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Abstract The biological phenomenon, hormonal imprint-
ing, was named and defined by us (Biol Rev, 1980, 55, 47-
63) 30 years ago, after many experimental works and
observations. Later, similar phenomena were also named to
epigenetic imprinting or metabolic imprinting. In the case
of hormonal imprinting, the first encounter between a
hormone and its developing target cell receptor—usually at
the perinatal period—determines the normal receptor-
hormone connection for life. However, in this period,
molecules similar to the target hormone (members of the
same hormone family, synthetic drugs, environmental
pollutants, etc), which are also able to bind to the receptor,
provoke faulty imprinting also with lifelong—receptorial,
behavioral, etc.,—consequences. Faulty hormonal imprint-
ing could also be provoked later in life in continuously
dividing cells and in the brain. Faulty hormonal imprinting
is a disturbance of gene methylation pattern, which is
epigenenetically inherited to the further generations (trans-
generational imprinting). The absence of the normal or the
presence of false hormonal imprinting predispose to or
manifested in different diseases (e.g., malignant tumors,
metabolic syndrome) long after the time of imprinting or in
the progenies.

Introduction

Hormonal imprinting is a basic biological phenomenon
which was first observed, named, and defined by us more
than 30 years ago. Today, it develops thousands of web-

pages in Google Scholar and hundred thousands of web-
pages in Google. The phenomenon means that in the
developmentally critical periods, animals or their cells
memorize normally or pathologically the first encounter
with a given hormone or related structures, and this
determines the receptors' later binding capacity as well as
the reaction of the imprinted cell to the hormone for life
(Csaba 1980, 1981, 1984, 2000, 2008). This memory is
transmitted to the progeny generations of the imprinted cell.
Imprinting with the normal (physiological) hormone is
needed for the normal maturation of the receptor (Csaba
and Nagy 1985); however, the faulty imprinting as well as
the absence of the imprinting can be manifested in diseases
or inclination to diseases.

The phylogenetic basis of hormonal imprinting

The unicellular Tetrahymena has binding sites (receptors)
for hormones of higher vertebrates (Csaba and Lantos
1973). This observation called our attention to the hormonal
system at unicellular level and led to many experiments
demonstrating mammalian hormones in Tetrahymena and
to the successful study of their receptors and transduction
pathways (Christopher and Sundermann 1995; Christensen
et al. 2003; LeRoith et al. 1980, 1982; Lenard 1992;
Kőhidai et al. 2001, 2003; Csaba 2008). These latters were
very similar to that of the mammalian ones (Kőhidai et al.
1992; Kovács and Csaba 1997).

Tetrahymena memorizes the first encounter with the
hormone, and a different (in general more intensive)
reaction can be observed in case of the second (and further)
encounters. We named the phenomenon to hormonal
imprinting (Csaba 1980). The individual life of Tetrahymena
is very short (few hours only); however, the memory is
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inherited to the progenies and can be observed after
hundreds of generations (Csaba 1985, 2008). Imprinting
can be provoked not only by hormones but by other
molecules which are able to act at receptorial level (Csaba
2008). This seems to be very important for the unicellular
population as the cells are able to recognize better and earlier
molecules which are dangerous for them and can escape in
time. In addition, they are able to recognize more easily
useful molecules (e.g., food) far from their sites and can
approach them for engulfing. Nevertheless, the phenomenon
is important also from evolutionary aspect, as it helps to
select molecules suitable for being hormones in the further
steps of evolution (Csaba 2008).

The perinatal hormonal imprinting

Evolution erases the unnecessary mechanisms, while
keeping those which are useful and suitable. This suggested
the idea that hormonal imprinting, observed in Tetrahymena
must be present in higher-ranked animals, and the phenom-
enon must be accomplished in the critical stage of
development (Csaba 1984). When—in the first experiment,
34 years ago—newborn rats were treated with high dose of
thyrotropic (TSH) or gonadotropic (GTH) hormone, their
thyroxine content in the blood of adults was 40–70% less
then that of the controls, as a result of faulty imprinting
(Csaba and Nagy 1976). Since then, many experiments
were done by us and other researchers justifying the need of
normal imprinting and the deteriorating effect of faulty
imprinting caused by related molecules which are able to
bind to the developing receptor (Csaba 1994, 2008;
Tchernitchin et al. 1999)). However, the target hormone is
also able to provoke faulty imprinting, if the amount of
hormone or the time of intervention is not suitable (Csaba
1994, 2008; Csaba and Nagy 1976).

