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Abstract

Background: A number of minimally invasive sacroiliac (SI) joint fusion solutions for placing implants exist, with
reduced post-operative pain and improved outcomes compared to open procedures. The objective of this study
was to compare two MIS Sl joint fusion approaches that place implants directly across the joint by comparing the
ilium and sacrum bone characteristics and Sl joint separation along the implant trajectories.

Methods: Nine cadaveric specimens (n = 9) were CT scanned and the left and right ilium and sacrum were
segmented. The bone density, bone volume fraction, and Sl joint gap distance were calculated along lateral and
posterolateral trajectories and compared using analysis of variance between the two orientations.

Results: lliac bone density, indicated by the mean Hounsfield Unit, was significantly greater for each lateral
trajectory compared to posterolateral. The volume of cortical bone in the ilium was greater for the middle lateral
trajectory compared to all others and for the top and bottom lateral trajectories compared to both posterolateral
trajectories. Cortical density was greater in the ilium for all lateral trajectories compared to posterolateral. The bone
fraction was significantly greater in all lateral trajectories compared to posterolateral in the ilium. No differences in
cortical volume, cortical density, or cancellous density were found between trajectories in the sacrum. The ilium
was significantly greater in density compared with the sacrum when compared irrespective of trajectory (p < 0.001).
The posterolateral trajectories had a significantly larger Sl joint gap than the lateral trajectories (p < 0.001).

Conclusion: Use of the lateral approach for minimally invasive Sl fusion allows the implant to interact with bone
across a significantly smaller joint space. This interaction with increased cortical bone volume and density may
afford better fixation with a lower risk of pull-out or implant loosening when compared to the posterolateral
approach.
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Background

Sacroiliac joint (SIJ) fusion surgery has evolved over the
last several decades, with early procedures requiring ex-
tensive open muscular dissections and bone grafting [1].
Conditions that could lead to degenerative sacroiliitis
and/or SIJ disruption (requiring SIF fusion) may include
asymmetric distribution of force across the joint—caused
by leg length discrepancies or gait abnormalities, persist-
ent joint strain over time, scoliosis, pregnancy, and lum-
bar or lumbosacral fusion—caused by increases in
angular motion and average stress across the SIJ [2-5].
Currently, a number of minimally invasive solutions for
placing SIJ implants exist, with research suggesting MIS
solutions are associated with reduced post-operative
pain and better peri-operative outcomes compared to
open procedures [6, 7].

Although SIJ fusion success rates are reported at 80-
85% and fusion rates between 35 and 100%, bone quality
continues to be a concern when instrumenting the spine
[8-11]. Therefore, researchers and surgeons continue to
search for means of better fixation to avoid long term
failure. Specifically, patients that display lower bone
density or severe osteoporotic characteristics may exhibit
qualities that contraindicate this procedure due to lack
of sufficient bone density and quality for proper fixation.
Additionally, the quality of bone found in the sacrum
has proved difficult for use in fusion surgeries because of
its lack of cortical bone and lower density [12, 13]. Thus,
this study will compare the overall bone, cortical, and
cancellous bone density, and bone fraction lying along
the two most common MIS SIJ fusion trajectories that
place implants directly across the joint, the posterolat-
eral and lateral approaches, by using a simulated surgical
model (other dorsal approaches that place implants
within the joint were not considered in this analysis).
This will be accomplished through the introduction of
virtual cylindrical dowels across the joint and the ana-
lysis of the different qualities of bone in the lateral ver-
sus posterolateral trajectories.

The lateral approach is seen as an attractive method of
surgical entry because it is thought to be less invasive, as
surgeons do not need to transect large quantities of soft
tissue including ligaments and tendons. This minimally
invasive procedure begins with a small incision on the
lateral buttock in order to reach the ilium, with implants
placed across the SI joint traversing the ilium into the
sacrum [14]. The posterolateral approach was developed
because it was the more direct trajectory of the two and
also did not necessitate retracting through large quan-
tities of soft tissue dissection, with implants placed start-
ing near the PSIS, traversing the ilium, crossing the
ligamentous portion of the SI joint, and into the sacral
ala [15]. While these differences are apparent in the clin-
ical literature, our goal was to ascertain the differences
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in the trajectories not based in their directness of ap-
proach or soft tissue characteristics, but the overall qual-
ity of the bone that was traversed in patients with
conditions such as osteoporosis and low bone density.

