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Early childhood caries (ECC), which can lead to rampant tooth-decay that is painful
and costly to treat, is one of the most prevalent infectious diseases affecting children
worldwide. Previous studies support that interactions between Streptococcus mutans
and Candida albicans are associated with the pathogenesis of ECC. The presence of
Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro,
although the molecular basis for these behaviors is undefined. Using an established
co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences
the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene
expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially
expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology
analysis, the majority of up-regulated genes were related to carbohydrate transport
and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated
pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans
influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed
the increases in carbohydrate metabolism, with elevated amounts of formate in the
culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered
transcription of S. mutans signal transduction (comC and ciaRH) genes associated with
fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins)
and CRISPR were down-regulated. Collectively, the data provide a comprehensive
insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel
insights into how bacterial–fungal interactions may enhance the severity of dental caries.

Keywords: early childhood caries, biofilms, Streptococcus mutans, Candida albicans, transcriptome, RNA-Seq

INTRODUCTION

Biofilms are associated with many infectious diseases in humans, including those occurring in
the mouth (Hall-Stoodley et al., 2004). Early childhood caries (ECC) is a highly prevalent and
difficult to treat biofilm-dependent disease, afflicting mostly underprivileged children worldwide
and resulting in estimated annual expenditures of more than $120 billion in the United States
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alone (Kassebaum et al., 2015). Children with ECC are heavily
infected with Streptococcus mutans, due in large part to protracted
feeding of dietary sugars, such as sucrose (Berkowitz et al.,
1984; Palmer et al., 2010; Parisotto et al., 2010), which leads
to rapid accumulation of virulent biofilms characterized by an
exopolysaccharides (EPS)-rich and highly acidic milieu that cause
rampant destruction of the teeth (Takahashi and Nyvad, 2011;
Hajishengallis et al., 2017).

Streptococcus mutans has long been regarded one of the key
etiologic agents of ECC. S. mutans possesses an exceptional ability
to produce EPS using dietary sucrose via secreted exoenzymes
termed glucosyltransferases (Gtfs), as well as being robustly
acidogenic and acid-tolerant (Marsh et al., 2011; Koo et al., 2013).
In addition, S. mutans can efficiently cope with environmental
stresses, which contributes to its ability to establish biofilms, to
persist in the host, and to compete with other oral bacteria,
particularly when conditions are conducive to initiation and
progression of dental caries (Lemos and Burne, 2008). However,
S. mutans does not act alone in cariogenic biofilms, as additional
organisms can also contribute to the initiation and/or progression
of caries (Tanner et al., 2011; Gross et al., 2012). Interestingly,
results from several clinical studies reveal that Candida albicans
is often detected in high numbers with S. mutans in biofilms from
children with ECC (de Carvalho et al., 2006; Raja et al., 2010; Yang
et al., 2012; Klinke et al., 2014; Qiu et al., 2015).

Candida albicans is a commonly detected opportunistic
fungus in the oral cavity (Ghannoum et al., 2010). This organism
interacts actively with commensal (viridans) streptococci and
forms biofilms on acrylic and mucosal surfaces (Jenkinson and
Douglas, 2002; Diaz et al., 2012) to cause oral mucosal infections
(Thein et al., 2009; Xu et al., 2014). In contrast, C. albicans
does not bind well to S. mutans, nor does it colonize teeth
effectively on its own (Jenkinson et al., 1990; Gregoire et al.,
2011). However, physical co-adhesion between S. mutans and
C. albicans is markedly increased in the presence of sucrose
(Branting et al., 1989; Gregoire et al., 2011; Metwalli et al., 2013;
Falsetta et al., 2014). S. mutans Gtfs are capable of adhering to
the surface of C. albicans and producing large amounts of EPS
in situ using sucrose as substrate (Gregoire et al., 2011; Hwang
et al., 2015). In turn, the EPS on the fungal surface promotes
adhesive interactions and cross-kingdom biofilm development
with S. mutans (Falsetta et al., 2014).

In biofilms formed in vitro, the presence of C. albicans
dramatically modifies the physical environment by increasing
biomass and EPS production, enhancing biofilm accumulation
and stability (Falsetta et al., 2014). Furthermore, C. albicans
appears to activate S. mutans genes associated with biofilm
formation and genetic competence (Falsetta et al., 2014; Sztajer
et al., 2014). Importantly, using a rodent model of the disease
and a diet rich in sucrose, enhanced levels of S. mutans
in plaque-biofilms were associated with co-infection with
C. albicans, which lead to onset of rampant caries similar to
ECC (Falsetta et al., 2014). However, the molecular pathways by
which such interactions stimulate S. mutans growth/metabolism,
accumulation and virulence remain unclear.

Recently, RNA sequencing (RNA-Seq) combined with
integrated gene network-pathway analysis greatly enhanced

annotation/detection of bacterial transcripts and interpretation
of genomic data (Croucher and Thomson, 2010; Zeng et al.,
2013), including in mixed-species biofilms (Dutton et al., 2016).
Here, we investigate the impact of the presence of C. albicans
on the whole transcriptome of S. mutans using RNA-Seq and
systems analysis. We first optimized enrichment of S. mutans
mRNA from bacterial–fungal mixed total RNA, and then
used RNA-Seq to transcription profile enriched mRNAs from
single- and dual-species biofilm. The results show that the
presence of C. albicans dramatically altered the transcriptome
of S. mutans. Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway impact analyses
supported that co-culturing of S. mutans with C. albicans
enhanced carbohydrate metabolism by S. mutans. Carbohydrate
and metabolites analysis confirmed increased sugar utilization
and elevated levels of formate in the supernatant fluid of
dual-species biofilms. Moreover, we also found that C. albicans
alters the transcription of two-component signal transduction
systems that are important for fitness and sucrose-dependent
biofilm formation. Conversely, mutacin (bacteriocin) production
was down-regulated, which could influence the bacterial
composition of the biofilms formed when C. albicans is present.
Collectively, this study provides new insights into the effects of
an opportunistic fungus (C. albicans) on the expression of genes
that are integral to the persistence and virulence of S. mutans
and how these inter-kingdom interactions may modulate the
pathogenic potential of biofilms in ECC.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
Streptococcus mutans strain UA159 serotype c [a cariogenic
bacterial pathogen (genome sequence accession number
AE014133)] and C. albicans SC5314 (genome sequence accession
number CP017630) were used in the present study to generate
single and dual-species biofilm. Both strains were stored at
−80◦C in tryptic soy broth containing 20% glycerol.