Not only polypeptide (as were TSH and GTH and
related molecules) or amino acid type hormones acting on
cell membrane receptors can provoke faulty imprinting but
hormones and hormone-like molecules acting on intracel-
lular (nuclear) receptors as well. These are mainly steroids
and the hormones of thyroid gland, T3 and T4. There are
many variations in the steroid structure which can bind to
the members of the steroid receptor superfamily (Neubert
2002), and our environment is full of synthetic steroids
used in medical therapy, or are they environmental pollutants
and endocrine disruptors. These can enter into the human
organism causing faulty imprinting. It is known that diethyl-
stilbestrol (DES) which was used expansively for protecting
endangered pregnacies was bound by the estrogen receptor. In
the offspring of such mothers, the vaginal cancer or
precancerosis was very frequent (Folkman 1971; Miller
1971). In rats, single perinatal DES treatment decreased the

binding capacity of estrogen receptors to about 60% in adult
age (Csaba et al. 1986). Human DES treatment have been
forbidden and instead of it, allylestrenol was used. Its human
receptorial effect is not elaborated till now; however, in rats,
it decreased with 40% the estrogen receptors' binding
capacity and destroyed glucocorticoid receptors (Inczefi-
Gonda et al. 1986). Perinatally employed mifepristone or
tamoxifen gender dependently influenced the binding capac-
ity of estrogen and glucocorticoid receptors (Csaba and
Inczefi-Gonda 2000). As a consequence of the perinatal
treatment, tamoxifen abolished the adult males' and females'
sexual activity, while mifepristone stimulated that in males
(Csaba and Karabélyos 2001). Single neonatal treatment
with dexamethasone decreased dexamethasone binding in
adults and increased the receptors' affinity (Inczefi-Gonda
and Csaba 1985). The perinatal treatment with cardioglyco-
sides, digoxin, or ouabain changed the binding capacity of
their receptors and also changed cardial function in adult age
(Csaba et al. 1983) as well as neonatal treatment with
steroids (Inczefi-Gonda et al. 1987). Vitamins A and D,
months after the perinatal exposure, decreased or abol-
ished males' and females' libido (Mirzahosseini et al.
1996; Csaba and Gaál 1997). The perinatal exposure to
environmental pollutants, benzpyrene (present in the
exhaust gas of cars), and TCDD=dioxin (which is present
in the exhaust gas of diesel motors and cigarette smoke, as
well as refuse burners) decrease the number of glucocor-
ticoid receptors and increase the activity of liver enzymes
in adult rats (Csaba and Inczefi-Gonda 1984; Csaba et al.
1991a). Numerous plant-protecting chemicals can bind to
the steroid receptors, as vinclozolin, having androgene
character and bisphenol, having estrogenic character (Ho
et al. 2006; Newbold et al. 2007). Nonsteroidal compo-
nents present in the soy bean (which has a very important
role in our nutrition, especially in the arteficial feeding of
infants [baby foods]), such as genistein, bind steroid
receptors (Martin et al. 1978; Miksicek 1995), and also
imprints (Csaba and Inczefi-Gonda 2002; Csaba and
Karabélyos 2002). Imprinting with these steroids decrease
the binding capacity of steroid receptors and influence the
immune system in adult age as well as the sexual activity
of male and female rats (Casanova et al. 1999; Csaba and
Karabélyos 2002; Delclos et al. 2001; Guo et al. 2002).
These induce several response to estrogen in various target
organs including the uterus (Gaete et al. 2010). In
addition, numerous other receptor-level-acting molecules
cause faulty imprinting (Tchernitchin et al. 1999).

Without the completeness of these data, it can be
established that the hormones or molecules which can
bind to the hormone receptors, provoke imprinting in
the perinatal period, which resulted in alterations of
many physiological processes. Imprinting is needed for
the normal development and function of the receptor
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(Csaba and Nagy 1985); however, foreign molecules—
which can bind to the receptor—present in this critical
period, cause faulty imprinting with life-long receptorial,
biochemical, morphological, and behavioral consequences
(Csaba 1994, 2008), and sometimes genetic changes are
also provoked, but this effect is exceptional (Igaz et al.
1995; Nelson et al. 1994).

