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It is shown that the application of a sufficiently strong mag-
netic field to the odd-frequency–paired pair-density wave state
described in A. M. Tsvelik [Phys. Rev. B 94, 165114 (2016)]
leads to formation of a low-temperature metallic state with
zero Hall response. Applications of these ideas to the recent
experiments on stripe-ordered La1.875Ba0.125CuO4 (LBCO) are
discussed.
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Recent magnetotransport measurements in x = 1/8
La1.875Ba0.125CuO4 (LBCO) (1) have revealed yet addi-

tional extraordinary features of this otherwise highly usual
system. It has turned out that when the applied magnetic field
destroys the superconductivity in this layered material, the
system becomes metallic with zero Hall response. This behavior
is robust down to the lowest temperatures; the sheet resistance
gradually increases, with the magnetic field leveling off at
around B ∼ 30 T at G = 2e2/h .

At x = 1/8, doping the holes in the copper oxide layers of
LBCO are arranged in static stripes at temperatures below
∼ 40 K. The material undergoes Berezinskii–Kosterlitz–
Thouless (BKT) transition at around TBKT = 16 K into a
2D superconducting phase with a finite resistivity in the c
direction (2). The Meissner effect is established at a much lower
temperature, ∼ 3 K. The theoretical explanation put forward in
ref. 3 assigns these unusual properties to the formation in each
CuO layer of pair density wave (PDW)—a superconducting
state where the pairs have nonzero momentum Q. If the
direction of Q is different in neighboring copper oxide layers,
then the pairs would not able to tunnel, and the layers would
remain decoupled. The theory (3, 4) models the PDW state as
an array of doped chains separated by undoped regions; the
chains contain Luther–Emery liquids with gapped spin sector
and enhanced superconducting fluctuations. An isolated chain
has a quasi-long-range superconducting order with a spin gap;
the chains interact through Josephson coupling (pair tunneling)
and the long-range Coulomb interaction. Quasiparticles play no
active role in this scenario. I argue that this standard picture
of the stripe phase cannot explain the transport data of ref.
1—namely, the combination of metallic longitudinal resistivity
and zero Hall conductivity. It will be shown that once the
strong magnetic field makes the Josephson coupling irrelevant,
the superconducting correlations in the transverse direction
become short range, suppressing the transport in the direction
perpendicular to the chains. To explain the metallic transport,
one has to assume the presence of quasiparticles, as was done in
ref. 5. However, then one has to explain zero Hall conductivity.

The present paper suggests a different scenario in which
the above difficulties are resolved. It is based on the results
obtained in ref. 6. This paper describes a version of a striped
model where the spin gap and superconducting coupling on the
hole doped stripes come as a result of exchange interactions
between the holes and the surrounding spins and the Heisenberg

exchange between the spins. This leads to the formation of
PDW with the wave vector along the stripes, together with
formation of hole- and electron-like Fermi pockets of gapless
quasiparticles. The restrictions related to the Luttinger theo-
rem guarantee the equality of the number of electrons and
holes and, as a consequence, zero Hall response. The existence
of ungapped quasiparticles is due to the fact that the PDW
order parameter (OP) had a finite wave vector incommensu-
rate with the Fermi surface which eliminates coupling between
the OP and the quasiparticles. The superconductivity is essen-
tially 2D, as in the standard layered model, but since nothing
prevents quasiparticles from tunneling between the layers, their
transport is 3D.

The present paper begins with a pedagogical description of this
model adopted to the case of a layered 3D material with stripes in
neighboring layers running perpendicular to each other, as is the
case with LBCO. The model displays staggered odd-frequency
PDW with a wave vector directed along the stripes. This stagger-
ing makes the interlayer coupling of the OPs difficult. Below, I
will recall the main results of ref. 6, generalizing them for finite
magnetic fields and putting them in the context of ref. 1.

