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The induction of immune tolerance by specific agents, as opposed to general immune
suppression, is a most desirable goal in transplantation biology. One approach to attain
this goal is afforded by the use of donor-derived cells endowed with veto activity, which
is the ability of a cell to specifically suppress only T cells directed against its antigens.
A megadose of purified veto CD34+ hematopoietic stem cells is already used in patients
to allow hematopoietic stem cells transplantation (HSCT) across major genetic barriers,
while avoiding severe graft versus host disease (GVHD). However, allowing engraftment of
such T cell-depleted HSCT under safer reduced intensity conditioning (RIC) protocols still
remains a challenge. Therefore, combining megadose of CD34+ HSCT with other GVHD-
depleted veto cells could enable facilitation of engraftment of HSCT under RIC without the
adverse complication of GVHD. This approach might provide a safer modality for enabling
engraftment of HSCT, enabling its application in elderly patients who cannot tolerate inten-
sive protocols and to a variety of patients with non-malignant disorders, associated with
longer life expectancy, in whom the use of a high risk conditioning cannot be considered.
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INTRODUCTION
Hematopoietic stem cell transplantation (HSCT) has become a
common procedure of therapy for patients with hematological
malignancies and many other life threatening blood disorders.
However, viral and fungal infections associated with the severe
immunoablative conditioning used prior to HSCT still represent
a major challenge (Martelli et al., 2002; Seggewiss and Einsele,
2010). One approach to address this barrier is to use reduced
intensity conditioning (RIC). HSCT following RIC relies on non-
myeloablative preparatory regimen that spares a substantial level
of the host immunity and thus reduce transplant related mortality
(TRM) by both improving post-transplant immune reconstitution
and reducing the toxicity associated with the conditioning agents
(Ballen and Spitzer, 2010; Gyurkocza et al., 2010). RIC was first
developed to enable allogeneic HSCT in patients with advanced
hematological malignancies who cannot withstand myeloablative
conditioning because of age and/or performance status. How-
ever, using such “safer” RIC protocols also enable the use of
HSCT in patients with non-malignant disorders, associated with
longer life expectancy. In these patients the aim of the condition-
ing prior to the allogeneic HSCT is merely to support sustained
donor cell’s engraftment for correction of the disease (Steward and
Jarisch, 2005; Ringden et al., 2006), or, as demonstrated in limited
number of patients, for the induction of donor chimerism, as a
platform for tolerance induction as prelude to organ transplan-
tation (Kawai et al., 2008; Scandling et al., 2008). Nevertheless,
currently used RIC protocols are still relatively aggressive and
therefore it is highly desirable to develop “safer” preparative reg-
imen protocols that selectively achieve a state of donor-specific
unresponsiveness without compromising the overall immune
response.

THE VETO CONCEPT
One way to achieve a state of donor-specific tolerance uses donor
cells endowed with veto activity. The term “veto,” coined in 1980
by Miller (Miller, 1980), relates to the ability of cells to specifi-
cally delete T cells directed against antigens (Ags) of the veto cells
themselves, but not against third-party Ag (Muraoka and Miller,
1983; Claesson and Miller, 1984). The suppression of effector
T cells directed against the veto cells is both Ag-specific and major
histocompatibility complex (MHC) restricted, resulting from the
unique manner by which the veto cell kills its target. Thus, veto
activity results from unidirectional recognition of the veto cell by
the responding T cell, but not vice versa. Therefore, the recogniz-
ing T cell, the T cell receptor (TCR) of which is directed against the
MHC of the veto cell, is killed upon binding to its veto target, due
to exchange of signals allowed following this interaction. Hence,
the use of donor veto cells capable of specifically eliminating only
the host anti-donor T cell clones that mediate the transplant rejec-
tion while sparing other T cells that can persist and fight infectious
pathogens, could offer an effective modality for the induction of
transplantation tolerance.

VETO ACTIVITY OF BONE-MARROW CELLS
Initially, veto activity was described for cells within the spleen of
athymic nude mice (Miller, 1980). Based on this initial observa-
tion, various cell types have been shown to mediate veto activity
including T lymphocytes, natural killer cells, and dendritic cells.
A very strong veto activity was documented for CD8+ cytotoxic
T cell (CTL) lines or clones (Fink et al., 1984; Claesson and Ropke,
1986; Claesson and Miller, 1989) and direct comparison of the
veto reactivity of various cell types revealed that CTLs have the
strongest in vitro veto effect (Reich-Zeliger et al., 2004a).
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In the context of bone-marrow transplantation (BMT), cells
in murine BM and in T cell colonies grown from such BM were
shown to mediate veto activity in vitro (Muraoka and Miller, 1980)
and un-separated donor BM was shown to specifically reduce the
frequency of anti-donor CTLs in grafted mice (Wood et al., 1992).
However, this in vivo tolerizing activity of the BM cells could be
attributed to T cells which reside within the BM. These T cells,
while potentially mediating beneficial veto activity, also cause
a severe multi-system graft versus host disease (GVHD). Early
attempts to avoid GVHD risk and to apply T cell-depleted BMT
(TDBMT) in leukemia patients indeed revealed that this benefit
of GVHD prevention is offset by increased risk for graft rejection,
due to absence of donor T cells within the graft (Gale and Reisner,
1986; Kernan et al., 1987).

