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Abstract: The diffusion behavior of fluid water in nanochannels with hydroxylation of silica gel and
silanization of different modified chain lengths was simulated by the equilibrium molecular dynamics
method. The diffusion coefficient of fluid water was calculated by the Einstein method and the Green–
Kubo method, so as to analyze the change rule between the modification degree of nanochannels and
the diffusion coefficient of fluid water. The results showed that the diffusion coefficient of fluid water
increased with the length of the modified chain. The average diffusion coefficient of fluid water in
the hydroxylated nanochannels was 8.01% of the bulk water diffusion coefficient, and the diffusion
coefficients of fluid water in the –(CH2)3CH3, –(CH2)7CH3, and –(CH2)11CH3 nanochannels were
44.10%, 49.72%, and 53.80% of the diffusion coefficients of bulk water, respectively. In the above four
wall characteristic models, the diffusion coefficients in the z direction were smaller than those in
the other directions. However, with an increase in the silylation degree, the increased self-diffusion
coefficient due to the surface effect could basically offset the decreased self-diffusion coefficient
owing to the scale effect. In the four nanochannels, when the local diffusion coefficient of fluid water
was in the range of 8 Å close to the wall, Dz was greater than Dxy, and beyond the range of 8 Å of the
wall, the Dz was smaller than Dxy.

Keywords: porous silica gel; hydroxylation; silylation; wall characteristics; diffusion coefficient

1. Introduction

Recently, fluid transport properties in nanochannels have attracted extensive atten-
tion [1–3]. Porous silica gel [4] has been widely used in drug delivery [5], vibration
reduction [6], and other aspects due to its internal nanoporous structure and mature
preparation technology.

Compared with macroscopic flow, self-diffusion of the fluid in micro-nanochannels
is significantly different. The “surface effect” between the fluid and wall molecules and
the “scale effect” in the confined space are the main factors influencing the self-diffusion
behavior of the fluid in micro-nanochannels. Many scholars have carried out multiple
simulation calculation studies on the scale effect. Magda et al. [7] found that the diffusion
coefficient of water molecules was correlated with the average density during the trans-
mission process in nanochannels, and when the channel diameter was more than 10 times
the diameter of water molecules, the average diffusion coefficient of water in the channels
was similar to that of bulk water. Bourg et al. [8] simulated and observed that there were
three density statistical layers in the silica nanochannels with diameters of 2 and 4 nm,
but not in the silica nanochannels with a diameter of 1 nm. The diffusion coefficient of
fluid water increased with the channel diameter. The first layer of fluid water near the
channel wall was relatively stable, and it was less affected by water in the other areas
of the channel. Fasano et al. [9] simulated the diffusion behavior of water molecules in
carbon nanotube arrays, and they found that the diffusion coefficient of fluid water was
related to the size of the nanochannels and the change in the diffusion coefficient of water
molecules could be controlled by inducing an electric field. Liu et al. [10] investigated
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the self-diffusion coefficient of water in different directions, and they reported that the
self-diffusion coefficient of water along the channel direction was about 4–5 times that of
water along the pore direction.

There are some reports on the influence of surface effects on the fluid diffusion behav-
ior in micro-nanochannels. For example, Zhao et al. [11] found that the diffusion capacity
of water spontaneously entering the original graphene was 1–2 orders of magnitude higher
than that of water entering the hydroxylated graphene. Wei et al. [1] reported that titanium
dioxide (TiO2) nanochannels were hydrophilic, and the liquid water formed hydrogen
bonds with the TiO2 wall surface in the channels. The surface of the carbon-covered
channels was hydrophobic, but it enhanced the diffusion characteristics of the water
molecules. Fasano et al. [12] also studied the influence of hydrophilicity and hydropho-
bicity on the diffusion characteristics. It was found that the self-diffusion coefficient of
water in hydrophobic zeolites with the hydrophilic group defect decreased with increased
hydrophilic groups.

Currently, there are few reports on the diffusion characteristics of the fluid in modified
silica nanochannels. In this study, the equilibrium molecular dynamics method was used
to simulate the self-diffusion behavior of water in the hydroxylated and silanized silica
channels with different chain lengths. A qualitative description of the relationship between
the number of silanized chains on the channel wall and the diffusion coefficient of the
fluid water was obtained. The diffusion behavior described in this paper refers to the
dynamic self-diffusion behavior of fluid molecules under the action of molecular thermal
motion without a concentration gradient. The water molecules follow the Fickian diffusion
mechanism [13], where the mean square displacement of water molecules is proportional
to time and the diffusion ability is evaluated by the diffusion coefficient.

