figure 19. There are basically two classes of signals in the
time domain and four classes in the spatial domain (dimensionality) that are important for
the application of the following analysis and diagnostic methods:

1. Scalar and time-independent (stationary) signal variables s (e.g., temperature or
light intensity);

2. Vectorial time-independent (stationary) signal variables s (e.g., strain or stress);
3. Two-dimensional time-dependent (stationary) matrix signal variables s = s(x,y) (e.g.,

an X-ray or light image);
4. Three-dimensional time-dependent (stationary) matrix or tensor signal variables

s = s(x,y,z);
5. Time-dependent signals of classes 1–4 (i.e., s = s(t)).

Materials 2022, 15, x FOR PEER REVIEW 21 of 44 
 

 

3. Two-dimensional time-dependent (stationary) matrix signal variables s = s(x,y) (e.g., 
an X-ray or light image); 

4. Three-dimensional time-dependent (stationary) matrix or tensor signal variables s = 
s(x,y,z); 

5. Time-dependent signals of classes 1–4 (i.e., s = s(t)). 

 
Figure 19. (Top) Coarse overview of different measuring signal classes with respect to their physi-
cal interaction effects. (Bottom) Common derived signal features relevant for damage diagnostics. 
Shown are the dimensionality of the data and the dependent variables (US: ultrasonic; NIR: near-
infrared). 

Typical examples of measuring techniques used in damage diagnostics are: 
Guided Ultrasonic Waves: Using ultrasonic signals with active excitation, damages 
modify wave propagation; signals are time-resolved vectors of real or complex val-
ues, as a response of the excitation signal; 
Light Microscopy: Using visible, near-infrared, or polarised light, signals are 2D re-
al-value images; damages modify the surface structure of material slices; 
Interferometry: Using laser light, signals are 2D real- or complex-value images; 
damages modify surface geometry; 
X-ray Imaging: In-depth imaging (typically in transmission mode) of materials us-
ing X-ray waves in the energy range of 30–100 keV; signals are 2D real-value imag-
es or 1D z-profiles; 
X-ray Tomography: Signals are 3D real-value images. 
Sensor signals from a measurement contain information about damages (signal-

damage features) that must be typically extracted by using numerical, analytical, statisti-
cal, or ML methods. With respect to signal images, there are different geometrical fea-
tures to be distinguished, basically dividing the feature space into one-, two- and three-
dimensional feature objects (1D, 2D, 3D): 

Figure 19. (Top) Coarse overview of different measuring signal classes with respect to their physical
interaction effects. (Bottom) Common derived signal features relevant for damage diagnostics. Shown
are the dimensionality of the data and the dependent variables (US: ultrasonic; NIR: near-infrared).



Materials 2022, 15, 4645 21 of 43

Typical examples of measuring techniques used in damage diagnostics are:

Guided Ultrasonic Waves: Using ultrasonic signals with active excitation, damages modify
wave propagation; signals are time-resolved vectors of real or complex values, as a response
of the excitation signal;
Light Microscopy: Using visible, near-infrared, or polarised light, signals are 2D real-value
images; damages modify the surface structure of material slices;
Interferometry: Using laser light, signals are 2D real- or complex-value images; damages
modify surface geometry;
X-ray Imaging: In-depth imaging (typically in transmission mode) of materials using X-ray
waves in the energy range of 30–100 keV; signals are 2D real-value images or 1D z-profiles;
X-ray Tomography: Signals are 3D real-value images.

Sensor signals from a measurement contain information about damages (signal-
damage features) that must be typically extracted by using numerical, analytical, statistical,
or ML methods. With respect to signal images, there are different geometrical features to be
distinguished, basically dividing the feature space into one-, two- and three-dimensional
feature objects (1D, 2D, 3D):

1. Single or a few spatially extended but spatially limited and larger feature regions with
a characterised shape, for example, a circle or a triangle as a result of localised damages;

2. Single or a few spatially extended but without a characteristic shape, as a result, for
example, from layer delamination;

3. Multiple smaller spatially extended feature regions not clearly bound;
4. Single straight and extended lines or rectangles with a high width-to-height ratio,

characterised by length, width, and angle, as a result of, for example, cracks or
fibre breakages;

5. Multiple shorter lines or rectangles with a high width-to-height ratio, as a result of,
for example, cracks or fibre breakages;

6. Speckles, that is, small statistically distributed spots without a specific geometry;
and finally,

7. Noise.

In a damage diagnostics system, there are physical sensor variables that are charac-
terised by an immediate result of a measurement by measuring a physical variable. Besides
physical sensors, there are virtual sensors that are aggregates or transformations of physical
sensors or other virtual sensors, creating intermediate features that are correlated with dam-
age features. Examples are statistical aggregates and transformations, for example, from
time to frequency space. These transformations can create stationary variables from dy-
namic (time-dependent) variables. Furthermore, transformation can create “translation and
rotation” invariant variables. For example, a time-dependent signal can be characterised
by a dedicated but possibly unknown start and end time, important for some damage
diagnostic methods. After time-to-frequency transformation, this feature is removed (and
an additional constant signal offset), and the signal is normalised. Signal offsets can be
removed by high-pass filters or gradient transformations.

In the following sections and the use-case section, measured signal data are han-
dled always as multidimensional data volumes. Each element of a data volume V is a
scalar value.

6. Taxonomy of Analysis Methods

A single measurement of a signal sm is considered one experiment and represents one
row r in the data table D that is used to derive damage features from the measurements of
a specimen under test, for example, in a destructive or non-destructive mechanical test.

The analysis methods can be basically classified in:

1. Analytical methods based on physical, material, or structural models used for mod-
elling the relationship between the activation signal, the measuring signal, and
the damage;
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2. Statistical methods;
3. Regression methods;
4. Classification methods;
5. Correlation methods (clustering).

