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Abstract: An increasing number of clinical studies worldwide are investigating the repurposing
of antiviral, immune-modulatory, and anti-inflammatory agents to face the coronavirus disease-
19 (COVID-19) pandemic. Nevertheless, few effective therapies exist to prevent or treat COVID-
19, which demands increased drug discovery and repurposing efforts. In fact, many currently
tested drugs show unknown efficacy and unpredictable drug interactions, such that interventions
are needed to guarantee access to effective and safe medicines. Anti-inflammatory therapy has
proven to be effective in preventing further injury in COVID-19 patients, but the benefit comes
at a cost, as targeting inflammatory pathways can imply an increased risk of infection. Thus,
optimization of the risk/benefit ratio is required in the anti-inflammatory strategy against COVID-19,
which accounts for drug formulations and delivery towards regionalization and personalization
of treatment approaches. In this perspective, we discuss how better knowledge of endogenous
immunomodulatory pathways may optimize the clinical use of novel and repurposed drugs against
COVID-19 in inpatient, outpatient, and home settings through innovative drug discovery, appropriate
drug delivery systems and dedicated molecular pharmaceutics.
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1. Introduction

Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), a potentially fatal clinical syndrome that involves the lower
airways and leads to interstitial pneumonia in humans with hyperinflammation and
respiratory dysfunction [1]. The disease is characterized by three clinical stages: (i) an
asymptomatic phase, accounting for 80 to 84% of cases, (ii) a non-severe symptomatic phase,
potentially evolving to a hypoxemic pneumonia or (iii) to a severe, potentially lethal disease
with hypoxia, lung infiltrates, and ultimate acute respiratory distress syndrome (ARDS) [1].
Drugs that inhibit key components of the coronavirus infection lifecycle have been repurposed
in COVID-19 therapy [2], with the support of proper cheminformatic tools as well to expedite
the identification of potential candidates and treatment modalities [3–7]. The mild to severe
progression of COVID-19 depends on the extent and features of the individual immune
response to the virus. Indeed, significant specific or non-specific organ damages can stem
from the host’s own cellular and humoral immune responses to the infection. Therefore,
COVID-19 pathogenesis is the result of a cascade of events starting from high levels of
circulating proinflammatory cytokines that can evolve to a cytokine storm, responsible
for non-specific inflammatory cell infiltration and contributing to downstream pulmonary
and interstitial tissue damage [8]. Such conditions can quickly develop into ARDS with
lethal consequences.

Thus, immunomodulatory agents capable of restraining or suppressing such progres-
sions are logical candidates in COVID-19 therapy. Not surprisingly, interventions based on
non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, intravenous immune
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globulins, immunosuppressants, chloroquine/hydroxychloroquine, IL-1 antagonists, IL-
6R monoclonal antibodies, TNF inhibitors, and Janus kinase (JAK) inhibitors have been
capable of relieving severe disease conditions in COVID-19 patients [9–11]. Nevertheless,
a dark side in targeting inflammatory pathways exists, owing to a higher risk of oppor-
tunistic infections. In particular, the benefit of the use of glucocorticoids, IL-6 and Janus
kinase inhibitors is likely outweighed by adverse effects, such as significantly increased
risk of mortality and secondary infections [9]. However, an optimal risk/benefit ratio
balance could be ideally granted by immunomodulatory agents capable of delivering anti-
inflammatory input at the target organs, while preserving the immune system’s capacity to
respond to pathogen invasions. This requires a better knowledge of immunoregulatory
pathways underlying the homeostatic regulation of inflammation in the diseased organs to
efficiently respond to infection while preventing damage.

Herein, we first describe current anti-inflammatory strategies, and then provide
an example of how a better knowledge of inflammatory/anti-inflammatory endogenous
pathways may optimize the clinical use of anti-inflammatory therapy in COVID-19 through
innovative drug discovery, the selection of the appropriate administration route, drug
delivery systems, and dedicated molecular pharmaceutics.