2. Nanoflow Model
2.1. Modeling

Porous silica is a compound comprising amorphous silicon dioxide whose unmodified
silica surface contains hydroxyl –OH groups, modified hydrophobic silicone is a porous
hydrophobic silicone compound formed by porous silicone particles modified by linear
chains of alky chlorosilanes, ClSi (CH3)2CnH2n−1. After the silicone is silanized, hydroxyl
–OH on the surface is replaced by a linear chain of silanyl (–Si(CH3)2CnH2n+1), Si in the
silane baseline linear chain is consistent with Si in amorphous silica, and the difference
in modification degree ultimately leads to the difference in chain length n. In order to
facilitate the study, the molecular composition of the contact interface characteristics of
the nanochannel modified layer is regarded as an alkyl baseline linear chain composed
of carbon and hydrogen atoms (-CnH2n+1, characterized by n for chain length). The
modification process is shown in Figure 1.
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Figure 1. The process diagram of modified silica gel. (a) Alkyl chlorosilane molecule; (b) the
molecular structure of the nanochannel wall after modifying.

The method of building the model [14] was as follows in Figure 2: the wall surface of
the nanochannels comprised α-SiO2, and its protocells expanded into a 5 × 6 × 15 super
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crystal package along with the x, y, and z directions, namely the wall surface of the channels.
Then, the surface was modified with –OH, –(CH2)3CH3, –(CH2)7CH3, and –(CH2)11CH3,
with a modification rate of surface silylation of 50%, it means that 50% of the Si atoms
in the entire nanochannel wall are modified, and the surface of the nanochannel wall is
completely alkyl modified. To study the surface effect of the modified layer more effectively,
the circular hole channel was simplified as a two-plate flow channel. The TIP4P/2005
model [15] was used for water molecules in Figure 3, The channel widths of the four mock
systems are all 40 Å, and the calculated fluid zone is 32.28 × 73.90 × 40.00 Å3. The initial
density of fluid water in the channel is 1g/cm3, it contains a total of 2632 water molecules
and the flow model of nanochannels is shown in Figure 4.
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Figure 4. Micro-flow system in a nanochannel: (a) hydroxylated nanochannel; (b) silanized nanochan-
nel. Color legend: silicon Si (ochre), SiO2 oxygens OSiO2 (blue), hydroxide oxygens Ohy (yellow),
and hydroxide hydrogens Hhy (black), alkyl chain C (ch2/ch3) (gray), alkyl chain H (ch2/ch3) (orange),
water Ow (red), water Hw (white).

2.2. Force Field Analysis

The multiphase system mainly comprised α-SiO2, the surface hydroxyl group –OH
or the alkyl linear chain (–CnH2n + 1), and water molecule (H2O). Total potential energy
function between atoms is expressed as follows:

U = ∑
bond

ub(l) + ∑
angle

uθ(θ) + ∑
dihedral

uω(ω) + ∑
out−of−plane

uχ(χ) + ∑
cross

u(l, θ, ω) + UCoulomb + ULJ (1)

where

ULJ =
N

∑
i=1, j>1

4εij

(σij

rij

)12

−
(

σij

rij

)6
 (2)

UCoulomb =
N

∑
i=1, j>1

qiqj

4πε0rij
(3)

where θ, l, ω, and χ represent the bond angle, bond length, dihedral angle and vibration
angle from the plane, respectively. N represents the total number of atoms. rij represents
the distance from the ith atom to the jth one. εij and σij are Lennard-Jones (LJ) functional
potential energy wells and distance parameter, respectively. qi indicates the quantity of
electric charge of atom i, and ε0 is permittivity of vacuum. The particle–particle and
particle–mesh (PPPM) algorithm [16] was used to calculate the long-range Coulomb effect.
The selection of the LJ potential energy parameter, bond, and charge quantity of silica
and modified alkane chain fit according to the experimental data, which is shown in
Table 1 [14,17–19].

Table 1. The LJ potential energy parameters and coulombic charge in the model [12].