Biofilm Preparation
Biofilms were formed using a saliva-coated hydroxyapatite (sHA)
disk model, as described elsewhere (Koo et al., 2010; Falsetta et al.,
2014). Briefly, the hydroxyapatite disks (1.25 cm in diameter,
surface area of 2.7 ± 0.2 cm2; Clarkson Chromatography
Products, Inc., South Williamsport, PA, United States) were
coated with filter-sterilized, clarified whole saliva and vertically
suspended in 24-well plates using a custom-made wire disk
holder (Koo et al., 2010). For single-species biofilms, each disk
was inoculated with approximately 2× 106 CFU/mL of S. mutans
in ultrafiltered (10-kDa cutoff; Millipore, Billerica, MA, United
States) tryptone-yeast extract broth (UFTYE; 2.5% tryptone and
1.5% yeast extract, pH 7.0) containing 1% sucrose (37◦C, 5%
CO2). For dual-species biofilms, approximately 2× 104 CFU/mL
of C. albicans containing predominantly yeast cell forms was also
added to the inoculum; the composition of the microorganisms
in the inoculum is similar to that found in saliva samples from
children with ECC (de Carvalho et al., 2006; Falsetta et al., 2014).
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During the first 18 h, the organisms were grown undisturbed so
as to allow initial biofilm formation; the culture medium was then
changed twice daily at 8 a.m. and 6 p.m. until the end of the
experimental period (42 h).

RNA Extraction and Purification
Biofilms were harvested after 42 h incubation. RNA was
extracted and purified using protocols optimized for biofilms
formed in vitro (Cury and Koo, 2007). Three separate biological
replicates for each group (single and mixed-species) were
performed. Briefly, disk sets were incubated in RNALater
(Applied Biosystems/Ambion, Austin, TX, United States), then
the biomass was removed from the sHA disks. RNAs were
purified and treated with DNase on a column using the Qiagen
RNeasy Mini kit (Qiagen, Valencia, CA, United States). The
RNAs were then subjected to a second DNase I treatment
with Turbo DNase (Applied Biosystems/Ambion) and were
purified using the Qiagen RNeasy MinElute cleanup kit
(Qiagen). RNAs were quantified using the NanoDrop ND-1000
spectrophotometer (Thermo Scientific/NanoDrop, Wilmington,
DE, United States). RNA quality was evaluated using an Agilent
2100 bioanalyzer (Agilent Technologies Inc., Santa Clara, CA,
United States), and all RNAs used for downstream experiments
were determined to have RNA integrity numbers (RIN) of 9.5 and
above.

Bacterial mRNA Enrichment and
RNA-Seq Performance
To deplete fungal total RNA, the MICROBEnrichTM Kit (Ambion
of Life Technologies, Grand Island, NY, United States) was used
with modifications. Briefly, RNA was combined with binding
buffer and capture oligonucleotide mix. The RNA mix was heated
to 70◦C for 10 min then incubated at 37◦C for 1 h to hybridize to
the capture oligos. The RNA/capture oligo mix was equilibrated
with Oligo MagBeads and incubated at 37◦C for 15 min.
Tubes were placed on a magnet to separate the supernatant
fluids containing the enriched bacterial total RNA from the
Oligo MagBeads. The enriched bacterial RNA was purified
and concentrated by ethanol precipitation. Ribo-ZeroTM rRNA
Removal Kits for Gram-Positive Bacteria (Epicentre, Madison,
WI, United States) and MICROBExpressTM Kit (Ambion) were
tested for their efficiency of depleting the bacterial ribosomal
RNA according to the supplier’s specifications. (1) RNA input
amounts determined the amount of Ribo-Zero rRNA removal
solution to add (10 µL rRNA removal solution for 2.5 to 5 µg,
or 8 µL for <2.5 µg total RNA per reaction). Samples in Ribo-
Zero rRNA removal solution were incubated at 68◦C for 10 min
followed by a 15 min incubation at room temperature. To remove
the hybridized rRNA molecules from the mRNA, the RNA/rRNA
solution reactions were incubated with the prepared microsphere
beads, mixed well and placed at room temperature for 10 min,
then at 50◦C for 10 min. The mRNAs were separated from the
microspheres bound with rRNAs by a filter column provided in
the kit. The final purification of eluted mRNA was performed by
ethanol precipitation. (2) For MICROBExpressTM Kit, RNA was
mixed with binding buffer and capture oligonucleotide mix. The

RNA mix was heated to 70◦C for 10 min then incubated at 37◦C
for 15 min to hybridize the capture oligos. The RNA/capture
oligo mix was equilibrated with Oligo MagBeads and incubated
at 37◦C for 15 min. Tubes were placed on a magnet to separate
the supernates containing the enriched bacterial total RNA from
the Oligo MagBeads. The enriched bacterial RNA was purified
and concentrated by ethanol precipitation. The final quality
of enriched bacterial mRNA samples was analyzed using an
Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA,
United States). The efficiency of Ribo-ZeroTM rRNA Removal
and MICROBExpressTM Kits were compared and the results are
included in the Supplementary Figure S1. Based on experimental
data, we selected MICROBEnrich + Ribo-Zero as an optimized
method to enrich S. mutans mRNA from mixed bacterial–fungal
RNA samples.

cDNA libraries were generated from the enriched mRNA
samples using NEBNext Ultra directional RNA library prep
kit for Illumina and NEBNext multiplex oligonucleotides
for Illumina (New England BioLabs, Ipswich, MA, United
States), following instructions from the supplier. RNA-Seq
was performed on the NextSeq500 (75-bp single end reads)
by the NextGen DNA Sequencing Core Laboratory of the
Interdisciplinary Center for Biotechnology Research at the
University of Florida (Gainesville, FL, United States). Read
mapping was performed on a Galaxy server hosted by the high-
performance research computing center at the University of
Florida (HiPerGator2.0) using Map with Bowtie for Illumina
(version 1.1.2). Reads were mapped to the S. mutans UA159
genome. Mapped reads were then counted using the Python
script htseq-count (Anders et al., 2015).

