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Abstract

Background: In the field of network science, exploring principal and crucial modules or communities is critical in
the deduction of relationships and organization of complex networks. This approach expands an arena, and thus
allows further study of biological functions in the field of network biology. As the clustering algorithms that are
currently employed in finding modules have innate uncertainties, external and internal validations are necessary.

Methods: Sequence and network structure alignment, has been used to define the Interlog Protein Network (IPN).
This network is an evolutionarily conserved network with communal nodes and less false-positive links. In the current
study, the IPN is employed as an evolution-based benchmark in the validation of the module finding methods. The

databases such as Gene Ontology, KEGG and Reactome.

and straightforward implementation.

clustering results of five algorithms; Markov Clustering (MCL), Restricted Neighborhood Search Clustering (RNSC),
Cartographic Representation (CR), Laplacian Dynamics (LD) and Genetic Algorithm; to find communities in Protein-
Protein Interaction networks (GAPPI) are assessed by IPN in four distinct Protein-Protein Interaction Networks (PPINs).

Results: The MCL shows a more accurate algorithm based on this evolutionary benchmarking approach. Also, the
biological relevance of proteins in the IPN modules generated by MCL is compatible with biological standard

Conclusion: In this study, the IPN shows its potential for validation of clustering algorithms due to its biological logic

Keywords: Protein-protein interaction network, Interlog protein network, Evolution, Network module

Background

One of the important challenges in the interpretation of
proteomic data is the detection of the cellular active
process by exploring protein function. This newly emer-
ging discipline; network science, has demonstrated that
the majority of biological and evolutionary concepts make
sense in the light of Systems Biology [1, 2]. Hence, the
protein function, and consequently, cell function are more
clearly demonstrated in the context of protein interaction
network [3]. Protein-protein interactions make up the
major branch in the study of protein interaction networks.
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From a biochemical view, these interactions can be di-
vided into two categories: physical and functional [4, 5].
There are several methods employed to describe these in-
teractions. The advantages and disadvantages of these
methods have been widely reviewed [6-8]. Different limi-
tations such as slow- and small-scale performances, inabil-
ity to identify protein complexes, artificial interaction
obtained from the in vitro assay and the operational re-
strictions, led to the discovery of methods that comple-
ment each other [9]. Some experimental methods are
involved in determining physical and functional interac-
tions [10, 11]. The phylogenetic profile, Rosetta stone,
gene neighborhood and co-evolution are the most preva-
lent computational methods [11-13].

Biological network modules
After constructing a Protein-Protein Interaction Network
(PPIN), the next step is the exploration of the protein
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tasks within this complex circuit. As Alessandro Ves-
pignani mentioned, “evolution thinks modular” [14]; a
cell’s activity is a result of groups of interacting proteins,
known as functional module (if they do not necessarily
interact at the same time and place), in PPIN [15, 16].
Therefore, the PPIN modules should be identified and de-
termined and then a biological function could be assigned
to them based on the protein annotations. Sometimes this
procedure is specifically more successful for the protein
complexes that work together at the same time and place,
rather than for the functional modules [6, 9].

Module detection can be divided into two approaches,
namely graph clustering, and distance-based clustering.
In the first approach, algorithms seek communities of
the nodes in the graph that contain more intra-edges
than inter-edges, e.g. Super Paramagnetic Clustering
(SPC) [17], Highly Connected Subgraph (HCS) based on
the Monte Carlo algorithm [18], Markov clustering
(MCL) [19] and Restricted Neighborhood Search Clus-
tering (RNSC) [20]. In the distance-based approach, the
clustering algorithms e.g. the hierarchical or k-means are
used so that the concept of distance and its associated
measures in graph theory are applied as the similarity
measures in the clustering. Some of the distances used
in this approach are as follows: shortest path [21], number
of edges [22, 23], shortest path profiles [24, 25] and a com-
bination of distance and the statistical objects [26]. The
detected modules are then well-characterized, biologically,
based on information beyond the network topology such
as gene expression, cell localization, virulence and knock-
out phenotypes [6, 27].