2. Current Anti-Inflammatory Approaches

The dramatic urgence of restraining the SARS-CoV-2 pandemic and preventing
COVID-19 severity has granted several anti-inflammatory drugs an off-label use or a
fast track to clinical trials (The Pharmaceutical Journal, February 2021; Online: doi:
10.1211/PJ.2021.20208126, last updated 24 February 2021, [12]). These include corticos-
teroids (i.e., dexamethasone), cytokines (i.e., interferons), drugs that interfere with cytokine
activities (i.e., tocilizumab and sarilumab, which block IL-6 activity, canakinumab and
anakinra, which block IL-1, or infliximab and adalimumab, which block TNFα) and signal-
ing pathways (i.e., baricitinib and ruxolitinib, and JAK1/2 inhibitors).

Despite initial concerns [13], clinical evidence supports the efficacy of corticosteroids
in the treatment of severe COVID-19 patients. Retrospective observational studies indicated
that severe COVID-19 patients had a more favorable evolution if treated with corticos-
teroids [14], although other studies found either no effect [15] or a delayed healing [16] in
hospitalized patients. A meta-analysis of seven randomized clinical trials, including 1703
hospitalized, critically ill patients, reported a lower 28-day all-cause mortality upon ad-
ministration of systemic corticosteroids compared to usual care or placebo [17]. Currently,
dexamethasone is strongly recommended for hospitalized patients requiring oxygen deliv-
ery through a high-flow device, non-invasive ventilation, invasive mechanical ventilation
or extracorporeal membrane oxygenation (https://www.covid19treatmentguidelines.nih.
gov/therapeutic-management/, last updated 11 February 2021).

The use of NSAIDs also initially received concerns for COVID-19 treatment [18].
Several observational studies, however, have shown that NSAIDs are not associated with
mortality or severity of disease [19–24] and their potential use in the treatment of COVID-19
has been proposed [25,26]. A recent retrospective analysis of data in Electronic Health
Records (EHRs) to identify drugs with the potential to be repurposed to treat COVID-
19 has identified, among others, ibuprofen as associated with a lower risk for COVID-
19 outcomes [27]. This is in line with a previous study analyzing EHRs in six Eastern
Massachusetts hospitals that identified a significant association between ibuprofen and
diminished risk for hospitalization [28]. Currently ongoing clinical trials evaluating the
efficacy and safety of ibuprofen will provide definite evidence for the potential clinical use
of NSAIDs in COVID-19.

Alongside corticosteroids, monoclonal antibodies directed towards cytokine receptors
look promising to decrease hyperinflammation. In fact, a recent preprint report on the Ran-
domized Evaluation of COVID-19 Therapy (RECOVERY) trial, showed that tocilizumab, a
humanized antibody binding the IL-6 receptor, was effective in hospitalized patients with
hypoxia and systemic inflammation and the benefits were present also in patients receiv-
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ing systemic corticosteroids [29]. In addition, a retrospective analysis of data extracted
from the RECOVERY study and seven previous randomized controlled trials confirmed a
tocilizumab associated reduction of 28-day mortality [29]. Recently, the results from the
REMAP-CAP trial have been published [30] demonstrating that not only tocilizumab, but
also the other IL-6 receptor antagonist, sarilumab, improved outcomes, and this occurred
also in patients treated with glucocorticoids.

The RECOVERY trial is also expected to provide results on colchicine, an alkaloid with
anti-inflammatory effects, that may bear potential therapeutic efficacy in COVID-19 [31].

Another anti-inflammatory strategy includes inhibitors of signaling pathways medi-
ating cytokine activity, such as the JAK/STAT pathway [32]. The results of the ACTT-2
trial in hospitalized adults with COVID-19 indicate that baricitinib plus remdesivir was
superior to remdesivir alone in the primary outcome, i.e., the time to recovery, and the
key secondary outcome, i.e., the clinical status at day 15 [33], thus showing promise for
the use of JAK inhibitors, including not only baricitinib but also ruxolinitib and tofacitinib,
in the treatment of COVID-19. However, evidence for the potential combination with
corticosteroids remains to be provided.