It is important to note that any fixation method (in-
cluding methods utilizing surgical screws or press-fit im-
plants) are dependent upon bone quality—evaluated
with metrics such as bone mineral density and ratio of
cancellous to cortical bone. There may be substantial
ramifications to fixation if the patient suffers from low
bone density, such as in osteoporotic patients. It is well
understood that patients with this condition typically
lose significant amounts of cancellous bone, while their
cortical bone remains respectively intact [16]. The di-
minished volume of cancellous bone may significantly
impact both short- and long-term fixation, potentially
causing pseudoarthrosis at the SIJ [17]. Thus, the imple-
mentation of a more heavily emphasized cortical bone
approach may provide preferential implant anchoring, in
spite of the eventual waning of cancellous bone.

Using computer topography (CT) segmentation, com-
puter modeling, and Hounsfield units (HU)—as a proxy
for bone density and characteristics, we intend to
characterize and compare the abovementioned metrics
to gain further insight into the nature of the SIJ and po-
tentially provide evidence for superior characteristics in
one trajectory over the other.

Methods

Imaging

Dual-energy X-ray absorptiometry (DEXA) scanning was
obtained on the L4 vertebrae on each specimen using a
clinical DEXA scanner (Discovery Wi, Hologic). Speci-
mens were then CT scanned (Somatom, Siemens, Mun-
ich, Germany) with a consistent imaging protocol (slice
thickness = 0.6 mm, KVP = 140). The voxels contained
within the bony volume of the sacrum and the left and
right ilium were segmented to form models of the 3D
surface of each body identified through segmentation,
using commercially available software (ScanIP, Synopsys,
Mountain View, CA). Five of these CT scans were per-
formed with phantoms of known density corresponding
to cancellous and cortical bone.

Region of interest (ROI) determination

The trajectories for each of three lateral implants (top,
middle, bottom) and two posterolateral implants (top or
“PL1”, bottom or “PL2”) were established by selecting
two landmarks for each implant based on the technique
guides of commercially available implants (Table 1).
Landmarks were selected based on the endpoint of each
trajectory—corresponding to the projected distal tip of
each implant from a surgeon’s perspective—and a sec-
ond point lying in the trajectory path on the proximal
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Table 1 Start and end points for the 3 lateral and 2
posterolateral implant trajectories
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side of the ilium. OsiriX (Pixmeo SARL, Geneva,
Switzerland) was used to place all landmark fiducials.

Lateral orientation

Trajectory Start point End point

Top implant Lateral to the middle of the 12 o'clock position
first sacral body, distal to above S1 foramina
the alar line, following the
slope of the ala

Middle implant Lateral to the S2 foramen, 1cm in advance of

between the first and second  the S1 foramen
sacral body, angled

approximately 15-20°

ventral-to-dorsal from

horizontal

Lateral to the middle of the Between the S1 and
second sacral body, ensure

the implant is roughly

Bottom implant

lateral border of the

parallel with the top and S1 foramen
middle implants in an
outlet view

Posterolateral orientation

Trajectory Start point End point

At the ala of the
sacrum about T cm
from the anterior
sacral cortex

Top implant (PL1) At the lateral aspect of the
PSIS. Follow the trajectory
that is 10-15° lateral-to-medial

and 0-10° cranial-to-caudal

In the ala of the
sacrum about 1 cm
from the anterior
sacral cortex

Bottom implant
(PL2)

2-3 ¢m posterior of the sacral
ala, in line with the S2 pedicle,
follow a similar trajectory to
the top implant

S2 foramen near the

Using the coordinates of the fiducial markers chosen for
each specimen, a line was created to serve as the axis of
virtual cylinders 12 mm in diameter (Fig. 1). The volume
within these virtual cylinders follows the implant trajec-
tory and represents the bone that would directly interact
with implants. As such, data from within this ROI was
used for analysis and trajectory comparison.