The biological data are also applied in the next step
for validation assays of module finding. The validation is
based on the protein annotation homogeneity in the
modules and these annotations could consist of func-
tional, structural, local and/or interactomic information.
Generally, the Gene Ontology (GO) and MIPS database
are used in PPIN module validation [20, 28-32]. In
addition, data from the gene expression profiles, co-
localization and gene phenotype are also used [9]. It should
be highlighted that the major presumption of the validation
is that most of the proteins in a module, ie. a statistically
significant number of proteins, should be similar in
intended attribute if the modules were identified correctly.
A pictogram of this procedure is summarized in Fig. 1.

Although, protein complexes consist of functional and
also physical interactions at the same time, it is obvious
that many of the functional interactions are not in the
data of the protein complexes. Several protein interac-
tions happen transiently and indirectly, and as such are
not detectable by empirical routine tests. These are im-
portant steps in the protein interactions which are lack-
ing in the MIPS database [33—35]. In addition, modeling
and representing the protein complex acquired by some
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experimental techniques, such as a graph (e.g. “spoke”
and “matrix” model) is a challenging issue [36]. Further-
more, one cannot ignore the fact that the inherited
experimental errors inherent to these problems and
many more protein complexes, have not been fully stud-
ied as yet [37]. These flaws may lead to misinterpretation
in the validation step if we use only the MIPS database.

On the other side, GO is a standard glossary of bio-
logical terms known as the first and most common refer-
ence for the Biological Process (BP), Molecular Function
(MF) and Cellular Compartment (CC) of the proteins
[38]. Additionally, a significant correlation between the
node distances in some biological networks and the se-
mantic similarity of their GO terms has also been reported
[39-42]. Although the GO contains comprehensive and
organized information, it has some limitations, namely, in-
sufficient GO annotations (35-55 % false-negatives) [43],
inaccurate GO annotation (false-positives, it should be ob-
served that most of the annotations in GO are obtained
by an indirect method such as gene manipulation as well
as heterogeneous experimental and computational data),
the functional diversity of proteins under different condi-
tions resulting in different and sometimes conflicting
annotations for one protein (false-positives) [44] and
errors due to the manual annotation approach [45].
These deficiencies lead also to misinterpretation in
the validation step.

The goal of present study

Regarding the aforementioned restrictions in the valid-
ation step of module finding algorithms, we propose a
network-based evolutionary benchmark as a complemen-
tary approach to solving some of the presented issues.
Recently, in a companion study [46], we introduced a
common network, that had low false-positives and tuned
false-negatives. Using the four PPINs, a network with a
high degree of conservation between four species was
constructed. We call this common network the Interlog
Protein Network (IPN) (Additional file 1). In the present
study, the IPN, which is confirmed using experimentally
proteomic data, has been suggested to be applied as a
complementary benchmark in the validation of the
different module finding algorithms, namely, Markov
Clustering (MCL) [19], Restricted Neighborhood Search
Clustering (RNSC) [20], Cartographic Representation
(CR) [47], Laplacian Dynamics (LD) [48, 49] and Genetic
Algorithm, to find communities in Protein-Protein Inter-
action networks (GAPPI) [16].

Results and discussion

Mitochondrial IPN

In the current study, the mitochondrial IPN of the four
eukaryotic species was constructed. These species con-
sisted of, human, rat, fruit fly and worm. The IPN was
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Fig. 1 Function prediction procedures in network biology. Network-based prediction methods of protein function are described schematically.
There are two approaches to explore function from network in biology, direct and module-assisted methods. In the direct method which is not
our subject in this study, the annotation of gene/protein neighbors are used to predict function. But in the module-assisted methods, node’s community/
neighborhood is principal for function prediction. These methods are also divided into two categories i.e. graph and distance-based clustering methods.
The validation is the main step after finding modules in the PPIN or using direct methods. Any assignment of function based on annotation of neighbors
or neighborhood should be evaluated by the different validating methods. We introduce the IPN-based validation for this purpose

achieved through the interlog finding procedure of the
mitochondrial PPIN of these species. In the other words,
the IPN is an evolutionarily conserved network obtained
from the overlap of orthologous proteins reinforced by
gene expression. By pair-wise sequence alignment (230 %),
the 226 Orthologous Protein Sets (OPSs) were obtained.
Each OPS contained four orthologous proteins from the
four species (83 human, 82 rat, 83 fruit fly and 80 worm).
Finally, the IPN showed 29 nodes, 61 edges, 4.34° on aver-
age, a diameter of 6, and an average clustering coefficient
of 0.625 (Additional files 1 and 2). This network represents
the evolutionarily conserved topological network features
shared among these species.

