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Abstract

Summary: Emerging single-cell technologies (e.g. single-cell ATAC-seq, DNase-seq or ChIP-seq) have

made it possible to assay regulome of individual cells. Single-cell regulome data are highly sparse

and discrete. Analyzing such data is challenging. User-friendly software tools are still lacking. We pre-

sent SCRAT, a Single-Cell Regulome Analysis Toolbox with a graphical user interface, for studying

cell heterogeneity using single-cell regulome data. SCRAT can be used to conveniently summarize

regulatory activities according to different features (e.g. gene sets, transcription factor binding motif

sites, etc.). Using these features, users can identify cell subpopulations in a heterogeneous biological

sample, infer cell identities of each subpopulation, and discover distinguishing features such as gene

sets and transcription factors that show different activities among subpopulations.

Availability and implementation: SCRAT is freely available at https://zhiji.shinyapps.io/scrat as an

online web service and at https://github.com/zji90/SCRAT as an R package.

Contact: hji@jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell regulome (scRegulome) mapping technologies such as

single-cell sequencing assay of transposase-accessible chromatin

(scATAC-seq) (Buenrostro et al., 2015; Cusanovich et al., 2015),

single-cell chromatin immunoprecipitation followed by sequencing

(scChIP-seq) (Rotem et al., 2015) and single-cell DNase I hypersen-

sitive site sequencing (scDNase-seq) (Jin et al., 2015) have been

emerging as a powerful new approach to studying gene regulation.

Unlike the conventional ChIP-seq (Johnson et al., 2007), DNase-seq

(Crawford et al., 2006) and ATAC-seq (Buenrostro et al., 2013)

technologies which measure average behavior of a cell population,

single-cell technologies can measure regulatory element activities

within each individual cell, thereby allowing one to examine the het-

erogeneity of a cell population. This is important for studying mo-

lecular mechanisms of tumors, immune responses, stem cell

differentiation, and many other biological systems.

Typically, a scRegulome dataset contains cells sampled from a

heterogeneous cell population. Two common data analysis problems

are to identify subpopulations of cells and distinguishing features

that show differential regulatory signals among different

subpopulations. Currently, easy-to-use software tools for these tasks

are still lacking. Unlike data from the traditional bulk technologies

which are relatively continuous, scRegulome data are highly sparse

and discrete. For instance, chromatin accessibility measured by

scATAC-seq is nearly a binary signal at each genomic locus (Fig. 1a,

Supplementary Fig. S1). Using these highly sparse and discrete data

to discriminate signal from noise at each individual genomic locus is

extremely difficult. For this reason, conventional tools developed for

analyzing bulk data are not suitable for single-cell data. Aggregating

signals across multiple genomic loci with shared biological functions

can mitigate sparsity and discreteness and has been shown to be a

useful way to analyze scRegulome data (Buenrostro et al., 2015;

Cusanovich et al., 2015; Rotem et al., 2015) (Supplementary

Material and Supplementary Fig. S2). However, systematically

aggregating signals according to different genomic features (e.g.

transcription factor binding motifs, gene sets) and using the aggre-

gated signals to analyze sample heterogeneity is a non-trivial task

for many investigators due to lack of software support, as demon-

strated in Supplementary Tables S1 and S2. Here, we present

SCRAT, a toolbox with a graphical user interface (GUI) for
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analyzing cell heterogeneity in single-cell regulome (i.e. scATAC-

seq, scDNase-seq and scChIP-seq) data. It can be used to summarize

data from each cell according to different genomic features, identify

cell subpopulations based on these features, infer identities of cells

in each subpopulation, and discover features that show differential

regulatory signals among subpopulations (Fig. 1).

2 SCRAT functions and examples

The main functions of SCRAT are summarized below.

2.1 Data pre-processing
SCRAT takes aligned sequence reads (i.e. bam files) as input. Users

have options to exclude artifact signals from the ENCODE blacklist

regions (ENCODE Project Consortium, 2012) and filter out cells

with low total read count.