Model
The adopted description of the striped state is one of a Kondo
lattice. This is, however, a lattice of a special kind, where the con-
duction electrons and local moments are segregated into stripes.
In the first approximation, we can consider a 2D arrangement of
parallel stripes. The salient feature of the model is incommensu-
rability between the Fermi wave vector of the holes occupying the
conducting chains (stripes) and the lattice. The standard think-
ing about Kondo lattices considers its physics as a product of
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competition between the interspin and the Kondo interactions.
If the former one wins, the spins decouple from the electrons,
and when the latter wins, the spins fractionalize, hybridize with
the itinerant electrons, and become a part of the conduction
band, giving rise to a heavy fermion Fermi liquid. It has been
frequently suggested (see, for example, refs. 7 and 8) that there
are circumstances when the spin system left to its own devices will
not magnetically order, but form a liquid—a strongly correlated
state with short-range spin correlations. However, the experience
of many years of research in this direction indicates that such
disordered states are very difficult to realize. If interacting spins
do not order magnetically, they tend to form so-called valence
bond solids where the magnetic excitations are gapped, but the
translational symmetry is still broken.

In ref. 6, I have considered a mechanism of spin-liquid forma-
tion based on cooperation between the Kondo and the Heisen-
berg exchange interactions. Somewhat paradoxically, such coop-
eration works better when the Heisenberg exchange is stronger
than the Kondo one, provided the spin liquid has a Fermi surface,
as is the case for solitary spin S = 1/2 Heisenberg chains (HCs).
Such a situation takes place already for a single spin chain, and,
indeed, a single HC coupled to 1D electron gas (1DEG) already
provides a mechanism for PDW formation, as has been noticed
in refs. 9 and 10. Hence, the simplest way to realize such situation
is to consider an array of spin S = 1/2 HCs decoupled from each
other. In LBCO, the doped and undoped stripes alternate. To
simplify matters, I consider a somewhat different situation when
doped chains lie on top of the Heisenberg one, as was done in
ref. 6. In this case, each spin chain is coupled to only one conduct-
ing chain. This arrangement allows me not to consider additional
details, which would only muddle the discussion.

A single Kondo–Heisenberg (KH) ladder consists of an anti-
ferromagnetic spin S = 1/2 HC coupled to 1DEG via an
anferromagnetic exchange interaction:

H =
∑
k

ε(k)ψ+
kσψkσ +

JK
2

∑
k ,q

ψ+
k+q,ασ

a
αβψk ,βS

a
q

+ JH
∑
n

SnSn+1, [1]

where ψ+,ψ are creation and annihilation operators of the
1DEG, σa are the Pauli matrices, Sn is the spin S = 1/2 oper-
ator on site n , and Sq is its Fourier transform. It is assumed that
JK << JH and the 1DEG is far from half filling, |2kFa0−π| ∼ 1
(kF is the Fermi momentum of the electrons). Under these
assumptions, one can formulate the low-energy description of
Eq. 1, taking into account that the backscattering processes
between excitations in the HC and the 1DEG are suppressed
by the incommensurability of the 1DEG. The effective theory
is valid for energies much smaller than both the Fermi energy
εF and the Heisenberg exchange interaction JH of the model
(Eq. 1). It is integrable (10), and the exact solution was used
as a springboard for a controllable approach to the model of a
D-dimensional array of KH ladders developed in ref. 6.

At JK = 0, both 1DEG and the HC are critical systems. The
excitations of the HC are gapless spinons whose spectrum is
linear at small momenta: ω= vH |k | with vH =πJH/2. Spinons
are fractionalized particles: They carry zero electric charge, and
spin S = 1/2. In the absence of umklapp, the only smooth
parts of the magnetizations of spin and electron chains cou-
ple. It is remarkable that in the spin S = 1/2 HC, the smooth
part can be represented as a sum of the spin currents jR,L

(equation 2 in SI Appendix) which allow a fermionic representa-
tion: j aR = 1

2
r+σar , j aL = 1

2
l+σa l , where r , l are noninteracting

1D fermions with dispersion ±vH kx . These fermions carry a
fictitious U(1) charge. However, the charge degrees of free-
dom do not affect the current–current commutation relations

and hence do not partake in the interaction with the con-
duction electrons. When the Kondo coupling is much smaller
than the electron bandwidth, we can linearize the electron
spectrum close to the Fermi points, introducing right- and left-
moving fermions R(k) =ψ(kx + kF , ky), L(k) =ψ(kx − kF , ky).
The resulting low-energy description is