The expression data is used to empirically validate the
IPN. The significantly high correlation between the
protein concentrations endorsed the edges in the IPN. In
fact, the correlation or co-expression network was re-
constructed based on this concentration data and this
network was compared to the IPN. In the previous study,
the rat mitochondrial proteins (~500) were analyzed by
several electrophoresis techniques [50]. It was claimed
that different electrophoresis techniques are capable of

fractionating proteins with different subcellular localiza-
tions [50]. Hence, the significant correlation between the
expression profiles of the proteins in different electrophor-
esis implies they are co-localized proteins [51-53].

Of the total 563 proteins reviewed (UniProtKB data-
base) 82 were in the mitochondria of rats which partici-
pated in OPSs. Later, 31 proteins were involved in the IPN
and 20 of the 31 proteins were detected experimentally
and involved in the co-expression network. In all, there
were 23 significantly high correlations among these 20
proteins that matched with 13 of the 22 links in the IPN
between these 20 proteins. The hypergeometric test con-
firms the reasonable matching ratio of the IPN ~60 % with
respect to the edge match number in the rat PPIN 12 %
with p-value 3.9 x 10-7 (Table 1).

Comparison of network clustering methods

All the methods including RNSC, MCL, CR, LD and
GAPPI were performed to discover modules in all four
PPINs and the IPN. It should be noted that all of these
algorithms are unsupervised and the network size
affects the number of clusters. By defining the IPN as
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Table 1 IPN expression data
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STRING derived networks
(Nodes and Edges)

Network name

Co-expression networks
(Nodes and Edges)

Matched edges Ratio of matched edges

Interlog protein network (IPN) 31,63

Protein-protein interaction network (PPIN) 563, 2431

~60 %
12 %

20, 22 13
230, 1205 150

Using the expression proteomic data, a correlation network was constructed and compared to database derived networks i.e. IPN and PPIN. This evaluation was
performed for rat mitochondrial proteins and related proteins and their links were considered. The number of nodes and edges in STRING derived (col 2) and
co-expression (col 3) networks are presented in this table along with the number of matched or same edges in two corresponding networks (col 4). The edge

matching ratios of these networks are represented (col 5)

the benchmark, some external measures were used to
validate all the methods. Next, some comparison indices
were used, including Jaccard, Rand, Fowlkes-Mallows and
Minkowski for all species. Except for the Minkowski index
with the range [0, +c0) (where the values near to zero indi-
cated the greater similarity) the other indices have a range
[0,1] and the values closer to zero, indicate greater
inconsistency.

The Rand index (unlike the Jaccard, Fowlkes-
Mallows and Minkowski indices), measures the degree
of similarity between two matrices as a function of
the positive and negative agreements. Some studies
claimed that the ng value (Number of paired entities
in the similarity matrices in which both are 0, see
Methods) was often larger than the other values in
most of the gene clustering studies and suggested
using three other indices [54]. On the other hand, the
Jaccard index is recommended due to its low variance
[55]. However, the mean value of all the indices and
standard deviations are shown graphically in Fig. 2
(All the values are shown in Additional file 2).

As represented in Fig. 2, our defined network
showed that MCL outperforms the clustering methods
of GAPPI, RNSC, LD and CR in terms of external
measure indices. The range of the standard deviations
showed that the MCL is more dependent on the size of
the graph. This superiority was evident in all the indices,
even in the Rand index with the above-mentioned
imperfection. However, in the case of human PPIN as a
large network, MCL and GAPPI cluster with similar
accuracy (Additional file 2).

Meanwhile, the superiority of the MCL is compat-
ible with the earlier results [32]. By distinct approach,
they presented a comparative assessment of clustering
algorithms and showed that the MCL was remarkably
robust in graphing alterations and capable of the
extraction of the complexes from the PPINs. CR took
a long computation time and could not specify the
modularity as well as the other algorithms within a
reasonable time. The RNSC, LD and CR clustering
showed similar ability to find the module robustly but
the LD algorithm showed the lowest standard deviation

Jaccard

Minkowski

Clustering indices measure

MCL RNSC LD CR

0.96 '1 0.75

GAPPIL

Fowlkes-Mallows

MCL RNSC LD CR GAPPI

near to zero specify the less similarity

Clustering algorithms

Fig. 2 External clustering indices. The average of the calculated indices with SD (Standard Deviation) bars are shown graphically in the five clustering
algorithms. As shown, the MCL outperformed in all the indices including even the Rand index with argued imperfection. Note that the range of the
Minkowski index is [0, +e<) and the values (here is MCL) near to zero indicate the more similarity. But the other indices range is [0, 1] and the values

A 4
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among all the indices calculated. The GAPPI as the
most recently proposed algorithm for this problem,
works better than RNSC, LD and CR. This algorithm
takes second place after MCL in all comparisons and
it clusters large network same as MCL. This pattern
was almost repeated in the recent study [16] using
MIPS as gold standard.