Statistical Analysis of RNA-Seq Data
Fold changes and significant differences in gene expression
between growth conditions were calculated using the
convergence of three separate approaches: DEseq, edgeR,
and limma (Anders and Huber, 2010; Robinson et al., 2010; Law
et al., 2014), as implemented in the R/Bioconductor package
metaseqR (Moulos and Hatzis, 2015). GO terms were assigned
to genes using Blast2GO v.2.5.0 (Gotz et al., 2008). Relative
enrichment (overrepresentation) of GO terms for up-regulated
genes compared to a background of GO terms for all genes was
assessed using Fisher exact tests. The test was performed using
the Gossip statistical package (Blüthgen et al., 2005) implemented
within Blast2GO. The false discovery rate (FDR) procedure of
Benjamini and Hochberg (1995) was used to correct for multiple
hypothesis testing (FDR= 0.05).

To gain further insights into the effects of co-cultivation
of C. albicans on S. mutans, we performed a KEGG pathway
impact analysis using the software package Pathway-Express
as implemented in the R/Bioconductor package ROntoTools
(Calin and Draghici, 2016). A systems biology approach such
as this has the advantage of being able to factor the complex
interactions among genes. It combines evidence from traditional
expression level data with information regarding the dynamics
of gene–gene interaction and the relative position of the
gene within a pathway. Positional information is important
as the action of genes up-stream in a pathway can propagate
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further down-stream and amplify effects of changes in gene
expression. By combining all evidence, pathway impact can
be calculated. FDR procedure of Benjamini and Hochberg
(1995) was again used to correct for multiple hypothesis testing
(FDR= 0.05).

Data Validation
To validate the RNA-Seq data, quantitative real-time PCR
(qRT-PCR) was employed to measure changes in the amount
of mRNA of selected genes. The cDNA was synthesized from
1 µg of purified RNA with Bio-Rad iScript cDNA synthesis
kit (Bio-Rad Laboratories, Inc., Hercules, CA, United States),
and quantitative amplification condition using Bio-Rad iTaq
Universal SYBR Green Supermix and Bio-Rad CFX96 system
(Bio-Rad Laboratories, Inc.). Standard curves for each primer
were used to determine the relative number of cDNA molecules,
and relative expression was calculated by normalizing to the
gyrA gene transcripts, which is a validated reference gene for
normalization of qRT-PCR (Rocha et al., 2015; Zeng and Burne,
2016). The minimum information for publication of qRT-PCR
experiments (MIQE) guidelines were followed for quality control
of the data generated and for data analysis (Bustin et al.,
2009).

Carbohydrates and Metabolites Analyses
The biofilm and the respective surrounding culture medium were
collected at 42 h, homogenized via sonication and centrifuged
at 5,500 × g for 10 min at 4◦C. The supernatant was filtered
through 0.2 µm-pore-size membrane filter (ultra-low protein
binding, surfactant-free cellulose acetate, Nalgene, Rochester, NY,
United States). The amount of sucrose, glucose, and fructose
in the supernatant were quantified using high-performance
anion-exchange chromatography (HPAEC; Dionex, Sunnyvale,
CA, United States) and the biofilm-derived metabolites were
identified and quantified through 1H nuclear magnetic resonance
(1H-NMR; Bruker Avance III HD NMR spectrometer, Bruker
Biospin, Billerica, MA, United States) as described previously
(Kim et al., 2017). The significance was determined by direct
comparison with concentration in the blank (original UFTYE
medium) and substrates and metabolites are characterized by the
calculation of fold changes (log2) relative to the blank (UFTYE
medium). The concentrations of glucose, fructose, formate, and
lactate in the supernatant of single- and dual-species biofilms
were subtracted with the values of blank. A pairwise comparison
(non-parametric Mann–Whitney U test or parametric t-test)
was performed using SPSS 18.0 software (IBM Co., Armonk,
NY, United States). Differences are considered significant with
∗P < 0.05 or ∗∗∗P < 0.001.

RESULTS AND DISCUSSION

Transcriptomic Changes of S. mutans
within Mixed-Species Biofilms
Results from previous studies have shown enhanced S. mutans
growth and biofilm formation as well as alterations in

gene expression when co-cultured with C. albicans in the
presence of sucrose (Falsetta et al., 2014; Sztajer et al., 2014).
However, whole bacterial transcriptome characterization of
effects of the presence of C. albicans in the dual-species
biofilm milieu in combination with gene network pathway
analysis is needed to gain a comprehensive picture of the
underlying molecular mechanisms. To achieve this, we used our
extensively optimized RNA extraction and mRNA enrichment
protocol. Total RNA was isolated either from S. mutans
single-species or S. mutans–C. albicans co-cultivation biofilms,
and prokaryotic mRNA was enriched as described above and in
the Supplementary Figure S1. A total of 587909293 reads were
produced from the six samples. The sequence reads of all samples
were deposited in the NCBI sequence read archive (SRA) as a
study under the accession number of (SRR5116699-5116704).
We first applied Multi-Dimensional Scaling (MDS) to provide a
visual representation of the transcriptomic similarities between
dual- and single-species biofilms. Samples marked with distinct
colors were projected to a two-dimensional space and clustered
separately (Figure 1A), indicating high levels of correlation
and reproducibility among samples, as well as distinctive
transcriptome profiles from S. mutans in the presence or absence
of C. albicans. Three statistical methods, including DEseq, edgeR,
and limma, were used to pinpoint differentially expressed genes
(DEGs) between groups.