Composition of Multiphase System Atomic Type ε/eV σ/Å |e|

water
Hw 0.0 0.0 0.5564
Ow 0.00803105 3.1589 −1.1128

hydroxyl Ohy 0.006595682 3.1538 −0.51
Hhy 0.001994750 0.4 0.32

silica
OSiO2 0.006595682 3.1538 −0.70

Si 0.02602000 3.91996 bond incrementally

alky chain

Cch2 0.002862039 3.5 −0.148
Cch3 0.002862039 3.5 −0.222
Hch2 0.001140073 2.5 0.074
Hch3 0.001300927 2.5 0.074
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2.3. Simulation Details

The self-diffusion behavior of fluid water in silica gel nanochannels with surface
groups, such as –OH, –(CH2)3CH3, –(CH2)7CH3, and –(CH2)11CH3, was studied. The
self-diffusion parameters of fluid water in silica gel nanochannels were simulated by the
equilibrium molecular dynamics method. The four systems were simulated at standard
atmospheric pressure and temperature T = 298 K, using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) software to immobilize the channel wall atoms.
The SHAKE algorithm was selected to limit the bond length and angle of water molecules.
The velocity-Verlet algorithm was used to solve the motion equation of particles with a
time step of 0.1 fs, and system relaxation time of 15 ps reached the initial equilibrium state
using the NPT ensemble. Then, the system was run under the NVE ensemble for 20 ps.
During this period, physical parameters, such as mean square displacement and diffusion
coefficient of fluid water, were calculated to analyze the influence of modified convective
water on the transport characteristics of silica nanochannels.

3. Results and Analysis
3.1. Simulation of Diffusion Coefficients of Fluids in Nanochannels

According to the fluctuation-dissipation theory of non-equilibrium statistical thermo-
dynamics, the Einstein method and the Green–Kubo method can be used to simulate the
diffusion coefficient of the fluid in nanochannels.

The Einstein method obtains the diffusion coefficient by calculating the mean square
displacement of fluid:

MSDi(t) = 〈|
→
ri (t)−

→
ri (0)|

2
〉 (i = x, y, z) (4)

DMSD = lim
t→∞

1
2nt
〈|→ri (t)−

→
ri (0)|

2
〉 (5)

Equation (4) is the mean square displacement (MSD) equation, where r (t) represents
position of the water molecular mass center at time t and <> represents the average value
of displacement of all water molecules in the system from initial time to time t. and
Equation (5) indicates the diffusion coefficient obtained by calculating the time variability
of MSD at that time by the Einstein relation. n represents the calculated spatial dimension,
for example, n = 3 indicates the diffusion coefficient in three-dimensional space.

The MSD of fluid water in the four types of wall characteristic nanochannels in x, y,
and z directions was simulated by Equation (4), as shown in Figure 5.
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Figure 5. MSD in the x, y, and z directions of water in a nanochannel with different surface characteristics.

The mean azimuthal displacement of fluid water in the channels increased gradually
in the three directions over time, and the mean azimuthal displacement of fluid water in x
and y directions was approximately the same, but it was greater than that in the z direction.
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This finding was similar to the results presented in the study cited in reference [8], which
showed that the z direction was the aperture direction. Its average azimuthal displacement
was smaller than the channel direction limited by the wall. To compare the results of
different wall characteristics, MSD of the walls in four channels was calculated further,
as shown in Figure 6. The results showed that the overall average MSD of the fluid
water in the silanized channels was greater than that in the hydroxylated channels, and
the MSD of the fluid water in the channels gradually increased with the length of the
silanization-modified chain.
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Further analysis was made on the mean square displacement rate (∆MSD) of fluid
water in the four wall features of the silicon dioxide nanochannel. By looking at the first
derivative of the mean square displacement curve function, it is obtained that the MSDx\y\z
in each nanochannel is shown in the three directions of x, y and z, as shown in Figure 7,
and the overall average ∆MSD is shown in Figure 8.

Molecules 2021, 26, x FOR PEER REVIEW 6 of 12 
 

 

x and y directions was approximately the same, but it was greater than that in the z direc-

tion. This finding was similar to the results presented in the study cited in reference [8], 

which showed that the z direction was the aperture direction. Its average azimuthal dis-

placement was smaller than the channel direction limited by the wall. To compare the 

results of different wall characteristics, MSD of the walls in four channels was calculated 

further, as shown in Figure 6. The results showed that the overall average MSD of the 

fluid water in the silanized channels was greater than that in the hydroxylated channels, 

and the MSD of the fluid water in the channels gradually increased with the length of the 

silanization-modified chain. 