However, veto activity could be also assigned to non-T cells
within the BM. For example, a series of studies by the group of
Judy Thomas described potent veto activity of cells within the
CD8+CD16+DR− subset in the BM of rhesus macaque primates
(Thomas et al., 1991; Asiedu et al., 1999). CD8 surface expression
was shown to play a pivotal role in the tolerogenic effect of these
BM cells. Thus, these studies demonstrated that CD8 crosslinking
following interaction with donor-reactive CTL precursors (CTLp),
elicits upregulation of transforming growth factor-β1 (TGF-β1)
and Fas ligand (FasL) by these donor BM cells, leading to clonal
deletion of the donor-reactive CTLp (Asiedu et al., 1999; Clement
et al., 2002).

Another example of marked clinical relevance is the demonstra-
tion by Rachamim et al. (1998) that human hematopoietic CD34+
progenitors are endowed with marked veto activity (Figure 1).
Explaining in part how “megadose” of purified CD34+ cells
enables to overcome rejection in recipients of three HLA-loci
mismatched (haploidentical) HSCT while avoiding the threat of
GVHD (Aversa et al., 1994, 2005; Reisner and Martelli, 1995).
Interestingly, Gur et al. (2005) demonstrated that this veto activ-
ity is mediated through a TNF-α based mechanism. In addition,
Gur et al. (2002) demonstrated that veto activity is not only
mediated directly by the infused CD34+ cells but also by their
CD33+ progeny, which lose this tolerizing activity upon com-
pletion of maturation, at the level of CD14+ monocytes or
CD13+ neutrophils. Furthermore, preliminary results suggest
that BM-derived immature dendritic cells, previously shown
to induce immune tolerance, exhibit marked veto activity on
CD8 T cells, in addition to the non-specific suppression of
CD4 T cells mediated by the NO system (Zangi et al., 2009).
Finally, NK cells which were shown to exhibit veto activity
upon activation with IL-2, develop and appear early during the
post-transplant period (Chrobak and Gress, 2001; Reich-Zeliger
et al., 2004a).

Thus, based on these observations, the following working
hypothesis can be suggested to explain how megadose of CD34+
cells can overcome rejection in human recipients of haploiden-
tical HSCT. Upon administration of purified CD34+ cells, the
graft supporting veto activity is initially mediated directly by the
infused CD34+ cells, and subsequently by the CD33+ progeny
of these cells which grow exponentially within the first few days
post-transplant. This second phase of differentiating veto cells
also includes CD11c+ immature dendritic cells and other graft

FIGURE 1 |The regulatory activity of CD34 cells: evidence for target

specificity. The average CTL response (SD) in the presence (black bars)
or absence (white bars) of CD34+ cells at a veto-to-responder cell ratio of
0.5. The veto effect was tested by a limiting dilution assay as follows: Equal
numbers (1 × 106/ml) of responder cells and irradiated allogeneic
stimulator cells from the donor of the CD34 cells and a third-party donor
were co-cultured for 5 days. The responder cells were then cultured again
for 7 days under limiting dilution, and the CTL activity was determined by
51Cr-release assay. Data represent the average ± SD of 11 independent
experiments using different donor and third-party pairs. A significant
difference (p < 0.001 on t -test compared with control cultures without
CD34 cells) between control cultures and those including CD34 cells was
found upon stimulation against donor cells (Rachamim et al., 1998).

facilitating cells. Clearly, the number of all these tolerizing cell
types emerging after transplantation is proportional to the number
of CD34+cells infused. The increased engraftment of mega-
dose of HSCT is therefore greatly dependent not only on the
ability of the initial inoculums of the CD34+ cells to veto anti-
donor T cells, but also on their ability to seed the BM and to
generate as rapidly as possible the second or third derivatives
which are required to complete the eradication of host anti-donor
T cells.