Biological evidence

The biological relevance of the proteins in each module
detected by MCL was assessed. By using the Enrichr tool
[56], three well-known biological standard databases are
used namely; Gene Ontology (Biological Processes) [38],
KEGG [57] and Reactome [58]. The result shows that
each module enriched significantly and annotated separ-
ately (Additional file 3). Briefly, in 3 modules of this con-
servative IPN, the results are as follows. The first
module is related to citrate/TCA cycle and oxidation
phosphatase based on these ID numbers (GO:0006099,
G0:0022904, GO:0022900, ko00020 and ko00190). The
second module is related to Mitochondrial protein im-
port based on these ID numbers (GO:0006626,
GO0:0070585, GO:0072655 and GO:0006839). The last
module is related to Mitochondrial translation, ribosome
and nucleoside biosynthetic process based on these ID
numbers  (G0:0046031, GO:0009133, GO:0046033,
GO:0009135, GO:0009179, ko03010, ko00240 and
ko00230). These results are compatible with our earl-
ier study about biological meaningful communities in
IPN as a pure evolutionary extract of mitochondrial
PPIN [46].

Conclusion

There are several module detection methods based on
different approaches. Validation assays are required to
compare and select the best one for network analysis.
The major prerequisite for validation is the determin-
ation of the reliable benchmark. A standard topological
and functional PPIN helps us to assess and verify the
PPIN modularity results. In the earlier studies, re-
searchers used the MIPS or GO dataset as the gold
standard in validation assays. As mentioned earlier, these
datasets are not point-device gold standard and each
one has its own particular shortcomings. In other words,
these databases have been designed with specific pur-
pose and are diverse conceptually [59].

In the current study, we used the pair-wise sequence
alignment and comparative interactomics of evolution-
ary distant species to reconstruct a conserved and com-
mon network that can be used as the benchmark or
ground truth. The proposed benchmark does not have
the above-mentioned limitations. First, the edges (inter-
action data) in IPN and associated compared networks
are generally of the same origin. This implies that if the
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edges of the associated compared networks are predicted
and designated computationally, this benchmark is also
constituted from the computational data and so on for
experimentally identified interaction. In other words, the
IPN edges are a result of the filtering procedure (see
Additional file 4) and they do not originate from
logically distinct methods. Second, the IPN recon-
struction procedure most likely leads to a network
with low false-positives and tuned false-negatives.
This issue has a high impact on the assessment re-
sults in the validation step. Third, the reconstruction
of IPN is possible for all the sequenced proteins and
genes that are well-conserved across multiple species
with predicted interactions. It implies that this ap-
proach does not require special expensive and time
consuming techniques to generate the experimental
data and evaluate the molecular networks.

Similar to the previous result [32], but dissimilar in
approach, we found MCL to be the outstanding algo-
rithm based on its performance in the comparison
study. In the traditional method, the MIPS database
was used to evaluate the different clustering methods.
The sensitivity and accuracy of the different methods
was also examined by adding and subtracting the
edges i.e. artificial false-positives and negatives (Note
that their tests did not contain large size changes).
Our findings about GAPPI implementation are also
consistent with the prior study [16], which showed
the improving ability of a genetic algorithm to search
modules in PPINs based on the MIPS database.

However, interaction data was retrieved from the
STRING database which includes different sources of
information, including various experimental, computa-
tional and even text mining methods [60, 61]. In
addition, an independent set of empirical data was
applied and the IPN quality was experimentally con-
firmed. However, our goal was to search for and
introduce a method that could segregate the func-
tional modules. It should be noted again that a func-
tional module means a group of cell components and
their interactions that do or do not promise specific
biological functions at the same time and place. So,
these modules also include all the protein complexes.
Therefore, the validation standard should not lack the
functional interaction data. MCL is the superior mod-
ule detection method in exploring the protein com-
plexes and also for the functional modules based on
the previous [32] and current studies, respectively. In
addition, in terms of different graph sizes, it appears
that MCL is not as robust as the other algorithms
based on the range of the standard deviation.