Learning of damage feature extraction models from data is mostly a minimisation
problem fitting a model to a given data set (data-driven modelling).

Analysis (i.e., damage diagnostics) methods can be applied to the entire sensor data
set (global context), to parts of the sensor data set (segment context), or to small extracted
pieces (local context). An important aspect in damage diagnostics is the invariance with
respect to translation and rotation, simply viewed in a geometrical context. For example,
a time shift or offset of a measuring signal may have no influence on the output feature
detection. Considering images, a damage classifier must be insensitive to the location of
the damage signal feature contained in the image. Previous transformations can reduce or
eliminate the effect of translation or rotation in time and geometrical space, for example,
by using time-to-frequency transformations, such as the Fourier transform. However, any
signal transformation typically results in a loss of information.

6.1. Statistical Methods

It is assumed that there is a measuring signal s(i) that consists of a series of single
values si for i = 1, 2, . . . , N. Statistical methods can deliver signal aggregate feature variables
that are related to damages and defects. Common statistical aggregate variables are:

• Mean s_, minimum, and maximum signal values smin and smax and their positions
imin and imax;

• Standard deviation of signal value distribution:
• Skewness of signal value distribution;
• Correlation coefficients between two variables (data and time series) or autocorrelation

of one variable;
• Signal energy E(s) of the L1 norm (area of the signal relative to another curve or line

g(i), a constant g = const):

EL1(s) = 1
N

N
∑

i=1
|s(i)− g(i)|

EL2(s) = 1
N

N
∑

i=1
(|s(i)− g(i)|)2 = MAE(s, g)

EL3(s) = 1
N

N
∑

i=1
(|s(i)− g(i)|)3

(2)

Note that the absolute value of the difference s-g is accumulated always. If gi 6= 0
and if there is a set S = {sj} of sensor signals representing different states (e.g., measured at
different spatial positions), the higher-order signal energies L2 and L3 can be used to extract
relevant features by relative comparison and further amplification of the signal energies.
This method will be applied to CT image volume data, discussed in Section 7. The second-
order signal energy is equivalent to the mean average error (MAE) if gi is a generator or
reference data series, for example, retrieved by a baseline measurement. MAE is used in
anomaly detectors based on, for example, autoencoders, discussed in Section 7 too.

Statistical aggregates from sensor data series are translation invariant; that is, the
aggregate measure is independent of a longitudinal offset.

6.2. Pattern Recognition and Vision Methods

Regarding multidimensional measuring signal data, vision and pattern recognition
algorithms can be used to extract suitable intermediate or damage features. Typical algo-
rithms are kernel-based transformations (filters) aiming to intensify specific geometrical
features in images. An image can be treated as a multidimensional pixel volume. There
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is no limitation on the dimension of such a pixel volume. The following list summarises
commonly used algorithms:

• Kernel-based gradient and other edge filters for edge detection [62]:

• Soebel filter (gradient kernel ([1 2 1][−1 0 1]));
• Canny filter (multistage iterative, Gaussian filter kernel for noise suppression);
• Sharr filter (([3 10 3][−1 0 1]))

• Corner detection algorithms [62]:

• YAPE06 (Laplacian- and min-eigenvalue-based feature detector);
• YAPE (yet another point extractor);
• ORB (oriented and rotated BRIEF);

• Object (shape) detectors:

• HAAR cascades object detector;
• Brightness binary feature object detector;

• Point cloud algorithms to find point clusters forming spatially limited geometrical
regions and shapes:

• Density-based clustering (DBSCAN);
• k-Nearest neighbor (kNN).

6.3. Machine Learning Methods and Models

An ML task consists of four parts:

1. Data D (from experiments, measurements, simulations, analytical models, numerical
models) with input variables x and output variables y;

2. Labelled data: D = D(x,y);
3. Unlabelled data: D = D(x);
4. A model F(P), which is either a function, a directed acyclic graph (tree) whose nodes

are related to input and output variables, an undirected graph whose nodes are
related to data samples, or a functional directed acyclic or cyclic graph whose nodes
are related to functions;

5. A parameter set P consisting of static and dynamic parameters, that is, P = Pstatic ∪ Pdyn;
6. An algorithm that minimises the output error of |F(x)−y| with respect to the data

or a training subset Dtrain ⊂ D by changing the dynamic (and sometimes the static)
parameter variable set.

The ML methods can be classified with respect to the input and output variable category:

ST: Static/stationary data;
DN: Dynamic data (time-dependent or data series);
NUM: Metric and numerical data that can be interval and rationally scaled;
CAT: Categorical data;
DIM: Dimension (scalar, vector, matrix).

The analysis of time-dependent or ordered series data requires translation and rotation-
invariant methods. A time series is characterised by its fundamental information content, a
start and endpoint, and scaling. Only the fundamental information content are relevant
signal features, not any time shift (translation), offset, or scaling (rotation) of the signal.
Some methods are insensitive to translation, rotation, and scaling issues (CNN). Mostly
signal transformations are applied to the raw input signal data, for example, time-to-
frequency transformations.