THE USE OF VETO CD8+ CTLs IN HSCT
As described above, the use of purified megadose of CD34+
HSCT has enabled haploidentical transplantation in leukemia
patients and was the first demonstration of the potent clinical
potential of donor veto cells. However, this approach is currently
limited to supra-lethal myeloablative and highly immunosup-
pressive conditioning protocols (Martelli et al., 2002). Indeed,
studies in non-human primates revealed that any significant
reduction of the conditioning, to levels acceptable for elderly
patients or for patients with non-malignant disorders, would
require veto inducing CD34+ stem cell numbers which can-
not be realistically collected from human donors (Gan et al.,
unpublished results). Therefore, other populations of veto cells
could have a crucial role in supporting and promoting successful
engraftment of purified stem cell transplantation under relatively
safer RIC.
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As outlined above, CD8+ CTLs were shown in vitro to exhibit
the strongest veto reactivity (Reich-Zeliger et al., 2004a). Previous
insights on the veto mechanism of CD8+ veto CTLs, combining
anti-CD8 blockade and FasL-mutated veto cells, have suggested
that co-expression of CD8 and FasL is required for the veto activity
of these cells (Reich-Zeliger et al., 2000, 2004b). Such a mecha-
nism involves initial recognition of the veto cell by the TCR of
the effector T cells, leading to expression of Fas by the effector
T cell upon activation, and thereby enabling Fas–FasL mediated
apoptosis to take place, once inhibitory molecules such as FLICE-
inhibitory protein (FLIP) are down regulated in the effector cell
(Reisner et al., 2006). In addition, the interaction between CD8
on veto CTL and the MHC class I alpha3 domain on the effec-
tor cell, is associated with phosphorylation of MEK/ERK in the
latter cell, and with a significant reduction of X-linked inhibitor
of apoptosis protein (XIAP) levels which, in turn, enables even
more potent triggering of Fas–FasL mediated apoptosis in the
recognizing effector cell (Scheme 1; Reich-Zeliger et al., 2010).
More recent results have indicated that veto activity exhibited
by CTLs can also be mediated by an additional perforin based
mechanism (Milstein et al., 2010). However, despite their potent
veto activity, CD8+ CTLs cannot be used for “safe” tolerance
induction in allogeneic HSCT because of their marked GVH
reactivity.

One approach for generating veto CTLs with reduced GVHD
reactivity has been described by a series of studies by D. H. Fowler
(Fowler and Gress, 2000; Erdmann et al., 2004; Mariotti et al.,
2008).

In these studies, it was demonstrated that by using CD3/CD28
particles under IL-2-, IL-7-, and IL-4-containing medium, veto
CTLs with Tc2 phenotype can be generated. These cells were
shown to abrogate murine BM rejection with reduced GVHD.

We have previously described an alternative approach to gen-
erate CTLs with highly reduced GVH reactivity by means of
stimulation against third-party stimulators in the absence of
exogenous cytokines, followed by further ex vivo expansion using
third-party stimulators and IL-2 (Bachar-Lustig et al., 2003).
This approach was based on the observation that only acti-
vated CTLp are capable of surviving the cytokine deprivation
in the primary culture, and that these anti-third-party clones
further expand throughout the culture. These anti-third-party
CTLs indeed were shown to be depleted of GVHD while sup-
porting BM engraftment in murine models. In accordance with
the veto concept, this tolerizing effect of the CTLs was found
to be H-2 specific. Thus, a CTL line originating from a strain
other than that of the BM donor failed to prevent graft rejec-
tion (Bachar-Lustig et al., 2003). Importantly, anti-third-party
veto CTLs, upon adoptive transfer into TDBMT recipient mice,
were shown to eliminate not only host anti-donor naïve cells,
but also host anti-donor memory cells (Reich-Zeliger et al., 2007).
Memory T cells, derived from prior exposure to alloantigen or
generated by heterologous immunity or lymphopenia-induced
proliferation, are believed to be an important part of the bar-
rier preventing the translation of tolerance induction protocols
from inbred rodent strains to the clinic (Pantenburg et al., 2002;
Adams et al., 2003; Wu et al., 2004). Therefore, the ability of
veto CTLs to overcome memory T cells-mediated rejection could

SCHEME 1 | Veto-based deletion of host anti-donor CD8 T cell clones

by veto CTL. CD8-MHC class I engagement induces pERK, which is
associated with reduction of XIAP (apoptosis inhibitor) levels, thereby
enabling Fas–FasL apoptosis to take place. Figure taken from Reich-Zeliger
et al. (2010).

be highly important for their action in clinical settings. Fur-
thermore, a recent study of Nguyen and Geiger (2010) propose
that veto CTL can also effectively promote B cell tolerance.
Thus, in this study the authors demonstrated that murine CD8+
CTLs, in addition to their renowned veto activity upon rec-
ognizing T cells, can also induce Ag-specific elimination of
recognizing B cells, both in vitro and in vivo and thus veto
CTLs may selectively overcome both cellular and humoral graft
rejection.