Calculation methodology

The voxel readings (HU), within each of ROI, were the
subjects of analysis. Cancellous bone was defined as the
interval of voxels with a density between > 219 and <
867, while cortical bone corresponds to any voxels =
867. Voxel readings within the ROI were averaged and
analyzed in three separate groups: (1) the entire ROI
(AT), (2) cortical bone (Ac), and (3) cancellous bone
(Aca) to characterize the bone quality. In addition, the
number of voxels falling within the predetermined dens-
ity intervals was recorded to determine the volume of
both types of bone. Bone fraction (BF) was defined as
the fraction of cortical or cancellous bone out of the
total ROI volume. Joint gap represents the distance be-
tween the bony surfaces on either side of the SIJ, which
corresponds to the medial aspect of the ilium and lateral
aspect of the sacrum. These surfaces were delineated

based on segmentation of cortical bone, and the joint
gap mapping was calculated by measuring the closest
distance between the joint surfaces, which intersects
with the virtual trajectory of each implant.
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Fig. 1 lllustration of the virtual dowels used to restrict analysis for each trajectory
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Statistical testing

A repeated-measures ANOVA was conducted on joint
gap distance (measured in mm) by trajectory (top, mid-
dle, bottom, PL1, and PL2) with Bonferroni-corrected
post hoc analysis. A 2-way multivariate analysis of vari-
ance on mean HU, cortical density, cancellous density,
cortical volume, and bone fraction was conducted over
the independent variables: body (sacrum/ilium) and tra-
jectory, and Bonferroni-corrected post hoc analysis for
pairwise comparisons between trajectories within each
body was also computed.

Results

Nine specimens (mean age 60 years, range 24-80; 6 fe-
male, 3 male) were used and the average specimen L4
vertebrae bone mineral density was 0.948 g/cm?® (SD =
0.194) (Table 2). Based on the individual L4 T-scores,
two specimens were normal, four specimens had
osteopenia, and three had osteoporosis. Utilizing
phantoms of known density, the mean ilium Ac, was
219 HU (n = 5, SD = 3), and the mean ilium Ac was
867 HU (n = 5, SD = 9). The mean ilium At of the
three lateral trajectories was significantly greater than
both posterolateral trajectories (p < 0.004, p < 0.002
respectively), with no differences observed between
the lateral trajectories (Fig. 2). In the sacrum, the top
trajectory showed significantly lower mean At com-
pared to both middle (» = 0.026) and PL2 (p =
0.048). The mean cortical volume in the ilium was
significantly greater in the middle trajectory compared
to all others (p < 0.015) and was significantly greater
in the top and bottom compared to both PL1 and
PL2 (p < 0.001) (Table 3). No differences in mean
cortical volume were observed between trajectories
within the sacrum. The mean cortical density in the
ilium was significantly greater for all lateral trajector-
ies compared to posterolateral trajectories (p < 0.001)
(Fig. 3). No significant differences were observed

Table 2 Specimen demographics
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within the sacrum between any of the trajectories.
There were no significant differences in cancellous
density between the different trajectories in either the
ilium or sacrum (Fig. 4). The mean BF in the ilium
was significantly greater in all lateral trajectories com-
pared to posterolateral (p < 0.001) (Fig. 5). In the
sacrum, the mean bone fraction was significantly
greater for middle compared to both top (p = 0.035)
and bottom (p = 0.033). Results showed the number
of voxels identified as cortical and cancellous bone,
bone fraction within each trajectory, and the gap dis-
tance of PL1 were significantly greater than all other
trajectories (p < 0.001). The same results applied to
PL2 were also significantly greater than top (p =
0.003), middle (p < 0.001), and bottom (p = 0.005)
trajectories (Table 3).