 

Figure 6. Overall average MSD of water in a nanochannel with different surface characteristics. 

Further analysis was made on the mean square displacement rate (MSD) of fluid 

water in the four wall features of the silicon dioxide nanochannel. By looking at the first 

derivative of the mean square displacement curve function, it is obtained that the 

𝑀𝑆𝐷𝑥\𝑦\𝑧 in each nanochannel is shown in the three directions of x, y and z, as shown in 

Figure 7, and the overall average MSD is shown in Figure 8. 

 

Figure 7. MSD in the x, y, and z directions of water in a nanochannel with different surface charac-

teristics. 

0 5 10 15 20
0

2

4

6

8

10

12

M
S

D
/Å

2

t/ps

 -OH

 -(CH
2
)

3
CH

3

 -(CH
2
)

7
CH

3

 -(CH
2
)

11
CH

3

Figure 7. ∆MSD in the x, y, and z directions of water in a nanochannel with different surface characteristics.

According to the above result of the mean square displacement rate, using the varia-
tion Form (6) of the Einstein relation, the self-diffusion coefficients (DMSD) of fluid water
in the x, y and z directions in the four types of wall characteristic channels were calcu-
lated respectively, and then the total average diffusion coefficient of fluid water in the
nanochannels was calculated by Equation (7). The calculation results are shown in Table 2.

DMSD(i) = lim
t→∞

MSD(i)
2t

= lim
t→∞

〈|→ri (t)−
→
ri (0)|

2
〉

2t
i = (x, y, z) (6)

DMSD =
DMSD(x) + DMSD(y) + DMSD(z)

3
(7)
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Figure 8. Overall average ∆MSD of water in nanochannel with different surface characteristics.

Table 2. Diffusion coefficient of water in nanochannel with different surface characteristics.

Nanochannel Type –OH –(CH2)3CH3 –(CH2)7CH3 –(CH2)11CH3

Diffusion coefficient (10−9 m2·s−1)

x 0.20 1.15 1.23 1.24
y 0.19 1.06 1.17 1.21
z 0.15 0.75 0.93 1.15

DMSD 0.18 0.99 1.11 1.20
DVACF 0.17 0.92 1.04 1.17

To verify the correctness of the results, control simulation was introduced and the
self-diffusion coefficient DVACF was obtained by integrating the velocity auto-correlation
function (VACF) of fluid water in the nanochannels with the Green–Kubo method (8).

DVACF =
1
3

∫ ∞

0
dt〈→v (t)−→v (0)〉 (8)

where, v(t) is the speed of mass center of water molecule at time t, and <> indicates all
water molecules in the system from initial time to time t. DVACF is the diffusion coefficient
obtained by calculating the change rate of particle velocity over time through the Green–
Kubo relation. The calculation result is shown in Figure 9.
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Figure 9. Diffusion coefficient DVACF of water in a nanochannel with different surface characteristics.

The diffusion coefficients of each channel wall calculated by the Einstein method and
the Green–Kubo method, as well as the diffusion coefficients in x, y, and z directions are
listed in Table 2.
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A comparison of DMSD and DVACF among the four models indicates basically same
calculation results of the Einstein and Green–Kubo methods, suggesting that the data are
reliable. Meanwhile, Table 2 demonstrates that there are obvious differences in the internal
diffusion coefficient of fluid water in different wall features of silicon dioxide nanochannels,
the diffusion coefficients in the x, y and z directions of each channel are also unequal, as
shown by anisotropy, and the diffusion coefficients in the z direction of all models were
smaller than those in x and y directions due to the limitation of wall space. Because the
circular channel model was simplified as a two parallel plate model [20] in this study,
the diffusion coefficient of fluid water in the z direction was limited, while the diffusion
coefficients of fluid water in x and y directions were basically the same. Owing to the scale
effect, the total diffusion coefficients of fluid water in the four models were smaller than
the total diffusion coefficients of bulk water DEXP = 2.26~2.29 × 10−9 m2 · s−1 [21].

The self-diffusion coefficient of fluid water in a hydroxylated channel was only about
1/5 of the self-diffusion coefficients in the other three models on comparing the four channel
walls with different surface characteristics. This was because hydroxyl is a hydrophilic
group and it forms hydrogen bonds with water, which hinders the self-diffusion behavior
of water and reduces the self-diffusion coefficient of water. The mean square displacement
of the modified nanochannel is proportional to the hydrophobic strength. At the same time,
the self-diffusion coefficient of fluid water in the z direction gradually increased with the
length of the silane-modified chain and the growth rate was 20–25%.