Overall, targeting inflammation is a worthwhile strategy to combat COVID-19 and
prevent disease severity. Nevertheless, even though promising results are emerging from
clinical trials, systemic administration of anti-inflammatory drugs exposes the patients to
additional risks and is associated with low compliance, especially in the case of biotech-
nological drugs. Therefore, specific approaches affording a localized action should be
preferred to improve the efficacy/safety profile, as we will illustrate in the following
sections for two endogenous pathways of immunomodulation.

3. The Inflammasome Pathway

The interferon and the NF-κB pathways have been recognized as being among the
primary activated signaling cascades in SARS-CoV-2 infection [34], producing high IL-1β,
TNF-α, and IL-6 serum and tissue levels [35,36]. Albeit being potentially protective by
promoting CD8+ T cells and phagocytes responses against infected cells and the production
of virus-specific antibodies, when highly expressed, these cytokines may contribute to
COVID-19 pathogenesis for their role in the induction of the cytokine storm [37].

Notably, only the IL-1 pathway seems to affect the phases preceding the respiratory
function, nadir [38], such that early blockade of the IL-1 receptor (IL-1R) was effective in
treating acute hyperinflammatory respiratory failure in COVID-19 patients [39–44]. By
causing the release of IL-1α and β, the activated IL-1 signaling pathway is considered a
fundamental bridge between inflammasome disreactivity, mostly driven by dysfunctional
NLRP3 activity and lung inflammation [45], including in acute lung injury after respiratory
viral infections [46].

Upon different stimuli, inflammasomes lead to the synthesis of IL-1β by recruiting
caspase-1 that cleaves the pro-IL-1β precursor to give the active form.

Being that inflammasome activity is dysregulated in COVID-19 [47–49], following
the infection, alveolar macrophages secrete TNF-α and IL-1β, giving rise to cell death,
damage, and NLRP3 activation that trigger the acute proinflammatory cascade. Further-
more, angiotensin-converting enzyme 2 signaling has also been implicated in NLRP3
activation [48].

In a subsequent phase, such initially localized inflammatory events spread to the
vasculature, producing leakage, edema, and pneumonia, typical of COVID-19 [48].

The coronavirus tolerance observed in bats has been associated to a dampened tran-
scriptional priming of NLRP3 [50], which confirms that targeting the NLRP3/IL-1β path-
way is a successful strategy in COVID-19. Several clinical studies seem to confirm this,
by showing the efficacy of IL-1R receptor antagonists (IL-1Ra), such as anakinra, against
COVID-19, even in patients with co-morbidities and combined with antiviral drugs [39–44].

Anakinra is a recombinant non-glycosylated form of IL-1Ra showing higher affinity
for IL-1R1 than that for IL-1 itself [51]. Anakinra (Kineret®) is a drug marketed in 2001 for
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the treatment of rheumatoid arthritis by subcutaneous administration of 100 mg daily and,
more recently, of cryopyrin-associated periodic syndromes and systemic-onset juvenile
idiopathic arthritis, and is widely used off-label [52]. Its therapeutic potential derives
from the ability to prevent IL-1α and IL-1β driven inflammation. Anakinra clinical use is
supported by a recognized safety and the evidence in murine lung and human bronchial
epithelial cells of a potent inhibition of pathogenic NLRP3 activation and concurrent IL-1β,
TNF-α and IL-6 suppression [53].