2.2 Feature summarization
Next, users can aggregate reads from each cell according to different

features, such as across all motif sites of each transcription factor

binding motif (Motif), across co-regulated DNase I hypersensitive

sites (DHSs) defined by ENCODE DNase-seq data (ENCODE

Cluster), within a region of interest of each gene (Gene), and across

all genes of each gene set in the MSigDB (Liberzon et al., 2011)

database (Gene Set). Here, motifs, DHS clusters, genes, and gene

sets are called ‘features’ (Fig. 1c). For human and mouse genomes,

these features are pre-defined and stored in SCRAT. Users can also

define their own features for aggregation by uploading one or more

lists of genomic regions in BED file format (Custom Feature). After

aggregation, the signals for each feature are normalized to adjust for

library size.

2.3 Cell heterogeneity analysis
SCRAT uses the aggregated signals to cluster cells into subpopula-

tions (Fig. 1d). Multiple clustering methods are provided. Clustering

can be based on one or multiple sets of features chosen by users. The

cluster number may be determined automatically. One can use the

original features or the transformed features after dimension reduc-

tion. Multiple dimension reduction methods are provided.

2.4 Inferring cell identity
Users can compare each cell’s regulome to a pre-compiled regulome

database consisting of ENCODE DNase-seq profiles from a wide

variety of cell types to infer the likely cell type of each cell. The simi-

larity between each single cell and existing cell types in the database

based on the aggregated signals can be visualized using a heatmap

(Fig. 1e). Users can also select existing cell types in the database and

project them to the principal component space of single cells to help

illuminate the nature of the heterogeneity (Fig. 1d, green dots).

2.5 Differential feature analysis
Given cell subpopulations, users can identify features that are differ-

ential among subpopulations (i.e. heterogeneity-driving features).

One can choose to run parametric (t-, ANOVA F-) or non-

parametric (Wilcoxon rank-sum, Kruskal-Wallis or permutation)

test on each feature to evaluate whether its aggregated signals are

differential among the user-selected subpopulations. Differential fea-

tures which pass certain false discovery rate cutoff will be reported

(Fig. 1f).

2.6 GUI
SCRAT has a GUI which makes the analysis user-friendly.

Details of these functions are provided in Supplementary Material.

Supplementary Table S1 compares SCRAT with existing popular tools

for regulome or differential feature analyses. To demonstrate SCRAT,

we analyzed a scATAC-seq dataset consisting of GM12878 and

HEK293T cells (Supplementary Material). Conventional bulk peak

calling followed by clustering cells using peak-level signals failed to

separate the two cell types (Fig. 1b). In contrast, SCRAT successfully

identified the two cell subpopulations (Fig. 1d) and differential fea-

tures that matched the cell identities (Supplementary Figs. S3–S11;

Supplementary Table S3). We also applied SCRAT to scATAC-seq

data from human and mouse embryonic stem cells (ESC) and found

that a consistent feature driving cell heterogeneity in these ESCs was

cell cycle genes (Supplementary Figs. S12 and S13, Supplementary

Tables S4 and S5).

Fig. 1. SCRAT analysis pipeline. (a) Single-cell regulome data is very sparse.

(b) Analyzing scATAC-seq data using conventional bulk peak calling followed

by clustering cells based on peak-level signals failed to separate two different

cell types (i.e. GM12878 and HEK293T). (c) SCRAT first aggregates the input

data into features according to empirical knowledge learned from public data-

bases. (d) It then dissects cell heterogeneity by clustering cells using the

aggregated features. For the same data in (b), SCRAT successfully separated

GM12878 and HEK293T cells into two groups. Green dots are a few reference

bulk DNase-seq samples from a precompiled database to help infer identities

of cell subpopulations. (e) SCRAT can also evaluate the similarity between

each cell and existing cell types in the precompiled database. (f) Finally,

SCRAT identifies differential features between subpopulations of cells
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In summary, SCRAT provides a set of easy-to-use tools for cell

heterogeneity analysis, and it addresses the pressing needs for soft-

ware support for analyzing scRegulome data.
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