3.2. The Radial Distribution Function and the Velocity Distribution of the Fluid

In order to study the role of hydrogen bonds in depth, the radial distribution function
(RDF, g(r)) of the hydrogen bond between the fluid and the channel wall in the four
mock systems is analyzed and discussed. First, the radial distribution functions between
hydroxyl groups in hydroxyl surface and O and H atoms in water molecules are calculated,
as shown in Figure 10a. The first peak of RDF between H and O in the hydromolecular
wall is at 1.77 Å, indicating a strong hydrogen bond between the two [22]. The first peak of
O and H in the water in the wall is at 2.16 Å, which is beyond the distance from which the
hydrogen bond is formed. In Figure 10b, the radial distribution function between H and O
in water in the modified wall is shown, wherein the carbon chain length of the modified
layer is –(CH2)3CH3, –(CH2)7CH3 and –(CH2)11CH3. The results show that the surface
of the modified layer carbon chain length –(CH2)3CH3 and –(CH2)7CH3 has small peak
fluctuations at 3.30 Å and 3.15 Å, both distances exceed the distance required to form a
hydrogen bond, indicating the formation of hydrogen-free bonds between water molecules
and modified silanized walls, respectively, the peak of the surface of –(CH2)11CH3 basically
disappears here, indicating the interaction between the two is characterized by weak
coulomb and Van der Waal, and decreases as the chain length increases.

By comparing the radial distribution function between different characteristics wall
surfaces and water molecules, the following conclusions can be obtained: hydroxylized wall
surface and water molecules have a strong hydrogen bonding effect, which is also one of the
reasons for its hydrophilicity, and the formation of hydrogen-free bonds between modified
silanized wall surfaces and water molecules, so that the moisturizing of nanochannels
is shown as strong hydrophobic. This also reasonably explains the positive relationship
between diffusion coefficient and hydrophobic strength.

Calculated by simulation, the fluid area is divided into 40 layers in the direction of
z, each with a thickness of 1 Å, after the simulation system has reached equilibrium, the
velocity distribution of fluids in the nanochannel is counted as shown in Figure 11, and the
gray shadows in the figure represent the channel wall surface in order to visually observe
the velocity distribution of fluid water within the nanochannel. To be observed after the
system reaches equilibrium, the velocity distribution of fluid water in the nanochannel is
similar to its macro-flow, and its velocity distribution curve is parabolic. However, due to
the solid–liquid potential and the characteristic molecular layer of the channel wall, there
is a stable viscosity layer at the solid–liquid interface in the hydroxylized nanochannel, the
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fluid molecules are distributed in an orderly manner, and the viscosity of the fluid increases,
the shear rate becomes smaller, no velocity slip, nanochannel The performance is strong
hydrophilic, while the silanized nanochannel solid liquid interface with the enhancement
of the degree of modification, fluid viscosity gradually decreased, shear rate gradually
become larger, the phenomenon of “speed slip”, as a strong hydrophobic.
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Figure 10. H-bonds radial distribution function at solid–liquid interface. (a) H-bonds radial distribu-
tion function at solid–liquid interface in hydroxylation nanochannel; (b) H-bonds radial distribution
function at solid–liquid interface in silanized nanochannel.
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Figure 11. Velocity distribution of water in nanochannel with different surface characteristics.

At the center of the nanochannel, the calculated statistics show that the fluid velocity
in the hydroxylized nanochannel is 3.82 Å/ps, while the alkane chain is –(CH2)3CH3,
–(CH2)7CH3, –(CH2)11CH3 silane, the fluid flow rate in the nanochannel is 4.33 Å/ps,
4.70 Å/ps, 5.49 Å/ps, and the results show that the fluid flow rate is positively correlated
with the growth of alkyl chain, and the hydrophobicity of nanochannel is enhanced,
which is beneficial to increase the flow of the channel. The velocity distribution of fluid
water in the channel with alkyl chain length of –(CH2)11CH3 is close to the nature of
macrofluids [23–25].