In this study, we suggest the IPN to justify the
modularity results of any PPIN due to three pre-
ponderances mentioned above. The graph clustering
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algorithm would be inefficient if it could not find the
modules analogously in the individual PPINs and IPN
as a purified, conserved and confirmed network. This ap-
proach to make a new benchmark may also help to assess
and verify other biological networks e.g. gene regulatory
networks or gene correlation networks and other bio-
logical network analysis methods such as network motif
finding or orienting PPINs, which are subjects for further
research. Again, this approach uses evolutionary concept
i.e. conservedness to evaluate the biological networks.
This is reminiscent of the well-known quote, “Nothing in
biology makes sense, except in the light of evolution” [62].

Methods

Interlog protein network (IPN)

Construction of the common PPIN or IPN has been
described earlier in detail [46]. Briefly, the mitochondrial
reviewed proteins were retrieved from the four eukaryotic
model species (Rattus norvegicus, Drosophila melanoga-
ster, Caenorhabditis elegans and Homo sapiens) from the
UniProtKB database (UniProt release 2013_02) [63]. Then,
Using the Needleman and Wunsch algorithm, the
homologous proteins were identified in the OPSs. In
the next step, four distinct mitochondrial PPINs of
the four species were identified from the STRING
database (Ver. 9) [61]. The four PPINs were elicited
with the default value in the database by all the prediction
methods. Finally, by applying a stringent rule that is the
existence of interlog in all four species, the mitochondrial
IPN of these species was enucleated.

To explain more, an edge links two OPSs, say
OPS1 = (plh, plr, plf, plw) and OPS2=(p2h, p2r,
p2f, p2w), if the protein pairs i.e. (plh, p2h), (plr,
p2r), (plf, p2f) and (plw, p2w), have interaction
based on STRING database (h, r, f and w indicate human,
rat, fruit fly and worm respectively). Therefore, those
OPSs which do not satisfy this condition will not be used
in the IPN. In other word, the IPN was constructed in a
way that each edge between two OPSs in the IPN indi-
cates the six interlogs in these species (In this example, if
it is a link between OPS1 and OPS2, then there are six
interlogs i.e. ((plh, p2h) and (plf, p2f)), ((p1lh, p2h) and
(plw, p2w)), ((p1lh, p2h) and (plr, p2r)), ((plr, p2r) and
(p1f, p2f)), ((plr, p2r) and (plw, p2w)) and ((p1f, p2f) and
(plw, p2w))). It should be noted that in each step some
proteins are pretermitted to discern conserved structures
(Additional file 4).

Proteomics data

The results of the mitochondrial proteomic study of rat
[50] were used for the empirical evaluation. In the
shotgun proteomics strategy, the rat liver proteome with
different cellular compartments was detected and quan-
tified by several gel-based fractionation techniques. In
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the present study, normalized peptide counts were used
to estimate the protein concentrations in a label-free
quantification method. Then, Pearson correlation was
applied to find the correlated proteins (|r coefficient| >
0.7, P-value <0.05). According to the distinction made
by the electrophoresis methods, the correlated proteins
are likely co-localized. And, also as discussed earlier,
co-localization can confirm the protein-protein inter-
action. Later, the ratio of the correlated proteins in the
rat PPIN and IPN was computed separately and com-
pared with the hypergeometric test (P-value < 0.001).
Thus, the IPN edges were examined by independent
experimental data statistically.

Network clustering algorithms

In the present study, five well-known different clustering
algorithms (MCL, RNSC, CR, LD and GAPPI) were used
to cluster the PPINs and IPN. The general characteristics
of each algorithm are shown in the Table 2 and the associ-
ated references [19, 20, 47-49]. We presented further de-
tails regarding these algorithms in the Additional file 5. We
clustered all the PPINSs of species and IPN independently.