The following methods are suitable for damage diagnostics and analysis:

DT: Decision trees;
RT: Regression trees;
CART: Classification and regression trees;
ICE: Decision trees with interval arithmetic and ε noise margin intervals:
SVM: Support vector machines;
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ANN: Artificial neural networks;
FNN: Feed-forward neural networks;
RNN: Recurrent state-based neural networks with long short-term memories (LSTM);
AE: Autoencoders (typically implemented with FNN or RNN);
VAE: Variational autoencoders (typically implemented with FNN or RNN);
CNN: Convolutional neural networks;
GAN: Generative adversarial networks (with discriminators);
PCA: Principal component analysis, aiming to identify independent input variables,
perform data alignment, and provide data reduction;
SOM: Self-organising maps used for feature clustering analysis and predictive clas-
sification of input data x (with optional output labels y), typically a neural network,
Kohonen maps;
kNN: k-Nearest neighbor graph used for feature clustering;
GMM: Gaussian mixture model is a clustering method that preserves the geometric
properties of the input space [21];
GA: Genetic algorithms;

Hybrid methods combine different methods either for optimising the parameter search
(solving the minimisation problem), including genetic algorithms (GA), grid search (FS), or
particle swarm optimisation (PSO) [20], or for fusion of methods, which are used to increase
inference accuracy and robustness. The following training methods are distinguished:

SUP: Supervised training that requires labelled data sets {〈x,y〉};
USP: Unsupervised training that requires no labelled data sets {〈x〉};
HYB: Hybrid methods (e.g., combining RF with ANN [63]);
AGL: Agent-based learning (including reinforcement learning), typically used for
hyperparameter space exploration;
DML: Distributed and ensemble learning [64].

Typical measuring (input) signals are:

US: Ultrasonic waves;
XRAY: X-ray;
ACE: Acoustic emissions;
LIGT: Visible or NIR light;
T: Temperature;
MOI: Moisture;
PRS: Pressure;
STR: Strain (or displacement);
POW: Power (light, thermal, . . . );
TIME: Time;
POS: Geometrical position;
FEAT: Any preprocessed features (e.g., of a signal).

Typical output signals are:

DAM: Damage class;
POS: Geometrical position;
ROI: Region-of-interest;
CLA: Generic classification;
FEAT: Coded feature vector (intermediate signal for further processing);
TIME: Time (e.g., lifetime prediction);
FREQ: Frequency;
MAE: Mean average error (e.g., in conjunction with AE methods).

Some signal classes can be input and output variables too. Commonly used analysis
methods are summarised in Figure 20.
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6.3.1. Classification

Classification aims to map measuring signal data on damage classes assuming that
the signal data contain relevant information to solve the classification problem with a
reasonable accuracy. That can include the binary classification {DAM, DAM}, too, see
Table 1.

Table 1. Stationary (STAT) and dynamic (DYN) data matrix.

x y Training Models/Methods

CAT DAM, CAT SUP DT
1D; NUM; STAT: US, T, M, PRS, STR, DAM, CAT SUP SVM, DT, FNN

(1D), 2D, 3D; NUM; STAT: US, XRAY, CT DAM, CAT SUP CNN [65]
(1D), 2D, 3D; NUM; STAT: US, XRAY DAM, CAT USP AE, CNN-AE, GAN [66]

1D, 2D; NUM; DYN: US DAM, CAT SUP LSTM-RNN
1D, 2D, 3D; NUM; DYN: US, XRAY, ACE, CT DAM, CAT SUP CNN, SVM [20]

6.3.2. Regression

Regression typically aims to predict the spatial position of a damage, an ROI, or the
strength of a damage, shown in Table 2.
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Table 2. Stationary (STAT) and dynamic (DYN) data matrix.

x y Training Models/Methods

1D; NUM; STAT: US, T, M, PRS, STR, FEAT DAM, POS SUP SVM, FNN
(1D), 2D, 3D; NUM; STAT: US, XRAY DAM, POS SUP CNN

1D, 2D; STAT: US, FEAT DAM, POS SUP FNN
DIM1, DIM2; NUM; DYN: US, GUW, ACE DAM, POS SUP LSTM-RNN [64]

6.3.3. Clustering

Clustering is basically used to identify groups of similar features in data sets, shown
in Table 3. A cluster is a group of data rows in the data table that pose similarities.
Different clusters relate commonly to different features. The features are autodetected and
autoassigned. Analysing each individual cluster can deliver the dependency to the input
variables x or a correlation to output variables y (e.g., a damage class). A combination of
clustering with additional feature extraction methods (e.g., PCA) can improve the clustering
quality and explainability.

Table 3. Stationary (STAT) and dynamic (DYN) data matrix.

x y Training Models/Methods

1D, 2D, 3D, NUM; STAT: XRAY, US GEN FEAT USP SOM, kNN [22]
FEAT: ACE DAM FEAT USO kNN, GMM, SOM [21]

1D, 2D, 3D, NUM; DYN: XRAY, US, ACO FEAT USP SOM [23]

Clustering typically maps a high-dimensional data input space on a lower-dimensional
output space providing a reduced geometrical map (but not necessarily preserving input
data geometries such as time).

7. Use Case: Non-destructive Diagnostics with Computer X-ray Tomography (CT) and
Automated Damage Detection

In this section, selected experiments with X-ray CT data and FML plates are performed
using and comparing classical vision-based algorithms and ML. All experiments were
performed with the PSciLab software framework [67].

Basically, five methods are applied to the CT data:

1. Kernel-based transformations for edge amplification (Canny and Soebel filters) and
feature marking;

2. Unsupervised training of autoencoder for anomaly detection and spatial feature marking;
3. Supervised training of state-based damage classification using LSTM networks;
4. Supervised training of state-free damage classification based on CNN;
5. Unsupervised training of self-organising (Kohonen) maps for spatial region clustering.

All five methods are applied to z-slice signals extracted from the original CT data
volumes, introduced in the next sections. Method 3 was already successfully applied to
GUW data for the detection of damages in CFK plates [64]. The application to CT data
did not show any suitable results; therefore, the method is not described here. For details,
see [64].