Overall, 393 genes showed significant differences in expression
between single and dual-species biofilm for all three statistical
methods with log2 (fold change) > 0.6 or <−0.7 (Supplementary
Table S1), accounting for ∼20% (393/2042) of the total genes
annotated in S. mutans UA159. Among the DEGs, 134 were
up-regulated, 259 were down-regulated, and about 40% (158/393
genes) were of unknown function or hypothetical. The genes
encoding the four-enzyme pyruvate dehydrogenase complex
[pdhD (SMU_1424)-pdhA (SMU_1423)-pdhB (SMU_1422)-
pdhC (SMU_1421)] and adhE (SMU_148) showed the highest
up-regulation in mixed-species biofilms (fold change > 4.5,
Figure 1B). All of these five genes are part of the pyruvate
metabolism pathway, converting pyruvate to acetyl-CoA in
cells growing in aerobic conditions. The gene (SMU_2133c)
marked with a question mark in Figure 1B is not part of
the pyruvate pathway and has an ambiguous annotation:
hypothetical protein, transmembrane protein, or phage infection
protein. Based on the RNA-seq data, we selected 10 DEGs
(three down-regulated and seven up-regulated) showing a broad
range of differential expression for validation by using qRT-PCR
analysis. Consistent with the RNA-Seq data, the qPCR data
showed significant differential expression of all genes tested
(Table 1) and a linear-correlation with RNA-seq data (r2

= 0.98).
We noted that the level of differential expression of some genes
(e.g., gtfB, gtfC) was not entirely similar to that reported in our
previous work (Falsetta et al., 2014). Differences between the
two studies may be due to several factors, including different
RNA sources/preparation (total RNA vs. rRNA depleted/mRNA
enriched) and algorithm/data analysis to calculate fold changes.
Despite differences in the level of gene expression, both studies
confirmed up-regulation of gtfBC in dual-species biofilm
(vs. single-species S. mutans biofilm).
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FIGURE 1 | Overall transcriptomic changes of S. mutans within S. mutans–C. albicans dual biofilm. (A) Multi-Dimensional Scaling (MDS) plot based on Euclidean
distances derived from a sample variance parameter, showing the level of correlation and reproducibility among samples. Red circles (D) show dual biofilm, whereas
blue triangles (S) show single. Samples from single and dual biofilm group clustered together, respectively, indicating the different transcriptome pattern of S. mutans
with and without C. albicans. (B) Plot showing fold change and levels of significance for differential expression for all genes.

Gene Ontology terms were assigned to all genes in the
S. mutans genome. We compared terms for the up- and
down-regulated genes to a background of all terms to obtain an
overall insight into the impact of C. albicans on S. mutans when
growing together in dual-species biofilms. Forty-two GO terms
were overrepresented (enriched) (Supplementary Table S2):
among them, 22 were involved with biological processes, of
which 10 with up-regulated genes and 12 with down-regulated
genes (Table 2). Notably, all the GO terms for up-regulated
genes belonged to the biological process domain and were
involved in carbohydrate transport and metabolic/catabolic
process. These findings are interesting since sugar catabolism
is a key risk factor for dental caries (Selwitz et al., 2007), and
are consistent with enhanced sugar utilization in dual-species

TABLE 1 | Validation of RNA-Seq data by qPCR.

Gene Fold change (dual/single)

RNA-seq qPCRa (normalized by gyrA)

comC 0.46 0.30 ± 0.03

luxS 0.60 0.60 ± 0.04

atpB 0.62 0.64 ± 0.03

hrcA 1.57 1.57 ± 0.09

SMU.104 1.80 1.77 ± 0.14

ciaR 2.04 2.06 ± 0.21

lacC 2.25 1.83 ± 0.09

gbpC 2.26 2.36 ± 0.16

adhE 4.49 3.90 ± 0.14

pdhA 11.39 8.12 ± 1.60

aChanges in transcript levels were determined using gyrA as an internal control and
qRT-PCR results are presented as averages ± standard deviations.

biofilm (vs. single-species S. mutans biofilm) as determined by
chromatographic analyses (Figure 2A). Since Candida is rather
inefficient in metabolizing sucrose (Williamson et al., 1993),
S. mutans can cross-feed sucrose break-down products (glucose
and fructose) to C. albicans (Sztajer et al., 2014; Kim et al., 2017).
We observed that the concentrations of glucose and fructose in
the supernatant of dual-species biofilm are significantly lower
than those in single-species S. mutans biofilm (Figure 2A-a2;
P < 0.05). The data indicate that S. mutans co-cultured with
C. albicans utilized most of the fermentable sugars, while also
increasing the levels of formate (Figure 2B). Hence, once they
are together within biofilm, these organisms may cooperate with
each other for provision of sugar substrates and metabolites.
Conversely, enhanced sugar utilization can also cause localized
carbohydrate limitation in the presence of Candida that could

TABLE 2 | GO terms for biological processes with up and down-regulated genes
for S. mutans grown with C. albicans.

Up regulated biological process Down regulated biological process

Disaccharide metabolic process Translation

Oligosaccharide metabolic process Multi-organism process

Cellular carbohydrate catabolic process Cellular protein metabolic process

Oligosaccharide catabolic process Response to external biotic stimulus

Disaccharide catabolic process Response to other organism

Phosphoenolpyruvate-dependent sugar Response to biotic stimulus

phosphotransferase system Defense response to other organism

Lactose metabolic process Response to external stimulus

Carbohydrate metabolic process Defense response

Carbohydrate transport Protein metabolic process

Defense response to bacterium

Response to bacterium
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FIGURE 2 | The composition of extracellular carbohydrates and metabolites. (A) HPAEC chromatograms of selected carbohydrates profile (a1) and the
concentrations of glucose and fructose as the main carbohydrates (sucrose is not detected in both supernatants) in biofilm-culture supernatants (a2). In the box
whisker plots, whiskers represent minimum and maximum, and the box represents the 25th and 75th percentiles (n = 3). ∗P < 0.05. (B) Profiles of extracellular
metabolites (e.g., organic acids, alcohols, sugar alcohols, amino acids) (b1) and the concentrations of formate and lactate (red arrowheads) as the main organic
acids, which is associated with cariogenic properties of S. mutans, in biofilm-culture supernatants (b2). Substrates and metabolites are characterized by the
calculation of fold changes (log2) relative to the blank (fresh UFTYE medium). Data represent mean ± standard deviations (n = 3). ∗∗∗P < 0.001.

influence the gene expression profile and the bacterial metabolic
pathways.