The late imprinting

The perinatal imprinting is physiological and obligate. It is
taking place with hormones which are present in this
critical period. There is a possibility of imprinting also in
earlier time, in the developing fetus, caused by foreign
molecules; however, characteristic is the perinatal imprint-
ing, just after birth, as in this time maternal hormones do
not disturb the process and the mother does not protect the
infant. In rat experiments, the first 24 h are the most critical
from this point of view, which gradually decreases with
time. While this obligate general imprintability diminishes,
a facultative imprintability appears. This means that
continuously dividing cells, which are in a developmental
phase, can be imprinted in any time of life, as e.g., the cells
of bone marrow, lymph nodes, etc. This type of imprinting
is also durable (valid for life). Though this imprinting does
not enforce the perinatal imprinting, it results in faulty
imprinting with life-long consequences. The imprinters can
be hormones or synthetic molecules with hormonal char-
acter, drugs acting at receptor level (Cicero et al. 1991), and
environmental pollutants similar to the perinatal imprinters.
These materials change not only the receptors of their own,
but related receptors, too. A single, minimal dose endorphin
treatment at weaning life-long influences the endorphin and
serotonin content of immune cells, cells of some brain
regions, the binding capacity of uterine estrogen receptors,
and sexual activity (Csaba et al. 2004a, b, c). Treatment
with the tricyclic antidepressant mianserin (Csaba et al.
2003c) as well as H1 receptor blocker terfenadine (Csaba et
al. 2003b) durably influence the histamine content of white
blood cells. Single treatment with vitamin D3 or
dexamethasone at puberty significantly influenced the
glucocorticoid receptors' binding capacity in the thymus
(Csaba and Inczefi-Gonda 1999a). The most drastic and
extensive effect was produced by the aromatic hydrocar-
bon, benzpyrene, which provokes imprinting very strongly
at different ages (Pap and Csaba 1994; Csaba and
Karabélyos 1995; Csaba and Inczefi-Gonda 1999b; Csaba
et al. 2004b). The cells are imprinted also during
regeneration (Csaba et al. 1989) and not only hormone
binding could be influenced, but the microsomal enzyme
system (Csaba et al. 1987), similarly to the perinatal
treatment (Ishizuka and Yonemoto 2003).

The results demonstrate that the perinatal imprinting is
the obligate; however, faulty imprinting can develop at any
phase of life in the actually developing cells. This is
justified in case of continuously dividing cells. It can be
surmised that it is also taking place in such organs or their
cells, which are believed stationary.

Hormonal imprinting of the central nervous system

For a long time, it was believed that the structural
development of the central nervous system is finished at
birth. However, recent investigations show that stem cells
are present in the brain, which are able to build new
structures (Mehler 2008). Any conception is accepted; the
fact is that the central nervous system is hormonally
imprintable (Csaba and Tekes 2005).

Konrad Lorenz was the first who proposed the “imprint-
ing” name for the phenomenon of behavior of neonatal
birds, as a reaction to the first object with whom they meet
after birth, independent on being their mother or a spotted
ball, and this imprinting has a life-long effect (Lorenz
1957). We used the name hormonal imprinting also to a
“first encounter” to the meeting of the receptor and its
hormone, generalizing the phenomenon of imprinting to all
of the developing organs and cells, and we concretized it to
molecules acting at receptor level and to developing
receptors (Csaba 1980). The imprinting, proposed by
Lorenz is the imprinting of the brain, as it is the setting of
the sex when estrogens (transformed from androgens)
transform the basic female sex to male sexual behavior
(Gorski 2002). This process could be distorted by mole-
cules similar to the sexual target hormones, provoking
faulty imprinting. This leads to pathological states. The
question is, whether—in addition to this basic phenomenon
—other hormones or chemicals can provoke faulty imprint-
ing perinatally or later stages of life.

Beta-endorphin is an endogeneous opioid produced by
the code of proopiomelanocortin gene in the brain or other
(e.g., immune) cells (Blalock 1998; Csaba et al. 2002).
Perinatal endorphin imprinting decreases the serotonin
content of striatum, and this stimulates the aggressivity of
male and sexual activity of female rats and influences the
binding capacity of estrogen receptors (Csaba and Tekes
2005; Csaba et al. 2003a) in adults. At the same time, it
increases with magnitudes the concentration of another pain
killer, nocistatin, in the cerebrospinal fluid (CSF) (Tekes et
al. 2004). Considering that during parturition, the intensity
of pain and duration of delivery is individual, the variable
endorphin production could influence the aggressivity of
adults. Imprinting with the pain-stimulating nociceptin or
pain killer nocistatin influences the brain biogenic amine
levels in adults, region specifically (Tekes et al. 2009c).
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In addition, the effects at weaning also could be settled on
the perinatal imprinting. As a consequence of the mother's
alcohol consumption, the nocistatin level of CSF and
blood increases (Tekes et al. 2007a). Other molecules
(benzpyrene, vitamins A and D) also can imprint the brain,
is manifested in the change of biogenic amine levels of the
brain and CSF (Tekes et al. 2007a, b, 2009a, b, c).
Perinatal stress —which disturbs the whole endocrine
system—also life-long influences the brain biogenic amine
and CSF nociceptin level (Tekes et al. 2010).