Together, these studies suggest that modulating NLRP3 or IL-1R1 related inflamma-
tory responses could be a successful therapy in COVID-19 (Figure 1). It is worth mentioning
that canakinumab, an antibody targeting IL-1β, has also been reported to improve out-
comes [54–56]. However, the phase III CAN-COVID trial in hospitalized patients did
not meet the primary endpoint, i.e., greater chance of survival without the need for inva-
sive mechanical ventilation, and the key secondary endpoint of reduced COVID-19 mor-
tality (https://www.novartis.com/news/media-releases/novartis-provides-update-can-
covid-trial-hospitalized-patients-covid-19-pneumonia-and-cytokine-release-syndrome-crs;
accessed 26 March 2021). Our recent observations that anakinra is capable of inhibiting
NLRP3 and inducing autophagy by a mechanism independent of the known activity on
IL-1R1 that involves a xenobiotic sensing pathway coupling mitochondrial redox balance
to autophagy (manuscript submitted) suggest that the activity of anakinra is more complex
than previously thought and may help to reconcile the results of the clinical trials.

Pharmaceutics 2021, 13, x  5 of 11 
 

 

origin [64], including metabolites produced by microbes [70]. However, it must be kept in 

mind that AhR biology relates to ligand nature, environment, and disease [64]. 

As a proof-of-concept that properly targeting AhR with an endogenous metabolite 

may result in beneficial effects, our preliminary observations indicate that local delivery 

of a microbial metabolite, administered either orally via microparticle encapsulation or 

via lung in a spray-dried formulation, could alleviate inflammation in mice with respira-

tory infection and inflammation (Puccetti et al. manuscript in preparation). Thus, the 

proper targeting of AhR in the lung alleviates the inflammatory response during infection. 

 

Figure 1. Targeting inflammatory pathways in coronavirus disease-19 (COVID-19) by tryptophan 

(trp) metabolites and Anakinra. (a) Anakinra inhibits NLRP3 by blocking IL-1R1 activation; (b) 

endogenous trp metabolites target AhR downregulating the NLRP3 pathway. Kyn = kynurenine; 

3-IAld = Indole-3-carboxaldehyde. 

5. Concluding Remarks 

The requirements for drug formulations have increased significantly in recent dec-

ades, boosted by the current industry trends towards regionalization and personalization 

of treatment approaches. This trend is what demanded for the optimal delivery of anti-

inflammatory agents in COVID-19, given the need for fine balancing benefits and risks. 

New formulations and techniques for the extended and precise dosing of medicines are 

now in place, such as spray-drying to produce enteric microparticles for local intestine 

release and inhalable dry powders for lung delivery [71]. Inhaled products can grant lo-

calization of therapeutic action, enabling dose reduction and lowering the risk of off-target 

effects [72], and are credited as an optimal delivery form for proteins and peptides [73]. 

Inhaled peptides have been already marketed or are under clinical development [71]. 

Likewise, despite the gut adverse environment, novel emerging formulations show prom-

ises for protein oral delivery [74]. Anakinra comes in prefilled syringes for subcutaneous 

injection at an individual dose of 100 mg/0.67 mL/day. Although highly bioavailable (95%) 

COVID-19
Inflammation

IL-1R1

IL-1b

NLRP3

AhR

3-IAld
Anakinra

Kyn

Trp

SARS-CoV-2
Infection

a.

b.

Figure 1. Targeting inflammatory pathways in coronavirus disease-19 (COVID-19) by tryptophan
(trp) metabolites and Anakinra. (a) Anakinra inhibits NLRP3 by blocking IL-1R1 activation; (b) en-
dogenous trp metabolites target AhR downregulating the NLRP3 pathway. Kyn = kynurenine;
3-IAld = Indole-3-carboxaldehyde.
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4. The Xenobiotic Pathway