Nevertheless, despite all these important attributes of the veto
CD8+ CTLs, their in vivo activity was shown to be markedly
inferior compared to that exhibited in vitro, requiring the admin-
istration of large number of CTLs in conjunction with the
immunosuppressive drug rapamycin in order to efficiently over-
come TDBMT rejection in murine models (Bachar-Lustig et al.,
2003). The discrepancy between the CTLs veto activity in vitro
and in vivo could be explained when considering two limi-
tations of the veto cells: first, the veto activity is mediated
through cell to cell contact and, second, host T cells are prone
to veto mainly in a window of opportunity of up to 48 h
after their activation, thus, once these host T cells develop into
mature effector T cells, veto cells can no longer exert their effect
(Anderson and Zimring, 2006). Therefore, while in vitro the
veto CTLs are directly plated with their cognate targets, upon
infusion in vivo the veto CTLs need to co-localize with the
host T cells within the first 48 h of the rejection process, or
else their effect will be hampered. Indeed, we recently demon-
strated that CTLs attained upon long ex vivo culture in the
presence of IL-2 exhibit a migration pattern different from the
one displayed by naive host T cells thereby precluding their co-
localization. Thus, while naïve host T cells home efficiently to
the lymph nodes (LNs) of BMT recipient mice, the veto CTLs
are excluded from the LNs and tend to localize in peripheral sites
(Ophir et al., 2010).
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CD8+ T CELLS WITH CENTRAL MEMORY PHENOTYPE FOR
INDUCING POTENT IN VIVO VETO ACTIVITY
In order to improve the LNs homing potential of anti-third-
party CD8+ veto cells we developed a new protocol, using
IL-15, that favor the induction of central memory phenotype
in anti-third-pary CD8+ T cells (Ophir et al., 2010). Central
memory T cells (Tcm) express the LN homing receptors CD62L
and CCR7 (Sallusto et al., 1999) and similarly to naive T cells,
localize to the T cell area of all secondary lymphoid organs
(Weninger et al., 2001). Indeed, we demonstrated that these ex
vivo induced anti-third-party Tcm, in contrast to anti-third-party
CTLs, home to LNs of BMT recipients, where they co-localize
with the recipient’s endogenous host T cells. Moreover, the
Tcm displayed strong proliferation at the early post-transplant
period and subsequently persisted in vivo for more than 1 year
post-BMT, in line with their memory phenotype (Ophir et al.,
2010). Most importantly, we demonstrated that Tcm derived
from (host × donor)F1 mice can specifically and efficiently delete

in vivo host TCR-transgenic T cells carrying a TCR transgene with
anti-donor specificity. In accordance with the veto concept, this
efficient in vivo deletion of anti-donor host T cells, found to be
mediated by apoptosis, did not occur when “non-specific” Tcm,
not expressing the donor H-2 haplotype, were used (Figure 2).
Thus, murine Tcm perform in vivo veto activity, efficiently delet-
ing host T cells only when the host T cells recognize antigens
on the Tcm, and not by a non-specific general immunosup-
pressive effect. Taken together, all these attributes of the Tcm
were shown to translate into improved efficacy in overcoming
T cell mediated rejection of murine TDBMT, thereby enabling
high survival rate and long-term donor chimerism, without caus-
ing GVHD. Thus, adoptive transfer of anti-third-party Tcm,
in the absence of rapamycin treatment significantly abolished
host T cells-mediated rejection of fully mismatched Nude-BM.
This is in sharp contrast to anti-third-party CTLs, which fail to
enable engraftment unless administered in higher numbers and in
conjunction with rapamycin treatment (Bachar-Lustig et al., 2003;

FIGURE 2 | Anti-third-partyTcm are endowed with potent in vivo veto

activity. (A,B) Lethally irradiated C57BL/6 (H-2b) mice received 1 × 105

CD8+ purified TCR-transgenic 2c cells (carrying TCR with anti H-2d specificity)
and 5 × 105 irradiated BALB/c (H-2d) splenocytes. The following day, the mice
were transplanted with 1 × 106 C57BL/6-NUDE BM cells or received, in
addition, 5 × 106 “specific,” derived from CB6 (H-2bd, black bars), or
“non-specific”, derived from C57BL/6 (H-2b, gray bars) anti-third-party Tcm.
Recipients were sacrificed 8 days post-transplant, their spleens were
harvested, and the deletion of anti-donor 2c T cells was monitored by FACS.
(A) Representative result demonstrating the level of surviving (7AAD−) 2c
cells in the absence (left panel, “2c alone”) or presence of “specific” Tcm
(right panel “2c + specific Tcm”). (B) Quantification of results demonstrating
efficient inhibition of the 2c cells only by “specific” and not by “non-specific”
“Tcm.” Data represent average ± SD of percent inhibition from at least 10