We also performed a KEGG pathway impact analysis based
on the sequencing data. The analysis detected eight KEGG
pathways that were significantly impacted: pyruvate metabolism,
galactose metabolism, butanoate metabolism, glycine, serine
and threonine metabolism, propanoate metabolism, glyoxylate
and dicarboxylate metabolism, oxidative phosphorylation, and
amino sugar and nucleotide sugar metabolism (Figure 3 and
Supplementary Table S3). Highly consistent with GO analysis,
most of the impacted pathways were involved in carbohydrates
metabolism. The end products of sugar fermentation are
energy generation and predominantly organic acids, which
can provide advantages for S. mutans survival and growth,
while acidification of the environment helps both S. mutans
and C. albicans (highly acid-tolerant organisms) to outcompete
beneficial commensal bacteria (Burne and Marquis, 2001;
Klinke et al., 2009). This metabolic cooperation provides
an effective mechanism that promotes co-existence while
enhancing S. mutans accumulation (Falsetta et al., 2014; Kim
et al., 2017). At the same time, the bacterial population is
probably heterogeneous with respect to carbohydrate utilization,

and the transcriptome pattern could be compartmentalized
within the biofilm. It is apparent that when S. mutans and
C. albicans are together within biofilms when conditions
are conducive for ECC, the presence of Candida modulates
carbohydrate utilization while also creating carbohydrate-
limiting conditions, both of which can activate the PDH
pathway.

Co-culturing with C. albicans Modulates
Carbohydrate Utilization by S. mutans
The increased sugar metabolism can explain in part the
increased carriage of S. mutans and C. albicans and enhanced
virulence of plaque-biofilms in vivo (Falsetta et al., 2014).
Sucrose, in particular, has long been considered the most
cariogenic of all carbohydrates. This disaccharide serves as
both a readily metabolizable carbon and energy source and
as an essential substrate for the synthesis of the adhesive
extracellular glucan matrix by S. mutans, which strengthens
the interactions between S. mutans and C. albicans and
augments the stability of biofilms containing these organisms
(Gregoire et al., 2011; Falsetta et al., 2014). In addition to
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FIGURE 3 | Plot showing result of a pathway impact analysis as implemented in Pathway-Express. The y-axis shows evidence for over-representation of differentially
expressed genes in a pathway and the x-axis shows perturbation evidence (measured expression changes propagating across the pathway topology).
A combination of the factors on each axis equates to the level of impact and the diagonal line represents a significance threshold (α = 0.05). After FDR correction,
eight KEGG pathways (red dots) remained significant. Two pathways (pyruvate and galactose metabolism) at the extremes of the axes showed the most impact.

sucrose utilization extracellularly (Bowen and Koo, 2011),
S. mutans rapidly transports sucrose into the cell by the
phosphoenolpyruvate:sugar phosphotransferase system (PTS)
(Ajdić and Pham, 2007; Moye et al., 2014). Here, we observed
that scrA (SMU_1841), scrB (SMU_1843), and scrK (SMU_1840)
were significantly up-regulated in dual-species biofilms (vs.

single species S. mutans; Supplementary Table S1). The scrA
gene encodes a high-affinity sucrose PTS permease, EIIScr, that
internalizes sucrose as sucrose-6-phosphate (Sato et al., 1989).
The ScrB enzyme is a sucrose-6-PO4 hydrolase that produces
glucose-6-PO4 and fructose (Figure 4). After phosphorylation
of fructose to fructose-6-phosphate by a fructokinase (scrK),
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FIGURE 4 | KEGG galactose metabolism pathway map (smu:00052) for S. mutans UA159. S. mutans genes involved in the pathway are shown in green. Of these,
eleven showed differential expression. The nine bordered in red were up-regulated and the one bordered in blue was down-regulated. Six of the seven genes
comprising the galactose pathway for lactose catabolism (lacE, lacF, lacG, lacA, lacB, lacC, and lacD) were up-regulated, and two genes of Leloir pathway (galK and
galT ) were up-regulated. Numbers inside boxes are enzyme commission numbers.

the phosphorylated products are channeled into the glycolytic
pathway (Chassy and Victoria Porter, 1979). Furthermore, pttB
(SMU_2038), encoding a trehalose PTS permease, was also
up-regulated in dual-species biofilms (Supplementary Table S1).
Notably, the trehalose-PTS (i.e., EIITre), the primary transporter
for trehalose (Poy and Jacobson, 1990), is also able to transport
sucrose, as mutants derived from S. mutans UA159 that
lacked ScrA could still internalize sucrose via the PTS if an
intact EIITre was present (Zeng and Burne, 2013). Besides the
PTS, the multiple-sugar metabolism system (Msm) (Tao et al.,
1993) and the maltose/maltodextrin ABC transporter (Kilic
et al., 2007) have been also implicated in sucrose uptake by
S. mutans, albeit not nearly as effectively as the sucrose PTS.
Still, both malG (SMU_1570) and malF (SMU_1569) encoding
maltose/maltodextrin ABC transport permease, as well as malX
(SMU_1568) encoding maltose/maltodextrin-binding protein
were up-regulated in the presence of C. albicans (Supplementary
Table S1).