7.1. Visual Inspection

The analysis of specimens described in the next section was performed with volume
and slice viewers based on the vtk.js visualisation framework. The specimens are multi-
layer plates consisting of a sandwich structure. The different layers can be viewed and
separated in a cross-section volume or slice view. Damages cannot be identified clearly
with volume viewers, except for spatially extended delaminations, even with intensity
interval slicing. The slice view can be used to find most of the damages, such as holes,
embedded pseudo defects, or cracks, but delaminations are hard to identify in slice views.
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The following section shows examples of volume and slice views of the different specimens
under investigation.

Depending on the resolution of the CT scan, diffraction and scattering patterns (e.g.,
due to simultaneous multispecimen measurements), contrast, and post-transformations, the
substructure of the fibre layer can be visible and detectable or is just noisy homogeneously.
Any substructure and intensity patterns in the CT images make the visual and automated
damage detection more difficult.

7.2. Specimen and CT Image Volumes

Different specimens were tested, which are summarised in Table 4.

Table 4. Specimen.

Name Layers Defect

A: GLARE 532-33.2-1-C1 3 Al, 2 PREG Sharp spatially limited circular resin defect in the centre
B: GLARE 332-31.2-1-C1 3 Al, 2 PREG Fuzzy spatially limited circular resin defect in the centre
C: GLARE 332-31.3-1-C1 3 Al, 2 PREG Fibre layer crack
D: GLARE 532-33.1-1-C1 3 Al, 2 PREG Full layer delamination with embedded pseudo defect
E: GLARE 543-Impact-C1 4 Al, 3 PREG Impact damage

F: GLARE 543-Baseline-C1 4 Al, 3 PREG No damage

Some examples of X-ray CT volume and slice visualisation are shown in Figure 21
for specimens A–D. All CT data for specimens A–D pose low spatial resolution (50 µm
voxel size), and the images are of low quality due to simultaneous multispecimen measure-
ments in the same chamber, resulting in high-intensity variations, gradients, and diffraction
patterns. The CT data for specimen E pose a higher resolution (10 µm) with a higher homo-
geneity of the measured X-ray intensity. Figure 22 shows the volume and slice visualisation
of the high-quality CT data specimens E and F. The fibre structure can be clearly identified,
which is a challenge for visual and numerical damage and defect detection.

7.3. Geometrical Profiling and Z-Signals

CT image volumes are three-dimensional images composed of a set of two-dimensional
images (image plane) reconstructed from ray imaging (e.g., X-ray or magnetic fields). The
orientation of CT data volumes in space can be arbitrary, but in materials sciences and for
damage diagnostics, the image plane is preferred to be either parallel to the x–y coordinate
system axes (top–down view) or parallel to the x–z axes (cross-sectional view).

Most damages and defects have a characteristic z-depth extension and pattern. There-
fore, we will consider x–y plane volumes (top–down slices). Classical computer vision
algorithms are applied to the entire x–y slice images, image segments, or subvolumes of
the image volume. However, ML algorithms should be applied to low-dimensional data
and must be translation and rotation invariant. For this purpose, we transform the x–y–z
image data volume in z-signals by a z-profiling method (i.e., in a set of signals Z = {z(x,y)})
representing the top–down depth structure of specimens under test (e.g., a plate). Further
transformations, such as averaging, will reduce a geometrical z-slice to a single scalar
depth-resolved z-signal (a data series) at a specific centre position (x,y), shown in Figure 23.
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Figure 23. Z-slicing and transformation of 3D CT image data volumes to 2D matrix of z-signals.

It is assumed that single z-profiles contain damage features. For example, delamina-
tions will stretch the signal significantly in a region (z1,z2), typically with an additional
signal distortion changing the spectral features of the z-signal too. Cracks will change
the z-signal with respect to geometrical and spectral features as well, depending on the
measuring technique. A crack typically changes the density-material distribution and
should result in an intensity change in X-ray images. Impurities (additional material (e.g.,
dust, fibre splinter, fluids)) will also have an impact on the z-signal but depending on the
orientation and thickness of the impurity, only on a small segment of the z-signal, thus
making the detection difficult.

The analysis of z-signals will not always deliver damage features immediately, but
they can be used to create a two-dimensional feature marking applied finally to geometrical
analysis methods, such as, point clustering and object recognition based on point clouds.

The Z-volume is computed from the original (reconstructed) X-ray CT data. The
volume Vim has R rows, C columns in each image x–y plane, and D images. Each z-slice is
orthogonal to the x–y plane orientated parallel to the specimen surface (in this case, the
plate surface). Rotation of the image volume can be required to achieve this alignment.

To reduce the data size and to apply smoothing and denoising of the raw image data,
a z-slice vector is computed from a region of single neighbouring z-pixels by using kernel-
based transformations (e.g., averaging), that is, by the fusion of single-pixel slices of the
original volume V at a specific position (x,y) with a radius r. The z-slice vector represents a
cylinder or sub-cube of the entire image volume along the z-axis.

V = V(x, y, z) ∈ RR×C×D

sz(k, l) = 1
(1+2r)2

i=k+r,j=l+r
∑

i=k−r,j=l−r
V(i, j, ∗), ∀k ∈ {r..C− r}, l ∈ {r..R− r}

(3)

7.4. Signal Features

The main expected signal features are geometrical and intensity variations of the
z-signal due to damages, such as delaminations, bonding defects, and impurities by em-
bedded pseudo defects.

7.4.1. Geometrical Features

Some of the proposed analysis methods deliver intermediate feature markers, and
some directly deliver a damage feature marking. Intermediate and direct damage feature
images can finally be processed by geometric shape recognition and fitting. For example,
cracks will pose some kind of line or line segment shape, delaminations are large rectangular
or triangular shapes, and local debonding or embedded impurities can pose circular or
elliptic shapes.
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7.4.2. Z-Signal Energy and Energy Maps

The z-signal energy of all postprocessed CT data volumes was computed to compare
the signal energy feature map with other feature marking approaches. The constant base-
line g = s0 of the signal is the average level of the entire image volume. Most spatially
extended defects and damages can be detected by the signal energy feature map. To com-
pare energy feature maps, the signal-to-noise ratio (SNR) of damage regions to background
noise can be computed.