animals in each group, pooled from two independent experiments. (C,D) In
vivo model was established as in (A,B), but 5 × 105 purified CD8+ 2c cells
and 2.5 × 106 irradiated BALB/c splenocytes were administrated. Recipients
were sacrificed 8 days post-transplant, their spleens were harvested and
FACS analysis of Annexin V levels on living (7AAD−) CD8+1B2+ 2c cells was
conducted. (C) Representative result demonstrating apoptosis induction upon
anti-donor 2c cells by the Tcm as evident by Annexin V levels on 2c cells in the
absence (left panel, “2c alone”) or presence of “specific” Tcm (right panel,
“2c + specific Tcm”). (D) Quantification of results measuring Annexin V levels
on the 2c cells following interactions with “specific” and “non-specific”
“Tcm.” The figure shows that Apoptosis was induced only by the “specific”
Tcm. Data present average ± SD of percent Annexin V levels in at least four
animals from each group, in one representative experiment, out of three
performed. **p < 0.01, ***p < 0.001 (Ophir et al., 2010).
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Ophir et al., 2010). We concluded therefore that by generating anti-
third-party CD8+ cells with a central memory phenotype we were
able to dramatically enhance their tolerizing veto activity in vivo.

TCR-INDEPENDENT KILLING OF MALIGNANT B CELLS
BY CD8+ VETO CELLS
A second objective which could be attained by administration of
donor-derived activated CD8+ T cells in the context of HSCT is
related to the ability of these cells to control residual hematological
malignancies. Considering that GVL is generally associated with
GVHD it was surprising that autologous or allogeneic human and
murine anti-third-party veto CD8+ T cells, markedly depleted of
GVH reactivity, exhibit vigorous responses against different B cell
malignancies (Arditti et al., 2005; Lask et al., 2011). The killing
of B cell tumors by anti-third-party CTLs was shown to involve
a unique TCR-independent two steps mechanism. First, long-
lasting conjugates are formed between the CTL and the tumor cell.
These conjugates are rapidly formed through binding of ICAM1
on tumor cells by LFA-1 expressed on the veto CTL. Second, a
slower process of MHC class I-dependent apoptosis is mediated
by binding of the MHC class I α2/3 constant region on the tumor
cells to the CD8 molecule on the CTL membrane (Arditti et al.,
2005; Lask et al., 2011). Likewise, recent results from our labo-
ratory indicate that murine anti-third-party veto Tcm can also
efficiently eliminate murine B cell lymphoma in vivo, through a
similar TCR-independent mechanism (Lask et al., 2010). Hence,
such single agent veto cell therapy has the potential to have a double
benefit in the context of HSCT, namely, promoting and supporting
HSCT engraftment through specific tolerizing veto activity while
mediating effective anti-cancer response, in the absence of GVHD.
Translation of this therapy, optimizing protocols for the genera-
tion of human anti-third-party Tcm is now in progress and clinical

evaluation will commence in the near future in patients with B cell
malignancies.

CONCLUDING REMARKS
Donor derived veto cells represent an attractive and effective
modality for the induction of specific tolerance toward donor
Ags. This approach has been already demonstrated in patients
by using megadose of purified veto CD34+ stem cells, that can
overcome the host’s residual immunity surviving the myeloabla-
tive conditioning and enable engraftment of HSCT across major
genetic barriers without the severe threat of GVHD. However, the
number of veto CD34+ cells that can be harvested is insufficient
for overcoming the large numbers of host T cells remaining after
RIC. Therefore, combining megadose of CD34+ HSCT with other
GVHD-depleted veto cells, potentially anti-third-party CD8+
Tcm, could enable facilitation of engraftment of HSCT under RIC
without the adverse complication of GVHD-producing T cells and
without the need for deleterious post-transplant GVHD prophy-
laxis. It is hoped that this approach could extend the use of HSCT
to elderly patients with B cell malignancies who cannot tolerate
intensive protocols and to a variety of patients with non-malignant
disorders, associated with longer life expectancy, in whom the
current TRM associated with HSCT may not be ethically justified.
Use of Experimental Animals Statement: All experiments on
live vertebrates were performed in accordance with the Weizmann
Institutional Animal Care and Use Committee.
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