Genes for galactose metabolism by S. mutans were also
up-regulated in the presence of C. albicans, which could
simply reflect relief of catabolite repression. Another possible
explanation is that C. albicans can produce galactose via
up-regulation of its metabolic pathway by N-acetylglucosamine

(GlcNAc) (Kamthan et al., 2013), which is a ubiquitous dietary
sugar and also produced through bacterial biosynthesis (Moye
et al., 2014). We found detectable amounts of GlcNAc in
the supernatant of biofilm cultures of S. mutans–C. albicans
[∼20 µM; compared to S. mutans alone (∼10 µM) (data
not shown)], which may help to explain, at least in part
this observation. S. mutans can metabolize galactose by two
distinct pathways: the tagatose 6-phosphate pathway (de Vos and
Vaughan, 1994) and Leloir pathway (Ajdić et al., 1996). Previous
studies have shown that S. mutans can efficiently metabolize when
both the tagatose 6-phosphate pathway and Leloir pathways
are functional, while the tagatose pathway is responsible
predominantly for the utilization of the phosphorylated galactose
moiety that comes from the breakdown of lactose 6-phosphate
(Abranches et al., 2004; Zeng et al., 2010).

In S. mutans, the genes encoding the tagatose 6-phosphate
pathway are arranged as part of the lac operon. When
co-culturing with C. albicans, six of the seven genes comprising
tagatose 6-phosphate pathway [lacE (SMU_1491), lacF
(SMU_1492), lacA (SMU_1496), lacB (SMU_1495), lacC
(SMU_1494), and lacD (SMU_1493)] were up-regulated
(Figure 4 and Supplementary Table S4), which are consistent
with their sequential role in the galactose metabolism. The

Frontiers in Microbiology | www.frontiersin.org 8 June 2017 | Volume 8 | Article 1036

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-01036 June 6, 2017 Time: 15:56 # 9

He et al. Transcriptomic Changes of Streptococcus mutans Co-culturing with Candida albicans

galactose moiety of lactose, and possibly galactose alone,
can be transported and phosphorylated by a lactose-specific
(LacEF) PTS. The resultant galactose 6-phosphate generated
by an intracellular 6-phospho-β-galactosidase is converted into
tagatose 6-phosphate, then to tagatose-1,6-bisphosphate, and
then to glyceraldehyde 3-phosphate and dihydroxyacetone by
the enzymes galactose-6-phosphate isomerase (lacAB), tagatose
6-phosphate kinase (lacC), and tagatose-1,6-bisphosphate
aldolase (lacD), respectively (Abranches et al., 2004).
Furthermore, two genes of Leloir pathway [galK (SMU_886) and
galT (SMU_887)] were also up-regulated (Figure 4), although
the GalK pathway is minor and not as efficient as the tagatose
pathway in S. mutans (Abranches et al., 2004). In the Leloir
pathway, galactose enters the cell via an unidentified permease,
where it is phosphorylated by galactokinase (galK) to yield
galactose 1-phosphate, which is then converted into glucose
1-phosphate by hexose1-phosphate uridyltransferase (galT)
and UDP-glucose epimerase [galE (SMU_888)]. The resulting
glucose 1-phosphate can enter the glycolytic pathway.

Pyruvate Metabolism of S. mutans in
Dual-Species Biofilms
The transcriptomic data suggest that C. albicans promotes
S. mutans sugar utilization, leading to induction and/or
derepression of genes for multiple catabolic pathways via inputs
from global and specific regulatory systems. Among them,
pyruvate metabolism is an important mechanism for S. mutans
survival and expression of virulence within cariogenic biofilms
that balances the need for ATP with maintenance of NAD/NADH
ratios and for carbon for amino acid biosynthesis (Kim et al.,
2015). Our pathway impact analysis shows that the pyruvate
metabolism is substantially altered when S. mutans is growing in
the presence of C. albicans, compared to single-species biofilms
of S. mutans (Figures 1B, 5 and Supplementary Table S4). All
the genes in the pdh operon (pdhD–pdhA–pdhB–pdhC), as well as
pfl2 (SMU_493) encoding PFL (Figure 5) and pflA (SMU_1692)
encoding PFL activating enzyme (Supplementary Table S4)
were up-regulated in dual-species biofilm (vs. single-species
S. mutans). It is conceivable that pyruvate metabolism was
different between single- and dual-biofilms since both the glucose
and fructose from sucrose and galactose catabolism lead to
pyruvate production.

Pyruvate sits at an intersection of key pathways of sugar
metabolism, and is converted by (1) pyruvate dehydrogenase
complex (PDHc) into acetyl-CoA and CO2, (2) pyruvate
formate lyase (PFL) yielding acetyl-CoA and formate, and (3)
lactate dehydrogenase (LDH) into lactate that can be further
metabolized. PDH and PFL pathways are activated when
carbohydrates are not present in excess, suggesting that at least
some cells in the dual-species biofilm might experience limitation
for carbohydrate (Figure 2). Both GO and KEGG results indicate
S. mutans and C. albicans may be competing for the fermentable
sugar available in the culture medium when grown together
in biofilms, which could trigger derepression or activation of
alternative transport and catabolic pathways of S. mutans, as
well as other adaptive mechanisms in response to environmental

changes that enhance carbohydrate utilization (vs. single-species
S. mutans biofilm). Such a scenario would also be consistent with
activation of the PDH pathway, since S. mutans growing with
excess carbohydrate predominantly shunt carbon through LDH.
Notably, the inactivation of pdh impairs the survival of S. mutans
in limiting sugar conditions in stationary phase (Busuioc et al.,
2010), such that activation of pdh could be important for survival
or persistence of S. mutans or a sub-population of S. mutans in
the mixed-culture system employed here.