Evaluation of the clustering results
After clustering, validation is required to confirm the
results or compare the different methods. A new
benchmark was introduced, i.e., IPN in the validation
step, so that the modules corresponding to each of
the PPINs are compared with the IPN’s modules. In
fact, the IPN was used as the ground truth in the
standard external measures assay. Note that the clus-
tering results on the PPIN are restricted to those pro-
teins also in the IPN. It was expected that the
successful algorithm should be able to find the mod-
ules analogously in PPIN and IPN. In order to assess
the clustering results, the similarity matrices (Sym-
metric binary matrices) of clustering results were con-
structed, such that a 1 indicated placing two objects
in the same cluster or module and a 0 indicated the
opposite. Then, the entities of each of the PPINs and
IPN matrices were compared with each other. If the
corresponding entities in the two matrices were equal,
the two clustering methods resulted in the same
clusters. The following four conditions occurred:
Agreements; nll (Number of paired entities in the
similarity matrices in which both are 1) and n00
(Number of paired entities in the similarity matrices
in which both are 0), Disagreements; n10 (Number of
paired entities that are 1 in the PPIN similarity
matrix and O in the IPN similarity matrix) and n0O1
(Number of paired entities that are 1 in the IPN simi-
larity matrix and O in the PPIN similarity matrix).
There are several benchmarking indices to measure
the degree of agreement and disagreement between the



Table 2 Main features of the graph clustering methods presented in this study

Markov clustering (MCL)

Restricted Neighborhood
Search Clustering (RNSQC)

Laplacian dynamics (LD)

Cartographic
Representation (CR)

Genetic Algorithm to find communities in
Protein-Protein Interaction networks (GAPPI)

Type
Allow multiple
assignations

Allow unassigned
nodes

Edge-weighted
graphs supported
First application

Availability

Developer (Year)

Flow simulation & Pagerank
centrality

No

No

Yes

Protein family detection
http://rsat.scbb.ulb.ac.be/

rsat/index_neat.html
Enright AJ. et al. (2002) [19]

Cost-based

local search

No

No

No

Protein complex prediction
http://rsat.scmbb.ulb.ac.be/

rsat/index_neat.html
King AD. et al. (2004) [20]

Multiscale modular
structure

No

No

Yes

High modularity partitions of large (more
than million) networks finding

Upon Gephi program

(1) Lambiotte R. et al. (2007) [49];
(2) Blondel V.D. et al. (2008) [48]

Inter- and intramodule
connection

No

No

No

Metabolic network

Upon request

Guimera R. & Amaral
LAN (2005) [47]

Search inspired by natural evolution

No

No

No

Protein-protein interaction networks

http:/staff.icar.cnr.it/pizzuti/codes.html

Pizzuti C. & Rombo S. E. (2014) [16]
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two matrices [55]. Some of the indices used in this study
are as follows:

(m11 + noo)
(n11 + myo + noy + noo)
711
(11 + 1o + no1)

Rand =

Jaccard =

(m10 + no1)
(m1 + no1)
ni1

\/(7111 + no1) X (m11 + mo)

Minkowski =

Folkes—Mallows =

In order to perform biological evaluation of IPN modules,
Enrichr software was used [56]. In this web-based tool, sig-
nificantly enriched terms are extracted based on the Gene
Ontology, Biological Processes [38], Kegg Orthology [57]
and Reactome databases [58]. The combined score; consist-
ing of the Z-score and adjusted p-value, was used to rank
and define enriched terms. This validation was done for the
modules defined by MCL algorithm as a superior algorithm
in our comparison.

Additional files

Additional file 1: IPN. The IPN derived from the four different PPINs of
four species is shown. They include human, worm, fruit fly, and rat PPINs
from down left clockwise. Nodes with greater degrees are indicated as
circles with larger diameters and each module is shown with the specific
node color. (JPEG 4673 kb)

Additional file 2: Network Parameters. Some network parameter are
included to gain clear insight about four PPINs and IPN. Also, all calculated
external clustering measures and indices are presented in this table. The
ranges for Rand, Jaccard and Fowlkes-Mallows are [0, 1] which are presented
in percent whereas the Minkowski rang is [0, +eo). These values are
computed for all species and five clustering algorithms. (DOCX 17 kb)

Additional file 3: Biological evidence. In this file, the IPN nodes, the
MCL modules, the human proteins in OPSs and the enriched terms of
proteins consist IPN modules are presented. The enrichment analysis of
each module presented separately in different sheets. The human
proteins were used to perform this analysis. (XLSX 38 kb)

Additional file 4: IPN reconstruction steps. First, the mitochondrial
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