Joint gap distances from all trajectories can be found
in Table 3. All three lateral trajectories were shown to
have a significantly smaller joint gap distance than the
posterolateral trajectories (Fig. 6). No significant differ-
ences were found in distance between any of the trajec-
tories in the lateral orientation, but the superior
posterolateral trajectory was found to result in a signifi-
cantly larger gap distance than the inferior posterolateral
trajectory.

Discussion

Through the comparison of virtual CT scan trajector-
ies using cadaveric models, we demonstrated that
there were significant differences between the charac-
teristics of bone within the lateral and posterolateral
SIJ fusion approaches. Specifically, we showed that
the cortical volume in the ilium was significantly
greater in the lateral compared to the posterolateral
approach. Both approaches utilize the ilium and
sacrum for fusion; therefore, the characteristics of the
bone within each trajectory are critical to understand-
ing the relationship between the location of the

Specimen number Age Sex Height (in) Weight (lbs) L4 BMD (g/cm2) T-score
1 73 M 71 280 0.722 -38
2 75 M 71 350 1.098 -04
3 63 F 68 230 0.939 -16
4 64 M 67 270 1.001 -23
5 80 F 65 160 1.347 2.1

6 70 F 61 250 0.986 =12
7 39 F 70 129 0.738 -34
8 55 F 67 135 0.879 =22
9 24 F 56 110 0.825 -26
Avg. 60 66 213 0.948 -1.71
SD 18 5 83 0.194 1.77
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implant and the quality of the bone therein. We
found that sacral bone is not as dense or as high in
cortical volume as that found in the ilium (Table 3).
This finding is consistent with work performed by
McLauchlan and Gardner, who studied a number of
adult cadaveric specimens, showing that iliac cancel-
lous bone volume was significantly greater than that
of sacral cancellous bone [18]. Moreover, the volume
of cortical bone in the ilium ranges from 2 to 20
times that in the sacrum for corresponding trajector-
ies (Table 3), which may be explained only in part by
the fact that the trajectories traverse two cortices in
the ilium and only one in the sacrum—indicating a
significantly greater cortical thickness in the ilium
compared to the sacrum.

This study also shows that fixation within the ilium
may be greater with the lateral approach than the
posterolateral approach and that no significant differ-
ence in fixation is likely to be achieved when looking
at the device from a sacral standpoint. However, the
bone fraction encountered along the lateral approach
through the ilium was consistently shown to be of
higher density and include more cortical bone. While
the clinical results from this finding are unknown,
DeCoster et al. tested two commercially available
bone screws on a synthetic bone model, consisting of
urethane foam, and showed that as the density of this
model increased, the pullout force also increased in a
linear fashion, thus demonstrating the correlation be-
tween higher density fixation and increased pullout
force [19]. It may be hypothesized that the increase
in cortical bone through the lateral approach may
provide a similar increase in pullout force, which may
translate to preferable fixation and fewer complica-
tions such as implant loosening. Furthermore, Halvor-
sen et al. demonstrated similar results on cadaveric