E(x, y)L1 = 1
N

N
∑

i=1
|s(x, y, i)− s0|

E(x, y)L2 = 1
N

N
∑

i=1
(|s(x, y, i)− s0|)2

E(x, y)L3 = 1
N

N
∑

i=1
(|s(x, y, i)− s0|)3

s0 = 1
W·H·N

W
∑

x=1

H
∑

y=1

N
∑

z=1
sx,y,z

SNR = µs−µn
σn

µs =
1
n ∑

i,j∈Bs

E(i, j)

µn = 1
n ∑

i,j∈Bn

E(i, j)

σn =
√

1
n−1 ∑

i,j∈Bn

(E(i, j)− µn)
2

(4)

The z-signal energy map for specimen E is shown in Figure 24 for different norms (L1,
L2, L3). The higher the norm, the lower the background noise of the PREG layers, and the
damages and a label glued on the top of the specimen surface are amplified. Although
the average SNR for L1, L2, and L3 of the impact damage (circular area) relative to the
background (selected rectangular area without damage) is decreasing from 5.4 to 4.6 to 3.2,
the application of a Soebel or Canny edge detection filter [62] to isolate and extract damage
patterns will be more robust with less false predictions due to the smoother L3 map.
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7.4.3. Signal Transformations

Typical signal transformations that can be applied to the z-signal data are:

1. Gradient or deviation of the input signal;
2. Frequency transformation (DFT/FFT);
3. Discrete wavelet transformation (DWT);
4. High-pass, low-pass, or band-pass filters.

7.5. Anomaly Detector with an Autoencoder

An anomaly detector is an intermediate feature marker. The features can be related
to desired damage features. An anomaly detector can be based on any ML model that
is capable of reducing an input vector x to an output vector χ, representing x as a code.
For example, transforming a signal from the time into the frequency domain is a coding
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too. Decoding can reconstruct the original input signal. However, in contrast to reversible
coding, an anomaly detector should rely on irreversible coding that cannot reconstruct the
original signal exactly, but close enough to minimise the error |s*−s| of the reconstructed
signal. Autoencoders (AE) are typical models that are capable of coding an input variable x
(typically a vector or a data series) on a reduced code χ with a model function C(x):x→ χ.
After decoding with an inverse function D(χ):χ→ x*, x is reconstructed with a small error
ε = |x*−x| ~ 0. There is the assumption that the code z represents the relevant features of
the input x, but nothing more. If there is a modification of the input x due to an external
effect not present in the original input (e.g., caused by damage changing x in any way), the
AE is not able to reconstruct x, and the error ε 6= 0 is increased, marking this input as an
anomaly sample.

The basic architecture of an AE-based anomaly detector is shown in Figure 25. Here,
it is assumed that the input signal s(z) is a data series that is applied sequentially to the
AE. The mean average error (MAE) is accumulated. An artificial neural network (ANN)
with a combination of pure functional neurons with a sigmoid transfer function and state-
based long short-term memory (LSTM) cells is used. The LSTM cells compose the coder
and decoder stages. During unsupervised training using a classical gradient descent
backpropagation, the error |s*(z)-s(z)| is minimised by updating the dynamic parameter of
the network (weights of edges, bias, gates). Gaussian noise is added to the input signal to
prevent learning the identity function, which is a typical issue in AE training and oversized
AE networks.
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Figure 25. Signal anomaly detector based on a sequential AE using state-based LSTM cells with
coding and a decoding stage. The z-signal data series is passed to the AE sequentially, and the error
is accumulated.

Experiments were carried out with specimens A, B, E, and F (see Table 4). The training
was performed with selected x–y segments considered as a baseline structure. Specimens
A and B were partially damaged by preparation with some sign of delamination. A true
baseline does not exist. Specimen E with the impact damage poses some smaller edge
areas featuring an unmodified baseline structure. The AE typically learned the average
z-signal in the training region. Due to the more complex layer structure of E/F and the
proper start and end image alignment, the AE learned basically an unstructured profile
related to the thickness of the plate (see Figure 26a). The layer structure of specimens A/B
is simpler with a higher contrast. Therefore, the AE learned the averaged X-ray intensity
profile (see Figure 26b). A second experiment was performed using specimens E and F. The
training was performed with the baseline specimen F, and the prediction was performed
with data from E. Finally, absolute z-signals and deviation (gradient) of z-signals were
tested and compared. The gradient z-signal can be reconstructed with high accuracy, but
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without a benefit for damage feature marking. Different symmetric architectures were
evaluated, with one neuron at the input and the output and one or two LSTM layers (with
and without inner layer memory-to-memory connections) in the coder and decoder stage.
Suitable AE layer structures were identified with (1,15,3,2,3,15,1) and (1,9,3,2,3,9,1) layer
structures (with node types (N,LSTM,LSTM,N,LSTM,LSTM,N).
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Figure 26. Original (0) and AE reconstructed (1) z-profile signals: (a) specimen E (damage-free
region); (b) specimen E nearby impact damage; (c) specimen A, absolute z-signal; (d) specimen A,
deviation of z-signal.

Results of AE-MAE feature maps are shown in Figure 27. The impact damage SNR of
the AE-MAE-derived feature maps was for T/P = E: (a) 7.7, (b) 43.5, and (c) 7.4, and for
T = F/P = E: (d) 8.8, and (e) 4.6, which is mostly higher than the SNR achieved by the
simple energy maps.