Interferons (IFNs), either alone or combined with antiviral agents, are currently being
explored for the treatment of COVID-19, owing to their role in innate immunity. Type I IFNs
(alpha and beta) are secreted upon viral infection and are known to have antiviral activity
against coronaviruses, which explains the considerable number of current clinical studies
listed on ClinicalTrials.gov (US National Library of Medicine, 2020). IFNs are known to shift
tryptophan (trp) catabolism away from serotonin toward kynurenines [57] via the enzyme
indoleamine 2, 3-dioxygenase (IDO)1. IDO1 together with tryptophan-2, 3-dioxygenase have
been related to inflammatory diseases, cancer, diabetes, and mental disorders in light of their
regulatory role in kynurenine production in the trp metabolic pathway [58–60]. IDO1 has
an important role in preserving immune tolerance and homeostasis in the lungs [61,62].
Therefore, it is not surprising that the IDO1/kynurenine pathway is upregulated in COVID-
19 due to the rise in pro-inflammatory cytokines [63]. This implies that more than IDO1
mimetics, alternative pathways of trp utilization could be exploited for tolerance induction
in the lung.

The Aryl Hydrocarbon Receptor (AhR) is a ubiquitous ligand-activated transcription
factor mainly expressed in barrier organs, such as the lungs, skin, liver, and gut [64].
Particularly in these organs, AhR exerts a fundamental regulation of the immune response
and the maintenance of mucosal homeostasis [65]. Albeit still debated, the increasing body
of literature connects AhR signaling to the preservation of lung health [66]. Such an AhR
role may help contrasting lung pathogens by sensing virulence factors and promoting
the subsequent recruitment of inflammatory cells [67]. Activation of AhR by CoV may
change disease phenotypic features based on time after infection but also on diet and
environmental factors [68].

Evidence supporting the role of AhR in lung physiology, including negative NLRP3
regulation [69], could provide new COVID-19 therapeutic opportunities based on the AhR
and/or other xenobiotic receptor biological functions (Figure 1). The AhR senses a wide
variety of agonists, typically hydrophobic in nature, of either exogenous or endogenous
origin [64], including metabolites produced by microbes [70]. However, it must be kept in
mind that AhR biology relates to ligand nature, environment, and disease [64].

As a proof-of-concept that properly targeting AhR with an endogenous metabolite
may result in beneficial effects, our preliminary observations indicate that local delivery of
a microbial metabolite, administered either orally via microparticle encapsulation or via
lung in a spray-dried formulation, could alleviate inflammation in mice with respiratory
infection and inflammation (Puccetti et al. manuscript in preparation). Thus, the proper
targeting of AhR in the lung alleviates the inflammatory response during infection.

5. Concluding Remarks

The requirements for drug formulations have increased significantly in recent decades,
boosted by the current industry trends towards regionalization and personalization of
treatment approaches. This trend is what demanded for the optimal delivery of anti-
inflammatory agents in COVID-19, given the need for fine balancing benefits and risks.
New formulations and techniques for the extended and precise dosing of medicines are
now in place, such as spray-drying to produce enteric microparticles for local intestine
release and inhalable dry powders for lung delivery [71]. Inhaled products can grant local-
ization of therapeutic action, enabling dose reduction and lowering the risk of off-target
effects [72], and are credited as an optimal delivery form for proteins and peptides [73].
Inhaled peptides have been already marketed or are under clinical development [71]. Like-
wise, despite the gut adverse environment, novel emerging formulations show promises
for protein oral delivery [74]. Anakinra comes in prefilled syringes for subcutaneous
injection at an individual dose of 100 mg/0.67 mL/day. Although highly bioavailable
(95%) [75], reaching maximum plasma levels in 3–7 h with a terminal half-life of 6–8 h, the
current once-a-day subcutaneous injection of anakinra is relatively low compliant and may
show lower efficacy when delivered systemically in lung infections, such as in the case

ClinicalTrials.gov
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of COVID-19. Despite the safety profile and low toxicity, even in patients with asthma
history, injection site reactions in addition to self-medication issues can result in patient
discomfort that discourages this regimen. Thus, the high compliance of the lung and oral
routes and the existence of enabling technologies for fast translation to the clinic make
the oral and pulmonary delivery of anakinra a very attractive approach in COVID-19
therapy. Indeed, inhalation could be a pivotal approach against COVID-19, since the
lungs represent the main infection site, and thus a therapeutic target, as even confirmed
by in silico predictive tools [76,77]. The well-known and above-mentioned advantages of
inhaled drugs, particularly in the form of dry powders, could be of great benefit for drugs
like anakinra, justifying the likely higher cost of production compared to the injectable
form. In this regard, considering the cost of the protein drug, dose reduction compared
to Kineret® may partially counterbalance the above-mentioned higher expenses of the
pulmonary products. Moreover, embedding the drug into a solid form extends the shelf
life of the product, especially as far as biotechnological drugs are concerned, increasing its
market value.