bone with pullout strength, which was shown to in-
crease in a linear fashion in relation to bone mineral
density, providing further evidence that the use of a
trajectory with significantly higher bone density
means a potential for increased fixation [20]. More-
over, Santoni et al. assessed the bone density across
two pedicle screw trajectories in the lumbar spine
using a quantitative CT scanner and determined that
(1) their novel trajectory included higher bone density
and (2) it showed that this higher density leads to a
higher pullout force in mechanical testing—similar to
our research [21]. This study leans on the use of a
CT model and the use of volumetric regions of inter-
est in the lumbar spine, which may be generalized to
the SIJ for the purposes of correlating bone density
to pullout force. While our study did not incorporate
this additional modality of testing, the biomechanics
literature provides evidence that higher bone density
does correspond to increased pullout force. A number
of cadaveric biomechanical studies utilizing lateral or
posterolateral implants have been performed to inves-
tigate the influence on sacroiliac joint stability [22—
24], but a direct comparison using the two ap-
proaches may provide an interesting follow-up to this
analysis. Based on these findings, we hypothesize that
a lateral approach may provide a fixation that is more
secure and less likely to loosen when compared to a
SIJ fusion utilizing the posterolateral approach.
Additionally, previous work by Bruna-Russo et al.
also demonstrated that better fixation was accom-
plished with an implant orientation that was farther
and more parallel (i.e., lateral) relative to the center
of SIJ rotation which lends further credence to the
benefits of the lateral trajectory as opposed to the
posterolateral [25]. Although it was not the primary
focus of the current study, the lateral approach allows
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Fig. 3 (a) Average cortical bone (HU 2 867) density measured within the ilium for each virtual dowel; asterisk indicates significant difference
compared to PL1; number sign indicates significant difference compared to PL2, (b) average cortical bone (HU = 867) density measured within
sacrum for each virtual dowel

for longer implants to be placed in the denser cancel-
lous bone of the sacral vertebral body and may fur-
ther reduce implant loosening [12, 13, 26-28].
Analysis of the joint gap distance along each trajec-
tory indicates significantly greater distance between
opposing bone surfaces for the posterolateral orienta-
tion compared to that of the lateral trajectory—which
may present a comparatively large impediment to fu-
sion across the joint. The mean joint gap distance for
the lateral trajectories was 1.46 mm while that of the
posterolateral was 5.16 mm. The results of this ana-
lysis for the lateral trajectories are reinforced by the
work of McLauchlan and Gardner who demonstrated
mean cartilage thickness of the sacral and iliac joint
surfaces to be 1.81 and 0.8 mm respectively [18].
These findings indicate direct contact of the cartil-
aginous surfaces traversed by the lateral trajectories
analyzed within the current study. In addition, Bruna-

Rosso et al. demonstrated that implant trajectories
that damage the interosseous ligament resulted in less
stability of a treated SIJ [25]. Further clinical study is
warranted to definitively assess the relative merits of
fusion across the joint along these two orientations,
with regard to rate and success.

One limitation of this study was the lack of use of
known density phantoms during each of the CT scans
of our specimens. The specimens were not all
scanned with cortical and cancellous phantoms due to
logistical reasons, which prevented us from directly
converting HU to mass density for each specimen
scanned. However, given the relatively low variance in
the HU values for the cortical and cancellous phan-
toms scanned, and the fact that all specimens were
scanned on the same machine using the same proto-
col, we are confident that the HU ranges used for de-
fining cortical and cancellous bone are appropriate.
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Fig. 4 (a) Average cancellous bone (867 > HU = 219) density measured within the ilium for each virtual dowel, (b) average cancellous bone (867
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Furthermore, because the calculated relative densities
were taken from different locations in the same speci-
mens, it is unlikely that there is a bias in outcomes
between the trajectories measured due to variance in
CT scanning parameters between specimens. The re-
sults found within this study are consistent with out-
comes of lateral fixation compared with posterolateral
fixation as described above. The current study focused
on two trajectories that place implants directly across
the SI joint for stabilization; as such, results for dor-
sal approaches that place implants within the joint
(intra-articular) remain an area for future research. Fi-
nally, the present study was facilitated by industry
grant support, which may be interpreted as a poten-
tial source of bias.

Conclusion

The lateral SIJ approach includes higher density bone,
more cortical bone, higher bone fraction, and smaller
SIJ gap when compared to the posterolateral ap-
proach. The lateral approach may lead to greater
fixation of implants in the ilium because of a signifi-
cantly greater bone density. This study provides a sig-
nificant model for future studies about patient-
specific trajectories based on our metrics of interest.
It will be imperative to increase the knowledge of this
joint and the significance of these findings in a bio-
mechanical assessment using both the computer-
modeled trajectories and then biomechanical stability
testing to ascertain if the results directly correlate to
one another.
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