Moreover, the surface label artefact was suppressed significantly by some AE. The
different results from (a–c) are based on different AE network layer structures and different
training with respect to randomness (in the initialisation of the network parameter) and
different training epochs. AE solutions with high and low damage feature contrast will
arise and vanish suddenly during the training process. The AE training is highly unstable
with respect to the SNR and the core training error is no suitable measure for the quality
and contrast of the post-MAE feature marking.
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Figure 27. AE-MAE feature map of reconstructed AE X-ray CT data of specimen E: (a–c) training and
prediction using E; (d,e) training with F, prediction with E; in brackets: AE network layer structure.

The training of the AE requires a large number of epochs, i.e., repeated iterations over
the z-signal training data set. In this case, the training set consisted of about 500 z-slice
signals randomly chosen from the entire training region. Typically, 1000–10,000 epochs
with a low learning rate of about 0.01 were required. Multiple models were trained in
parallel (distinguished by their different random initialisation of the network parameters),
and the best models with respect to SNR were selected.

The AE-based anomaly detector is still not suitable to detect damages and isolate the
spatial extension clearly, but in can be used to identify Regions-of-interest (ROI), which
can be combined and further investigated by other methods (following) and to improve
measurements by a zooming approach.

7.6. Convolutional Neural Network Classifier

The second architecture that is investigated in this work is a supervised trained
damage classifier based still on the z-profile signals from the previous sections. A z-signal
is considered here as a one-dimensional image with signal values represented by image
pixels. One main issue in damage feature detection in CT image data is the unknown
geometrical position, and therefore the damage feature position in a z-signal can be at
any position. Furthermore, the z-signal can be shifted or cropped due to improper image
transformations and measurements. Applying sliding convolutional transformations to
an image provides translation and rotation-invariant feature extraction. This is the main
feature of a Convolutional Neural Network (CNN) based on sliding sub-image kernel
transformations (filters) and classical neurons connected to the filters. In contrast, to the
unsupervised anomaly detectors based on an AE architecture, a classical CNN requires
training samples with labelled damaged regions (see Figure 28).
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Figure 28. Z-profile signals as 1D images as input for a CNN damage classifier (ND: no damage class;
D1: damage 1; D2: damage 2; and so on).

The CNN classifier was trained and evaluated with specimen A with a set of z-signals
at different x–y positions. The output of the classifier was a set consisting of two classes:
{NoDamge, Damage}. After the training, the CNN model was applied to every x–y position
of the CT data volume, creating a feature map image. The resin defect was chosen as the
Damage class. Two rectangular regions in the x–y plane were chosen to compose the labelled
training data set within the damaged circular region (identified by visual inspection of
the X-ray CT image slices) and within an approximately unmodified region of the plate.
Different CNN architectures were investigated. A suitable CNN architecture was found
with the following layer structure (changes were not critical with respect to the classification
accuracy), described in Definition 1:

Definition 1. Suitable CNN layer architecture.

[
{ type: ’input’, out_sx:|sz|, out_sy:1, out_depth:1 },
{ type: ’conv’,
sx: 5,
sy: 1,
filters: 8,
stride: 1,
pad: 2,
activation: ’relu’ },

{ type: ’pool’, sx: 2, sy: 1, stride: 2 },
{ type: ’conv’,
sx: 5,
sy: 1,
filters: 16,
stride: 1,
pad: 2,
activation: ’relu’ },

{ type: ’pool’, sx: 3, sy: 1, stride: 3 },
{ type: ’softmax’, num_classes:|classes| }

]
A randomly chosen training set of about 800 z-slice signals (equally partitioned with

respect to the class labels and training regions) was used to train the CNN. About 200 epochs
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were required to achieve a low prediction error. The absolute prediction error is not relevant
here since the damage classifier is applied to the entire original CT data volume. The result
is a feature image with a colouring of the pixels in the x–y plane based on the classification
output. Typical damage feature maps achieved by the CNN classification for specimens
E and F are shown in Figure 29. The CNN was trained with specimen A. The prediction
results for four different models (with respect to randomness in training) and specimen
A, specimen B with a similar but blurry resin defect, and specimen C without spatially
extended damages are shown. The resin damage could be clearly marked, and the damage
marking for specimen B corresponded to the visual CT data inspection. For specimen C, no
damage was marked, except as in all three specimens in the edge regions. This indicates a
more general damage detector since the edges of the plates pose geometrical distortions,
including weaker but fuzzy delamination due to cutting with a saw. The evaluation of
the four models trained with the same specimen data shows a significant variation in the
damage prediction accuracy and probability. Model fusion with N models applied to the
same data can achieve a higher accuracy (spatially) and classification probability.
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A completely different result is retrieved by the application of the classifier to specimen
D data with a full-layer delamination damage. Here, no consistent results are achieved,
and the damage feature marking does not correspond to the geometrical properties of
the damage.

To summarise, the CNN damage classifier poses robustness and is sensitive to relevant
damage features contained in the z-signals. The classifier is less sensitive to geometrical
variations. This is demonstrated by the application of the CNN to specimen B, which is
characterised by a different thickness compared with specimen A. The z-signals from B
data were scaled to the length of the z-signals from A data.

7.7. Self-Organising Kohonen Maps

The last architecture is again an unsupervised clustering method applied to the z-
profile signals. In contrast to the AE approach, a clustering method based on a neural
self-organising Kohonen map (SOM) is used to group signals by nodes of the map. Each
node represents some specific and characteristic (but unknown and not explainable) feature.
The z-signal to SOM node mapping is used to perform a feature marking of the original CT
image data (again in the x–y plane parallel to the surface of the specimen).