The data show that the cells of the brain can be
imprinted, similar to the dividing cells. The imprinters
could be the brain's own products (in a surplus amount or
exogeneously given) as well as other molecules able to bind
to receptors. It is very difficult to tell whether their effect is
manifested through stem cells or through the receptors of
matured brain cells, although this latter seems to be likely.

The mechanism of the imprinting

In the time of recognition of hormonal imprinting, its
mechanism was unknown. As the materials provoking
imprinting were not known as mutagens, the mechanism
was very hardly explanable. Later, genomic imprinting
became known and after it, the mechanism of epigenetic
processes were studied. This was the time of the recogni-
tion of epigenetic imprinting and later the metabolic
imprinting, which were hormonal imprinting-like phenom-
ena, and this helped to clear also the mechanism of
hormonal imprinting.

The molecules mentioned in the previous paragraphs do
not cause changes (mutations) in the genes. However, it is
known that the manifestation of genes is regulated by
epigenetic factors, and there is a bidirectional relationship
between the environment and the epigenome (Mohammad
and Baylin 2010; Satterlee et al. 2010). These modifications
could be done by DNA methylation, histone modification,
or nucleosome positioning (Portela and Esteller 2010).
Nevertheless, DNA methylation seems to be the most likely
as such a factor during imprinting, which is able to
influence durably the manifestation of a gene, as just in
the critical phase of ontogeny, this pattern is rebuilding and
fixes in the developing cells and their progenies. We
believe that our experiment, done 20 years ago, was the
first which called attention to this possibility, when
methylation of cytosine was inhibited by azacytidine, and
this heavily influenced the imprinting in Tetrahymena
(Csaba and Kovács 1990). Since this time, many experi-
ments were done also in mammals, and these supported the
methylation theory of imprinting. Neonatal imprinting with
DES provokes a hypomethylation (Li et al. 2003a and b),
and dioxin (TCDD) also influences the methylation pattern

(Wu et al. 2004), and this is done by estradiol and
bisphenol (Prins et al. 2008) as well as by ethanol (Haycock
2009). In animal and human experiments, the change of the
perinatal methylation pattern in depression alters the
hypothalamic-pituitary-adrenal axis (Oberlander et al.
2008). Early adversity also influences the methylation
patterns (Champagne et al. 2006; Champagne 2010) by
drastically disturbing the whole endocrine system in the
period of imprinting.

Though our knowledge is sketchy, the effect of
imprinters through the change of methylation pattern seems
to be likely. This change fixes the information of imprinting
and transmit it across generations. This means that
hormonal imprinting is an epigenetic imprinting which
life-long influences the manifestation of genes without
change of the genes themselves. It determines the manifes-
tation of the genes for life or changes and inherits it.

The transgenerational imprinting

If hormonal imprinting takes place neonatally and its effect
is measured when adult, this means that it is transmitted
from cell to cell not only in Tetrahymena but in mammals
as well. This is experimentally justified, indeed (Csaba et
al. 1991b). However, the effect of perinatal hormonal
imprinting is also manifested in the progeny generations.
If neonatal rats are treated with a single dose of insulin and
are mated when matured, the insulin binding capacity of the
F1 progenies' liver changes: increases in females and
decreases in males (Csaba et al. 1984). Similar effect was
observed when only one parent was treated. However, in
the F1 generation, there is a direct contact between the
neonatally treated mother and its progeny. In case of
neonatal benzpyrene treatment, F2 generation was studied,
and here, the binding capacity of glucocorticoid receptors
changed (Csaba and Inczefi-Gonda 1998) and also the
libido of the females (Csaba and Karabélyos 1997)
decreased. Fertility was reduced in the F2 generation not
only by the decrease of libido, but by the decrease of sperm
count and motility (Mohamed et al. 2010). This means that
the effect of grandparental imprinting was manifested in the
grandchildren. In the F1 generation of DES-imprinted
mothers, the frequency of tumors increased (Newbold et
al. 2000). Imprinting with receptor level acting vitamins A
and D influenced the brain biogenic amine levels of F1
progenies (Tekes et al. 2009a, b, c) as well as the hormone
production of immune cells (Csaba et al. 2007). Morphine
exposure at puberty caused the increase of anxiety and
sensitivity to morphine (Byrnes 2005) in the offspring.
These transgenerational effects are characteristic to the
aromatic hydrocarbons, to drugs, as cocaine, to phytoes-
trogens, as the components of soy bean, to the mykocide
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and pesticide chemicals, as vinclozolin and bisphenol. The
methylation affecting effect of vinclozolin is experimentally
justified (Stouder and Paolini-Giacobino 2010). Some
nutritional factors, as the folates also have transgenerational
effects (Campbell and Perkins 1988; Skinner 2010) and
neonatal overfeeding caused glucose intolerance in adult
mice, which was transmitted transgenerationally (Pentinat
et al. 2010).