In addition to producing energy for growth and anabolic
processes, the pdh operon has also been shown to be vital
for survival of sugar-starved S. mutans (Busuioc et al.,
2010) and its acid tolerance (Korithoski et al., 2008), which
are critical virulence properties within cariogenic biofilms.
When carbohydrates are in excess, the LDH enzyme is
allosterically activated by fructose-1,6-biphosphate, a glycolytic
intermediate, to catalyze the conversion of pyruvate to lactate
via generating NAD+ from NADH (homolactic fermentation).
Notably, LDH would be less active in carbohydrate-limiting
conditions and utilization of galactose via the tagatose pathway
(which is activated in dual-species) bypasses the production
of the intermediates that regulate carbohydrate regulation
(F-1,6-bP, G-6-P) (Zeng et al., 2010). However, in carbohydrate-
liming conditions, the metabolic shift between pyruvate and
formate is controlled by PFL, which can convert pyruvate to
formate and acetyl-CoA via up-regulated pyruvate metabolism
(heterolactic fermentation). Acetyl-CoA can be further converted
to acetyl-phosphate (acetyl-P), which can be used for the
production of ATP via acetate kinase. Importantly, PFL appears
to have a key role in pyruvate metabolism of S. mutans residing
within natural dental biofilm (Abbe et al., 1982).

We detected higher concentrations of extracellular formate
in dual-species biofilms (∼five-fold increase vs. single-species)
as determined via 1H-NMR (P < 0.001, Figure 2B-b2), which
was consistent with the increased expression of the genes for
PFL. In contrast, ldh expression between dual-species and single-
species S. mutans biofilms was unaffected and similar amounts
of lactate were found in the culture medium (Figure 2B-b2).
Formate, a stronger acid (pKa = 3.75 vs. pKa of lactate = 3.86),
has been detected in significant amounts in resting cariogenic
plaque in humans (Distler and Kröncke, 1986). Thus, induction
of S. mutans PDH and PFL by the fungal presence within
biofilms may contribute to the enhanced cariogenicity observed
in vivo (Falsetta et al., 2014). Enhanced sugar metabolism induced
by co-culturing of C. albicans combined with transcriptomic
changes in PDH and PFL may offer at least one explanation
for the carbohydrate limitation (Figure 2) and the observed
gene expression patterns in dual-species biofilms. Moreover,
PFL is inactivated by oxygen, whereas PDH production is
enhanced by growth in air. The up-regulation of PDH and
PFL pathways also suggest the potential for complex and
spatially heterogeneous gene expression patterns, whereby cells
are carbohydrate-limited, but differences in exposure of cells
within certain regions of the biofilm may influence whether the
PFL pathway (anaerobic) is active or cells predominantly use
PDH (aerobic) to favor acetate production and generation of
additional ATP.
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FIGURE 5 | KEGG pyruvate metabolism pathway map (smu:00620) for S. mutans UA159. S. mutans genes involved in the pathway are shown in green. Of these,
eight showed differential expression. The six bordered in red were up-regulated and the one bordered in blue was down-regulated. At the center of the pathway,
showing strong up-regulation is the four-enzyme pyruvate dehydrogenase complex (pdhD–pdhA–pdhB–pdhC) (PDH).

C. albicans Can also Promote S. mutans
Fitness and Virulence through Signal
Transduction System
Two-component signal transduction systems (TCSTS) involve
phosphotransfer events between transmembrane sensor kinases
and cytoplasmic response regulators, which are transcription
factors that bind DNA to repress and/or activate gene expression
(Stock et al., 2000). Currently, 14 TCSTS have been identified that
are able to enhance the ecological fitness and cariogenic potential
of S. mutans (Smith and Spatafora, 2012). Genes encoding CiaRH
[i.e., ciaR (SMU_1129) and ciaH (SMU_1128)] were up-regulated
in the presence of C. albicans (two-fold), and this system has
been implicated in acid tolerance, sucrose-dependent adherence
and biofilm formation by S. mutans (Qi et al., 2004; Ahn et al.,
2006; Biswas et al., 2008). Although in a different bacterial-fungal
biofilm system, Dutton et al. (2016) also observed that ciaR
gene in S. gordonii was up-regulated in early-stage of interaction
with C. albicans. The gene comC (SMU_1915) encoding

competence stimulating peptide (CSP), as well as several
late competence genes, including comYB (SMU_1985), comYD
(SMU_1983), comEA (SMU_625), and comEC (SMU_626) were
down-regulated [log2 (fold change) < −0.7]. Factors regulating
the development of genetic competence have been shown to
influence acid tolerance, biofilm formation, eDNA release and
stress tolerance in general. In parallel, a recent microfluidic
study revealed that CSP signaling to induce competence is
highly sensitive to pH and can be turned-off even in mildly
acidic conditions (<pH 6.0, Son et al., 2015). Thus, biofilm
microenvironmental changes may down-regulate genes involved
with the development of genetic competence.

Other Potential Interactions between
S. mutans and C. albicans
Another notable difference between mono- and dual-species
biofilms was the marked down-regulation of genes associated
with the production of a suite of small antimicrobial peptides
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FIGURE 6 | A snapshot of some of the transcriptome changes in S. mutans when co-cultured with C. albicans. Overall, the data reveal that the presence of
C. albicans enhances sugar metabolism and metabolic fitness, and alters competence gene expression in S. mutans. (A) Up-regulation of the scrA gene encoding a
high-affinity sucrose PTS permease (EIIScr) and possibly in concert with the product of the pttB gene encoding the trehalose-PTS (EIITre) facilitates internalization of
sucrose as sucrose-6-phosphate, with the glucose moiety carrying the phosphate group. Glucose-6-phosphate and fructose are produced via the action of ScrB,
and ScrK used ATP to convert the fructose to fructose-6-phosphate. Both of these phosphohexoses can enter the glycolytic pathway. When S. mutans is growing in
the presence of C. albicans, pyruvate metabolism can be affected by the availability of glycolytic intermediates. (B) The presence of C. albicans also appears to
up-regulate the production of the CiaRH two component signal transduction system (TCSTS), which modulates acid tolerance, sucrose-dependent adherence and
biofilm formation in S. mutans. (C) Another signaling system in S. mutans, the CSP-ComDE pathway, is affected by C. albicans. ComC (N) is secreted and
processed by ComAB to produce CSP (see text for more detail) and this peptide is then detected by the ComDE TCSTS. ComE directly activates bacteriocin
production and CSP indirectly stimulates the development of genetic competence, as well as influencing cell. Indeed, changes of CSP-comDE pathway via
down-regulation of comC can lead to down-regulation of downstream bacteriocin genes (e.g., nlmAB) and decreases in expression of late competence genes
(comYABCD). Red letters indicate up-regulated genes, blue letters show down-regulated genes.