H =H+ +H−, [2]

H+ =
∑

k

{
εR(k)R+

α (k)Rα(k) + vH kx l
+
α (k)lα(k)

}
+ JK

∫
dVR+σaR(r)l+σa l(r), [3]

H−=H+(R→L,L→R, kx →−kx ). [4]

We can choose εR,L =±vF (kx − kF ) + 2t(cos ky + cos kz ).
Representation Eqs. 3 and 4 is similar to the one frequently

adopted for the Kondo lattices; see, for example, ref. 11. How-
ever, there is one difference—namely, that in our approach,
the spinon right- and left-moving fermionic operators r , l do
not interact, and in the standard treatment where the spins are
arranged on a 3D lattice with isotropic interactions, they do.

The Spectrum and the OPs
The following simple mathematical description gives the gist of
what is going on. Although it is possible to carry on the cal-
culations rigorously, as was done in ref. 6, I will resort to a
simplified approach. Namely, I decouple the interaction with the
Hubbard–Stratonovich transformation and look for the saddle
point:

JKR+σaRl+σa l→|∆+|2/2JK + (∆+R
+
α lα +H .c.), [5]

and the same for L and r . Then, the quasiparticle spectrum at
the saddle point is

E±(k) =±(kxvH − εR)/2 +
√

(kxvH + εR)2/4 + |∆+|2, [6]

where εR = vFkx + t⊥(k), where t⊥ is the Fourier transform of
the interchain tunneling. Strictly speaking, this procedure is jus-
tified when the SU(2) symmetry is replaced by the SU(N) one
with N >> 1. However, as was demonstrated in ref. 6, the results
remain robust, even for N = 2. Some details can be found in
SI Appendix. However, even on this level, we see that ∆± are
complex fields, and their phases must remain gapless.

If electrons are also 1D, their Fermi surface is flat. The
processes which lead to creation of the spectral gaps in the
spectrum of the spin excitations are depicted in Fig. 1, Left. It

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Kx

Ky

k

Fig. 1. (Left) Spinon (thick blue) and electron (yellow) Fermi surfaces in
the array of 1D Kondo–Heisenberg ladders. In the limit when ladders are
decoupled, the Fermi surfaces are flat and exhibit a perfect nesting. Then
spinons and electrons with opposite chirality hybridize and create spin gaps.
The spin subsystem decouples into two independent spin liquids. (Right)
The bare spinon (blue) and electron (yellow) spectra. The Fermi momenta of
electrons and spinons do not coincide.

12730 | www.pnas.org/cgi/doi/10.1073/pnas.1902928116 Tsvelik

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902928116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1902928116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1902928116


PH
YS

IC
S

Fig. 2. Holons of 1DEG (orange arrows) do not pair. (A) Spinons of 1DEG
(thin arrows) pair with the spinons of opposite chirality from the HC (thick
arrows). This forms the gapped spinon dispersion (Eq. 6) shown in B. e =

E/∆, q = kx(vHvF )1/2/∆, and vF/vH = 1/2. The spinons of the Heisenberg
model located at wave vectors −π/2a0 (+π/2a0) pair with the spinons of
the 1DEG located at kF (−kF ). The product of the corresponding pairing
amplitudes forms the amplitude A of the composite OP (Eq. 8).

is assumed that the Fermi momenta of electrons and spinons
are different, so that there are no umklapp processes, and the
hybridization takes place only between spinons and electrons of
opposite chirality (Fig. 2). This opens a gap on the entire electron
Fermi surface. If one allows an interchain tunneling, the nest-
ing becomes imperfect, and pockets of electron- and hole-like
quasiparticles will appear, as in Fig. 3.

The Hubbard–Stratonovich approach gives a somewhat sim-
plified picture of the spectrum. It turns out that the gapped parts
of the spectrum (Eq. 6) correspond to neutral spinons–spin-1/2
incoherent excitations which remain confined to the chains. The
gapless parts correspond to coherent quasiparticles, whose Fermi
surfaces in the form of particle and hole pockets are shown in
Fig. 3.