Similar to what was observed with the AhR-ligand formulations [78] (Puccetti et al.,
manuscript in preparation), our own ongoing project is in place with the expectation to
optimize both the therapeutic efficacy of anakinra and the patient’s compliance. Thus,
molecular pharmaceutics of repurposed and novel drugs may generate essential informa-
tion useful for the development of anti-inflammatory-based drug discovery and delivery
strategies in COVID-19.

In this regard, insightful investigation of immunological regulatory pathways has
led to the identification of novel selective biologicals and small molecule drugs that have
enabled tremendous advances in the treatment of chronic inflammatory diseases and tumor
therapy [79].

The challenge ahead is to optimize the clinical use of biologicals to target inflammatory
pathways in COVID-19 through novel drug delivery platforms and dedicated molecular
pharmaceutics (Figure 2).

Pharmaceutics 2021, 13, x  6 of 12 
 

 

formulations show promises for protein oral delivery [74]. Anakinra comes in prefilled 
syringes for subcutaneous injection at an individual dose of 100 mg/0.67 mL/day. 
Although highly bioavailable (95%) [75], reaching maximum plasma levels in 3–7 h with 
a terminal half-life of 6–8 h, the current once-a-day subcutaneous injection of anakinra is 
relatively low compliant and may show lower efficacy when delivered systemically in 
lung infections, such as in the case of COVID-19. Despite the safety profile and low 
toxicity, even in patients with asthma history, injection site reactions in addition to self-
medication issues can result in patient discomfort that discourages this regimen. Thus, the 
high compliance of the lung and oral routes and the existence of enabling technologies for 
fast translation to the clinic make the oral and pulmonary delivery of anakinra a very 
attractive approach in COVID-19 therapy. Indeed, inhalation could be a pivotal approach 
against COVID-19, since the lungs represent the main infection site, and thus a therapeutic 
target, as even confirmed by in silico predictive tools [76,77]. The well-known and above-
mentioned advantages of inhaled drugs, particularly in the form of dry powders, could 
be of great benefit for drugs like anakinra, justifying the likely higher cost of production 
compared to the injectable form. In this regard, considering the cost of the protein drug, 
dose reduction compared to Kineret® may partially counterbalance the above-mentioned 
higher expenses of the pulmonary products. Moreover, embedding the drug into a solid 
form extends the shelf life of the product, especially as far as biotechnological drugs are 
concerned, increasing its market value. 

Similar to what was observed with the AhR-ligand formulations [78] (Puccetti et al., 
manuscript in preparation), our own ongoing project is in place with the expectation to 
optimize both the therapeutic efficacy of anakinra and the patient’s compliance. Thus, 
molecular pharmaceutics of repurposed and novel drugs may generate essential 
information useful for the development of anti-inflammatory-based drug discovery and 
delivery strategies in COVID-19. 

In this regard, insightful investigation of immunological regulatory pathways has led 
to the identification of novel selective biologicals and small molecule drugs that have 
enabled tremendous advances in the treatment of chronic inflammatory diseases and 
tumor therapy [79]. 

The challenge ahead is to optimize the clinical use of biologicals to target 
inflammatory pathways in COVID-19 through novel drug delivery platforms and 
dedicated molecular pharmaceutics (Figure 2). 

 

Figure 2. Molecular pharmaceutics of tryptophan metabolites and anakinra in the treatment of COVID-19. The pulmonary
route is preferred for enhanced local effect and dose reduction. The oral route is also considered as an alternative, highly
compliant and cost-effective approach.