The principal concept of a Kohonen–SOM is shown in Figure 30. A Kohonen–SOM
consists of neural nodes with input edges connected to all input variables x, here equal to
the z-signal vector of the CT data volume. The weights of the input edges determine the
association of a specific input vector to one node ni,j of the network with nodes typically
arranged in a two- or three-dimensional grid forming the map. The assignment of an
input vector to a specific node is random; that is, each new training of a SOM adjusting
the weights w will result in another assignment. Relevant is the binding of similar input
vectors at the same node; that is, the group of vectors shares the same major feature. The
specific nature and structure of the feature remain unknown. However, postanalysis of
groups can extract the relevant features that can lead to the grouping (e.g., the same class
of damage).
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Figure 30. Principal concept of self-organising maps. The neural node set {n} (squares, left side)
represents a feature map {f} (circles, right side).

SOMs were trained for each specimen data independently by using the entire z-signal
data set from each specimen. After training, the mapping of each z-signal at a specific
x–y position is predicted again, and a feature map based on the node set is created and
visualised. Each node is represented by a discrete colour from a rainbow colour map.
Pixels with the same colour mean that they are clustered on the same feature node in
the SOM network. The visualisation of selected feature maps is shown in Figure 31. The
feature map can vary with respect to independent training and network sizes, as shown in
Figure 14 for specimen A. In the case of the sharp resin washout defect of specimen A, the
feature map clearly correlates the damaged region by the assignment of the z-signals to a
dedicated feature node, but this feature is also mapped on other spatial regions towards
the edges of the plate (on the left side of the marked image). The major damage is marked
independently of the network size.
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Figure 31. SOM feature maps of the z-signal volumes for different specimens and with different
SOM network sizes (rows × columns); specimen (A): sharp resin washout; (B): fuzzy resin washout;
(C): baseline; (D): large area delamination. The color code is arbitrary across different models.

The fuzzy resin washout defect of specimen B can be recognised by a dedicated feature
mapping node. The spatial correlation compared with the visual inspection is weaker. The
damage region approximates to the visually inspected region and the region identified from
the CNN damage classification map if the network size is increased (up to 6 × 6 nodes).
Specimen C shows no spatially limited feature regions as expected (the thin fibre crack
cannot be resolved here). Finally, the feature map of specimen D with its full delamination
defect corresponds well with the visual inspection, in contrast to the CNN classifier feature
map. Interestingly, the spatial feature map changed significantly with the 6 × 6 networks.

The SOM method is suitable for identifying ROIs and can be used in combination
with other presented methods, especially fusioned with a CNN output to strengthen the
damage detection and to suppress false-positive and false-negative prediction by a spatial
correlation analysis.

7.8. Vision Algorithms

The previous methods are only suitable for detecting extended spatial regions of
damage. Fine cracks or fibre breakages are hard to find with these algorithms. The last



Materials 2022, 15, 4645 38 of 43

experiment uses edge detection algorithms to isolate and amplify thin damages. Two
algorithms were selected to amplify thin or line-kind damages [62]:

1. Soebel kernel-based filter (no parameters);
2. Canny multistep filter (with parameters of low and high threshold, LT, HT).

Here, the x–y slice images are processed separately, as shown in Figure 32. Denoising
is applied first to the images by using a blur kernel filter with a blur size of about 6–8 pixels.
The Soebel filter generally shows weak edge amplification of damage boundaries with a
high number of short edge artefacts (noise). The Canny filter performs well and can isolate
relevant damage features (resin defect and thin cracks), as shown in Figure 33. Proper
choice of the low- and high-threshold parameters is critical and affects the noise and feature
marking too, but typically in an opposite result. All values below LT are discarded, all
edges with values above HT are selected, and potential edges with values between LT and
HT are handled differently (points can create edges or not).
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After edge amplification, a density-based point clustering (DBSCAN) can be applied
to identify closed and dense regions, determining their centre position in the x–y plane,
and finally, a shape recognition can be applied to identify typical damage shapes. This
process can be ambiguous, and therefore, additional methods (such as SOM clustering) for
correlation tests are required to discriminate damage features properly.

7.9. Summary

Detecting and discriminating different damages in composite materials from a wide
range of possible damage patterns using X-ray tomography data is a challenge. Different
image analysis and damage detection algorithms were introduced. Every single method is
not suitable for stand-alone automated damage detection. They perform damage candidate
highlighting and amplification (feature marking rather than damage detection) and can be
used primarily for ROI identification. It is assumed that a fusion of different algorithms
can be used for fully automated damage detection without human expert interaction. The
aim of the use-case study was to highlight the challenges and limitations of even modern
ML algorithms. Even simple numerical analysis, such as signal energy map diagrams, can
compete with advanced ML algorithms.
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8. Results and Discussion

The proposed taxonomy has been made comprehensive, considering the various
damage patterns occurring within the composite and other laminate structures. It addresses
all the characteristics currently identified in various damage patterns to the best of the
authors’ knowledge and can be used in distinguishing various damage types and classes.
However, it is also evident that the resulting taxonomy could evolve further based on
user perception, knowledge, and experience. The proposed taxonomy remains open to
all researchers, scientists, and engineers for further extension based on their respective
findings and learnings.