There are also gapless collective modes corresponding to fluc-
tuations of the OP fields. The Hubbard–Stratonovich fields ∆±
contain a fictitious U(1) phase of the r , l fermions and hence
are not gauge-invariant. The real OP fields in the KH ladder are
their products ∆+∆− and ∆+∆∗−.† These OPs can be expressed
in terms of the electron and spin operators:

Ocdw =ψ+(x )
[
(SxSx+a0)Î + i(σaSa

x )
]
ψ(x )ei(π/a0+2kF )x

Osc = i(−1)x/a0ψ(x )σy
[
(SxSx+a0)Î + i(σaSa

x )
]
ψ(x ), [7]

where Î is a unit matrix. For a single KH chain, correlation func-
tions of these composite OPs have a power-law decay at T = 0.
These OPs can be conveniently written in the matrix form:

Ô=

(
Ocdw O+

sc

−Osc O+
cdw

)
=Aĝ , [8]

where A∼∆ is an amplitude and g is the matrix field of
the SU1 (2) Wess–Zumino–Witten–Novikov model governing
the dynamics of the collective charge excitations (SI Appendix,
Eq. S6).

Using the equations of motion ψ̇= [H ,ψ], where the dot
stands for derivative in Matsubara time, one can show that these
OPs have finite overlap with the OPs of the odd-frequency PDW
and odd-frequency CDW:

Oosc = ψ̇(τ , x )σyψ(τ , x )(−1)x/a0 ,

Oocdw = ψ̇+(τ , x )ψ(τ , x )ei(2kF+π/a0)x . [9]

One can find more detailed discussion of odd-frequency super-
conductivity in the review article (12). The idea that Kondo

†I remind the reader that in one dimension, there is only quasi-long-range order,
meaning that the order parameter fields have power-law correlations at T = 0.

lattices may support odd-frequency superconductivity was put
forward in the 1990s (13, 14), and its relation to the composite
orders (Eq. 7) was discussed in refs. 9, 10, and 15. However, the
mean field theory presented in refs. 13 and 14 was too simple to
account for interesting properties of the KH ladder encoded in
its correlation functions.

Let us now turn to the quasiparticles. The best way to detect
them is to calculate the single-particle Green’s function. For
the standard model, such calculations were done in ref. 5, with
the result that the PDW leaves certain parts of the Fermi sur-
face ungapped. However, this approach does not produce zero
Hall response—one of the striking features on the metallic phase
observed in ref. 1. In the PDW state discussed here, this feature
comes as a consequence of the strong interactions and the spin-gap
formation. The simplest way to see this is to consider the random
phase approximation (RPA) form of the Green’s function:

GRPA = [G−1
1D (ω, kx )− t⊥(k)]

−1
, [10]

where G1D is the Green’s function of a single KH ladder. This
approximation allows one to take into account the strongest
correlations on a single chain encoded in G1D which can be
calculated nonperturbatively. Its precise form is given in ref. 6
and SI Appendix. In the present context, we need to know that
G1D(ω= 0, kx =±kF ) = 0 which allows the purely 1D KH ladder
to satisfy the Luttinger theorem, despite the absence of Fermi
surface. This property translates to Eq. 10, which guaranties that
even for sufficiently large t⊥ when Eq. 10 acquires quasiparticle
poles at zero frequency, they will not contribute to the Luttinger
volume already fixed by the zeroes. In other words, the poles will
cancel each other, resulting in a compensated metal with zero
Hall response (SI Appendix).

A Failure of the Standard Model
Below, I consider the standard model of stripes in the strong
magnetic field and will show that once the Josephson tunnel-
ing is frustrated, the low-temperature transport of pairs becomes
impossible. The standard model describes the charge sector of
the stripe phase as an array of 1D Luther–Emery liquids cou-
pled by Josephson tunneling. The effective Lagrangian density
describing superconducting fluctuations of such system is
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Fig. 3. Pockets of electron- and hole-like quasiparticles formed in the spin-
liquid state with a sufficiently strong interstripe electron tunneling. The
bare electron and spinon Fermi surfaces are gapped and marked by dashed
lines.
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L=
∑
y

{
1

2

[
v−1(∂τθy)2 + v(∂xθy)2

]
+ J cos[β(θy − θy+1)− 2hx/v ]}, [11]

where h = eHa0v/c, with a0 being the interchain distance and H
the applied magnetic field; v is the velocity of the phase mode;
and β is a parameter related to the interactions. In what follows,
I set v = 1. I assume that the long-range Coulomb interaction is
screened, for instance, by the gapless quasiparticles, as in ref. 5.