The recent development of inhaled forms of remdesivir for protecting and treating
the respiratory mode of SARS-CoV-2 infection [80] and the relevant number of new or
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repurposed inhaled drugs under clinical development (Table 1) emphasize how molecular
pharmaceutics, by allowing more widely available early-stage intervention methods to non-
hospitalized patients, could significantly lessen symptoms before they become potentially
life-threatening, lower costs, and reduce transmission.

Table 1. Ongoing clinical trials of new and repurposed inhaled drugs in COVID-19 (ClinicalTrials.gov, accessed Oct. 2020,
not intended to be exhaustive).

Location Study Title Development Stage

U.S. Safety, tolerability and pharmacokinetics of inhaled nanoparticle formulation of remdesivir
(GS-5734) and NA-831 (NEUROSIVIR) Phase I

Switzerland Inhaled aviptadil for the prevention of COVID-19 related ARDS Phase I

U.S. An experiment to evaluate the safety of agenT-797 in COVID-19 patients with severe
difficulty breathing. Phase I

U.S. A study to evaluate the safety, tolerability and pharmacokinetics of orally inhaled aerosolized
hydroxychloroquine sulfate in healthy adult volunteers Phase I

U.S. Study in participants with early stage coronavirus disease 2019 (COVID-19) to evaluate the safety,
efficacy, and pharmacokinetics of remdesivir administered by inhalation Phase I/II

France Efficacy of captopril in COVID-19 patients with severe acute respiratory syndrome (SARS) cov-2
pneumonia (CAPTOCOVID) Phase II

Egypt Efficacy of aerosol combination therapy of 13 cis retinoic acid and captopril for treating COVID-19
patients via indirect inhibition of transmembrane protease, serine 2 (TMPRSS2) Phase II

U.K. Steroids in COVID-19 study (STOIC) Phase II

U.K. Inhaled anti-viral (SNG001) for SARS-cov-2 (COVID-19) infection Phase II

Korea A trial of ciclesonide in adults with mild-to-moderate COVID-19 Phase II

Egypt Efficacy and safety of drug combination therapy of isotretinoin and some antifungal drugs as a
potential aerosol therapy for COVID-19: an innovative therapeutic approach COVID-19. Phase II

Qatar Inhaled iloprost for suspected COVID-19 respiratory failure (ILOCOVID) Phase II

U.K., Romania,
Ukraine, Moldova TD-0903 for ALI associated with COVID-19 Phase II

Egypt
Aerosol combination therapy of all-trans retinoic acid and isotretinoin as a novel treatment for

inducing neutralizing antibodies in COVID -19 infected patients better than vaccine: an innovative
treatment (Antibodies)

Phase II

Canada Inhaled ciclesonide for outpatients with COVID-19 (CONTAIN) Phase II/III

Iran Evaluation of efficacy of levamisole and formoterol+budesonide in treatment of COVID-19 Phase II/III

Russia An open randomized study of dalargin effectiveness in patients with severe and critical
manifestations of SARS-COVID-19 Phase III

U.S. A study of the safety and efficacy of ciclesonide in the treatment of non-hospitalized
COVID-19 patients Phase III

U.S. Dornase alfa for ARDS in patients with SARS-cov-2 (DORNASESARS2) Phase III

Spain Inhaled corticosteroid treatment of COVID19 patients with pneumonia Phase IV

Argentina Nebulized heparin in severe acute respiratory syndrome COVID-19 (NEBUHEPA) Phase IV

China Evaluation of Ganovo (danoprevir) combined with ritonavir in the treatment of
SARS-cov-2 infection Phase IV

U.S. Valproate alone or in combination with quetiapine for severe COVID-19 pneumonia with
agitated delirium Phase IV

Belgium Sargramostim in patients with acute hypoxic respiratory failure due to COVID-19 (SARPAC) Phase IV
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