3.3. Simulation of Local Diffusion Coefficients of Fluids in Nanochannels

In order to further explore the local diffusion coefficient of fluid water in its nanochan-
nel before and after silicone modification, the fluid is divided along the fluid area parallel to
the x–y plane into a 2 Å thick flow layer with a total of 20 layers. Because the nanochannel
is a symmetrical channel in the direction of z, it is possible to calculate and analyze the
10 layers of fluid layer on the inside side of the nanochannel.
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Since nanochannels limit the z-velocity of fluid molecules near the wall, the velocity
autocorrelation function integral of the tropospheric water in the nanochannel is used to
obtain local diffusion coefficients [26]. Therefore, the local diffusion coefficients Dz and
Dxy, which are parallel and perpendicular to each stratosphere of the channel wall, are
calculated and analyzed by Einstein method:

Dz = 〈∆2
z(t)〉/(2t) (9)

Dxy = 〈∆2
x(t) + ∆2

y(t)〉/(4t) (10)

where ∆2
x(t), ∆2

y(t), ∆2
z(t) is the mean square displacement on the three dimensions of x, y,

z within each stratosphere.
The results are shown in Figure 12, which shows that the local diffusion coefficient Dz

is greater than Dxy in the range of 8 Å near the wall before and after the modification of
the silica nanochannel, which is reasonably interpreted as water molecules entering the
wall chain length or base group within the compartment, and beyond the distance range
of 8 Å of the wall surface, the local diffusion coefficient of fluid water in the nanochannel
is smaller than Dxy, and the local diffusion coefficient of fluid water at the center of the
nanochannel of silanized wall features is very different. The local diffusion coefficient
curve of fluid water in the silicone nanochannel shows a certain smoothness, and does not
show obvious stratification phenomenon like the local diffusion coefficient curve of water
attached to the surface of hematite nanochannel [27].
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Figure 12. Local diffusion coefficient of water in nanochannel with different surface characteristics.

The local diffusion coefficient of fluid water in the hydroxylization (–OH) nanochannel
is smaller than its value in the silanized nanochannel, but with the increase of the distance
between the flow layer and the wall surface, the local diffusion coefficient shows the trend
of gradual increase.

4. Conclusions

In this study, the MSD and the self-diffusion coefficient of water in silica nanochannels
without a concentration gradient were studied.

(1) Due to the influence of the scale effect, all the self-diffusion coefficients of fluid
water in silica nanochannels were lower than the self-diffusion coefficients of bulk water,
and the self-diffusion coefficients of –OH, –(CH2)3CH3, –(CH2)7CH3, and –(CH2)11CH3
were 8.01%, 44.10%, 49.72%, and 53.80% of the self-diffusion coefficients of bulk water,
respectively. The diffusion coefficient of fluid water increased with the modification degree.
In a sense, it is explained that before silicone modification, hydroxylized wall has a certain
obstructive effect on the diffusion behavior of fluid water, while the modified silanized
wall plays a certain role in promoting the diffusion behavior of fluid water.
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(2) From the MSD in the z direction of –OH, –(CH2)3CH3, –(CH2)7CH3, and –(CH2)11CH3,
the self-diffusion coefficient of silica nanochannels in the scale limited direction was much
lower than that in the unrestricted direction. However, the surface effect of the wall
features of the modified silicone nanochannel plays a leading role in the transmission
of fluid water, the self-diffusion coefficient caused by the surface effect increased with
the silane-modification degree, which basically offset the reduction in the self-diffusion
coefficient caused by the scale effect.

(3) The hydroxylized channel wall and water molecules have a strong hydrogen
bonding effect, making it appear hydrophilic. Regarding the modified silanized chan-
nel wall and water molecules hydrogen-free bond formation, the interaction between
the two shows a weak coulomb force and Van der Waal force, reasonably revealing its
hydrophobic mechanism.

(4) In the four nanochannels, Dz is greater than Dxy when the local diffusion coefficient
of fluid water is in the range of 8 Å close to the wall, and beyond the range of 8 Å of the wall,
the Dz is smaller than Dxy. The local diffusion coefficient of fluid water near the distance
of 8 Å. to the wall surface shows a nonlinear increasing trend in silicone nanochannels of
–OH, –(CH2)3CH3, and –(CH2)7CH3, and is less than the local diffusion coefficient of fluid
water at the center of the channel. The trend of fluid water in the silanized nanochannels
characterized by wall surfaces –(CH2)11CH3 is the opposite, due to the diffusion behavior
of wall-to-water molecules with a chain length of –(CH2)11CH3 and the mutually exclusive
action of water molecules beyond the cohesion between water molecules.
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