The classification of impact damages could be very challenging based upon different
factors, such as impact energy (e.g., low impact, medium impact, and high impact energies).
This is due to the fact that these impacts would produce different damage characteristics
in different specimens based on the material configuration and layup. For a suitable clas-
sification with this approach, the material configuration has to be made constant to have
a comprehensive classification based on the following scheme. However, in reality, the
material configuration varies to a great extent in real-world application scenarios, and it is
highly unlikely for two structural components or materials to be of the same configuration.
In order for them to be identical, it would involve multiple factors being identical, such as
metal volume fraction, fibres and fibre properties, prepreg properties, layup sequence, and
orientation of the plies, which is unrealistic as a material could have different local proper-
ties in different regions based on the specific localised purpose, for example, in a region
with added stiffeners to enhance the stiffness. A classification of the damage patterns based
on the constant material configuration would not lead to generic classification and, hence,
would not facilitate the transferability of this classification scheme. This will make the
classification limited to a particular type of material configuration and would not facilitate
the main goal of the research work, that is, application of this classification for damage
diagnostics. For damage diagnosis, a comprehensive damage classification is important,
which is not limited to a particular type of material and is applicable and transferable
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to multiple material configurations. However, it would offer a detailed classification of
the different damage patterns observed under different impact conditions for a specific
material configuration, which could be well suited for highlighting the behaviour and
impact response of the material under different impact loading conditions. The application
of the clinical approach in the proposed classification enables a generic classification of the
damages, which is based on the intensity of the damages rather than any impact parame-
ters or material configurations, which makes it a more qualitative approach rather than a
quantitative approach.

Detecting and discriminating different damages in composite materials from a wide
range of possible damage patterns using X-ray tomography data is also a challenge. Differ-
ent image analysis and damage detection algorithms were introduced. Each single method
is not suitable for fully automated damage detection. They perform damage candidate
highlighting and amplification. It is assumed that a fusion of different algorithms can be
used for fully automated damage detection without human expert interaction. The aim
of the use-case study was to highlight the challenges and the limitations even of modern
ML algorithms. Even simple numerical analysis, such as signal energy map diagrams, can
compete with advanced ML algorithms.

9. Conclusions

This paper provided a comprehensive taxonomy of the different types of damages
occurring in composite and hybrid materials along with the clear definitions of the different
damage modes. This proposed taxonomy could further help the researchers in seeking
the definitions of such damages. Furthermore, this taxonomy would provide another per-
spective in identifying and organising different damages. Altogether, this work addressed
methods and algorithms for damage diagnosis in hybrid and composite materials, such
as FML, and introduced a novel unified taxonomy atlas of damage patterns, measuring
signals, and analysis methods. Besides formal aspects, an extended use case demonstrated
damage detection in FML plates using X-ray tomography data with different data analysis
techniques to amplify or detect damages.

This taxonomy aims to be general, even if it is validated and tested in the domain of
FMLs using ML- and image-based methods. This taxonomy highlights the first attempts
towards the segregation and integration of knowledge on different damage patterns occur-
ring in composite and hybrid materials, different analysis methods, measuring signals, and
their possible correlation with various analysis methods for automated damage diagnostics.
The use of a stand-alone ML algorithm cannot facilitate a damage diagnosis; however, it is
more suitable for feature marking and highlighting the damaged regions. A combination
of different ML and numerical image algorithms is considered to be suitable for a fully
automated damage diagnosis without the requirements of any human intervention. Simple
numerical analysis, such as a signal energy map, is competent enough to compete with
ML algorithms. ML algorithms can be primarily used to identify spatial ROI candidates
that must be investigated in depth or by using a zooming measuring technique. The
zooming approach enables iterative damage diagnostics by first creating scans with the
low resolution of the entire specimen and subsequently performing high-resolution scans
(time consuming) of the ROI candidates.

10. Outlook

On the outlook, different Glare FML specimens consisting of different metal volume
fractions will be impacted using an impact apparatus to replicate the actual impact damages
occurring during in-service/operation. These damages replicate delamination and various
other defects, such as interlaminar debonding, metal and prepreg ply delamination, matrix
cracking, and fibre breakage. This proposed taxonomy of damage patterns could also be
coupled with guided ultrasonic waves, where the guided wave signals will be acquired
using the SHM network, allowing the damage identification. This classification could also
be used to correlate the GUW signals to the damage type, followed by a class assignment to
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the sensor response into different classes, which could potentially help distinguish different
damage patterns. The presented classification focused on the classification of different
damage patterns using a data-driven approach using ML methods. Major defects, which
include delamination, interlaminar debonding, matrix cracking, and fibre breakage, could
be investigated with the same approach, which would facilitate a confirmation test with
the proposed taxonomy. Composite materials undergo multiple modes of failure under
fatigue loading, but fibre cracking and delamination seem to be the most important modes
of failure that greatly affect the health of the structure. It should also be noted that the
proposed classification model could possibly indicate the same results in terms of the
GUW wave patterns and sensor response for different damage patterns, such as cracks and
delamination. However, these damages, such as metal and matrix cracks, are associated
with delamination of the plies as these two modes of failure are usually interdependent.

As more and more data are fed into the classification model, the model could lead
to better-generalised results and better accuracy in predicting the pattern of the damages.
Validation tests conducted on various GLARE specimens with diverse damage patterns
could reveal a better accuracy of the classification model in classifying the damages. Since
it is a data-driven approach, the investigations of different composite and hybrid materials
with a variety of damage patterns would facilitate the training of the classification, therefore
further increasing the overall accuracy of classifying different damages. Once the data
structure based on the CT measurements coupled with ML-based clustering is consolidated,
the accuracy, consistency, and coherency in terms of the identification of the different
damage classes will increase, leading to an integrated classification model.

As an end result, this could lead to the development of a simple and comprehensive
semantic overview of information derived from ontology, which is currently missing in this
domain. For example, a comprehensive set of all the damage patterns has been correlated
with the CT images and GUW measurements. This would enable a possibility to represent
the complete information uniformly so that it can enable a complete damage diagnosis
and serve the purpose of a directory for these damage patterns and the corresponding
CT images and GUW measurement signals, thus further facilitating the non-destructive
evaluation of these damages within composites.
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