For our purposes, it will be sufficient to calculate the OP cor-
relation function χP (τ ; x , y) = 〈〈eiβθy (τ ,x)e−iβθ0(0,0)〉〉, for the
large magnetic field when it can be done by using the perturba-
tion theory. The expansion parameter of this theory is J/h2−2d ,
where d =β2/4π. In the leading order in this parameter, the cor-
relation function for a given y must include only minimal number
of Josephson interactions sufficient for the pair to tunnel for a
given distance:

χP (A,B ; y)

= J y

∫ y∏
i=1

dτidxiχ(A, 1)χ∗(1, 2)χ(2, 3) . . . χ(y − 1,B)

× e2ih(x1−x2+x3+...), [12]

where A,B are shorthand for (τA, xA), (τB , xB ), and χ(1, 2) is
just the correlation function χP (τ1− τ2, x1− x2; y = 0) at J = 0.
Taking the Fourier transform and setting kx = 0 to simplify the
expressions, we get

χP (ω, kx = 0, ky) =
G−1(ω, h)− J cos ky

(G−1(ω, h)− J cos ky)2 + J 2 sin2 ky
,

where G−1 =A(ω2 + h2)1−d , with A being a nonuniversal
dimensional parameter. At J << h2−2d , the correlator is short-
ranged, which means that the transverse tunneling of pairs is
blocked. At these circumstances, one is left with conductivity
along the chains, but since this is associated with charge density
waves which are pinned by disorder, this will also vanish.

Summary and Discussion
Let us give a brief summary of physics of Kondo-Heisenberg
array when the magnitude of the interstripe tunneling is of the

order of the spin gap. At energies below the spin gap, the sys-
tem effectively splits into two quasiindependent sectors. One
sector is the collective modes—the superconducting and the
CDW fluctuations. The other sector is the quasiparticles. The
OPs are staggered with wave vectors incommensurate with the
Fermi surface which has the most profound consequences for
the low-temperature behavior. First of all, the incommensura-
bility guarantees that the quasiparticle Fermi surface remains
ungapped, even when there is a true long-range order. Then, in
the layered system where the stripes in the neighboring planes
are perpendicular to each other, the order becomes effectively
2D since the interlayer coupling is frustrated. The quasiparticle
tunneling, however, is not frustrated, and the quasiparticles are
free to propagate in all directions, which prevents their localiza-
tion. At last, the total Fermi surface volume (the Fermi volume of
the electron minus the volume of the hole-like parts) is zero. As is
explained above, this is a property of the strongly correlated spin-
liquid state from which the PDW originates. As a consequence,
the Hall response is zero below the BKT transition.

Measurements of the specific heat produce a finite value
of γ(T→ 0) = 2.5 mJ·K−2mol−1 which increases to 2.8
mJ·K−2mol−1 in H = 9 T (16) (about an order of magnitude
smaller than in the normal state). This is consistent with the
existence of a Fermi surface. The quasiparticle Fermi energy
must be of the order of the spin gap which for a similar mate-
rial La2-xSrxCuO4 is estimated as ∼9 meV (17). Such shallow
Fermi sea could remain undetected by the angle-resolved pho-
toemission spectroscopy (ARPES) measurements (18) in the
stripe-ordered LBCO. In any case, the ARPES experiments
represent problems for the standard model as well. Another
potential problem is magnetic order in the stripe-ordered phase.
Naturally, a strong order will destroy the spin gap which gives
rise to the PDW. However, a weak order may coexist with PDW
(6) (SI Appendix) and the measurements in a similar compound
La1.48Nd0.4Sr0.12CuO4 with x = 0.12 yield a small Cu moment
of 0.10 ± 0.03 µB (19). Besides zero Hall conductivity and finite
γ, there is another feature which distinguishes the present the-
ory from the standard one, it the direction of the wave vectors of
the staggered OPs. They are directed along the stripes, and this
presumably can be tested experimentally.
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