(bacteriocins) termed mutacins by S. mutans when co-cultured
with C. albicans (Table 2 and Supplementary Table S1).
Since the expression of mutacin genes, which is regulated
mainly by the CSP-ComDE system, is considered to be
important in the competition with early colonizers, including
S. sanguinis and S. gordonii (Merritt and Qi, 2012), a less
robust activation of mutacin gene expression in S. mutans
could alter the microbial composition of oral biofilms in a
way that promotes a symbiotic relationship between S. mutans
and C. albicans. Furthermore, previous studies reveal that
deletion of genes [nlmA (SMU_150) and nlmB (SMU_151)]
encoding mutacins IV and V in S. mutans results in lower
antimicrobial activity against S. pyogenes (Hale et al., 2005;
Hossain and Biswas, 2011), so decreased mutacin gene expression

has indeed been correlated with lower mutacin biological
activity.

We observed significant down-regulation of comC, the
precursor for competence-stimulating peptide (CSP) that is a
direct activator of mutacins via ComDE (van der Ploeg, 2005). It
was previous shown that C. albicans activated S. mutans comS and
sigX (Sztajer et al., 2014), so the down-regulation of comC might
be perceived as inconsistent with this previous study. However,
ComCDE do not directly activate comS or sigX (comX). Indeed,
the observed decrease of comC (the CSP precursor structure
gene) expression is completely consistent with the fact that
SMU_1914c, SMU_299c, SMU_1889c, SMU_423, SMU_150, and
SMU_151, which encode bacteriocins or products required for
bacteriocin production, were also down-regulated. Bacteriocin
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production is dominantly regulated by CSP, which acts directly
through the ComDE TCS to activate bacteriocin gene expression
(van der Ploeg, 2005). Previous studies showed that CSP can
regulate C. albicans growth and morphogenesis (Jarosz et al.,
2009). It is possible that Candida, in addition to promoting
an acidic microenvironment, can produce several proteases that
may inhibit CSP signaling system, similar to the inhibition of
S. mutans bacteriocin production by S. gordonii challisin (Wang
and Kuramitsu, 2005). Hence, the presence of C. albicans and its
effects on the biofilm milieu could subvert mutacin production
to enhance its own persistence. Of note, the low pH created by
the combination of C. albicans and S. mutans may diminish the
need for S. mutans to produce bacteriocins that mainly target
comparatively acid-sensitive commensal streptococci.

We also detected genes associated with clusters of
regularly interspaced short palindromic repeats (CRISPRs, i.e.,
SMU_1760c, SMU_1761c, and SMU_1762c) of S. mutans that
were down-regulated in dual-species biofilms. Lack of CRISPR
activity could be a direct reflection of decreased competence
observed in mixed-species biofilms, which would decrease the
amount of DNA being internalized by S. mutans. CRISPR are
involved primarily in antiviral defenses in prokaryotes (Brouns
et al., 2008). However, the role of S. mutans CRISPR in caries
development or in C. albicans–S. mutans interactions is presently
unknown, but may warrant further investigation if the change in
CRISPR expression does reflect some response to the presence of
fungi.

In summary, the present study provides a comprehensive
insight into S. mutans transcriptomic changes associated with
the presence of C. albicans within mixed-species biofilm. GO
term and KEGG pathway impact analysis support an active
influence on S. mutans at the transcriptional level. The fungal
presence modulates the expression of genes involved in S. mutans
sugar metabolism, fitness and survival within biofilms, offering
plausible explanations for the enhanced bacterial accumulation
and virulence of the bacterial-fungal biofilms in the context
of ECC (Figure 6). RNA-Seq provides a detailed ‘snapshot’ of
the overall transcriptome changes, but there are limitations.
For example, RNA-Seq provide an average gene expression
profile at a given time-point without taking into consideration
the substantial spatio-temporal heterogeneity that exists within
complex biofilms. Nevertheless, future studies using specific
mutants of S. mutans can now be designed based on the
RNA-Seq data with the goal of comparing the behaviors of the
strains to interact and persist in co-culture system. This will
include testing different mutant strains with altered abilities
in carbohydrate metabolism and/or respond to changes in
the environment caused by C. albicans presence, including
CcpA as well as mutacin production (nlmAB) and cell–cell
communication (comDE). Furthermore, future studies using
recently developed single-cell in situ RNA-Seq (Lovatt et al., 2014)
and a bacterial–fungal nanoculture system (Kim et al., 2017)
for localized gene expression may facilitate description of the
spatio-temporal transcriptome patterns within biofilms.

Although we focus on the influence of the presence of
C. albicans on S. mutans transcriptome, S. mutans also provides

benefits to C. albicans, such as enhanced colonization on the
tooth surface and cross-feeding sucrose break-down products
(e.g., glucose) for fungal utilization. Conversely, S. mutans
could also impact C. albicans transcriptome based on recent
observations that S. gordonii activate fungal genes associated
with filamentation and proteases (Dutton et al., 2016). We are
optimizing a protocol for both bacterial and fungal mRNA
enrichment from mixed-species biofilms for dual RNA-Seq
studies, which combined with metaproteomics, may provide
additional mechanistic explanations. Clearly, this bacterium–
fungus interaction is complex and multifaceted, and could induce
additional cross-kingdom responses and alter the surrounding
biofilm microenvironment to modulate the cariogenic potential
of biofilms. We are currently exploring how the fungal infection is
acquired and how Candida responds to the presence of S. mutans
in cariogenic biofilms. Enhanced colonization and increased
carriage of C. albicans in plaque biofilms may also provide a
fungal reservoir that could promote Candida infections of oral
mucosal surfaces. Thus, inclusion of antifungals may be an
important factor for devising more effective therapies to control
ECC and its consequences.
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