The results of animal experiments justify the transmis-
sion of hormonal imprinting to the progeny generations and
similar or different symptoms are manifested in them. The
key factors are the alteration of methylation pattern and
epigenetic inheritance (Skinner 2008, 2010; Ho and
Burggren 2010; Daxinger and Whitelaw 2010).

Imprinting and transgenerational imprinting in man

Epidemiological studies demonstrated the presence and
effects of hormonal (epigenetic, metabolic) imprinting in
man. In the perinatal period of life, the mother prenatally
directly or postnatally (through the mothermilk) can
transmit imprinters, or this is done also by baby foods.
These factors life-long influence the functions of cells and
organs (Csaba 2008; Skinner 2007, 2010; Skinner et al.
2010; Grün and Blumberg 2009) as cardiovascular diseases,
second type diabetes (Ling and Groop 2009), obesity
(metabolic syndrome), certain tumorous diseases, asthma,
and obstructive pulmonary disease (Schwartz 2010) can be
deduced to the faulty imprinting. Toxic effects, which were
believed to be caused by mutations, also can be caused by
epigenetic influences (Trosko 2010). The alteration of
methylation pattern of genes in the critical developmental
phases has a role in the faulty imprinting, and methyl
donors (methionin and cholin) and co-factors (folic acid,
vitamin B12 and piridoxal phosphate) are needed for the
process. In the early period of life, the quality and
quantity of nutrition can let or succeed the normal
program, or it is reprogrammed. In this latter case, the
methylation pattern irreversibly changes, and second type
diabetes and pathological glucose tolerance (Holmang
2001; Miles et al. 2005; Signorello and Trichopoulos
1998) appears. In addition to the nutrition factors, estro-
gens, androgens, progestagens, or similar receptor level
acting molecules, as endorine disruptors (plant protecting
chemicals, aromatic hydrocarbons), certain medicaments
and hormones, as insulin and leptin can provoke faulty
imprinting, as it was shown in case of animal experiments.
More observations support the interrelation of adult
obesity with perinatal encounter of receptors with the
above-mentioned materials (Newbold et al. 2009), as
imprinting derails mechanisms which are in connection
to weight control (Grün and Blumberg 2009).

The DES catastrophe justified that years or decades after
maternal treatment with an estrogen receptor binding
synthetic molecule provokes benign or malignant tumors
(leiomyoma or adenocarcinoma) in the offspring. The
disturbance of methylation pattern can be shown as well
as in the case of (not DES provoked) prostate, colon,
thyroid, gaster, uterine, and cervical carcinoma (Li et al.
2003b). Similar diseases are caused by perinatal exposure
to endocrine disruptors.

A special case is represented by oxytocin which is used
worldwide for provoking delivery. In the United States,
about 80% of parturitions are done by the help of oxytocin.
The oxytocin imprinting—similar to the endorphin imprint-
ing in animal experiments—influences the central nervous
system (Plothe 2010). The effect of this imprinting is
manifested in infant age in the loosening of infant–mother
connections and in the screaming children symptom, when
the infant calms only in the arms of an adult. Later,
hypotonia or hypertonia could appear as well as absence in
the control of head movement. At puberty or in adult age
aggression, disturbance in twitting and phobies can appear.

Transgenerational impinting was observed in human
beings mainly in case of nutritional factors (Kaati et al.
2002; Pembrey 2002; Pembrey et al. 2006). Epidemiolog-
ical statistics justified that the starvation of grandfather in
the slow growth phase, just before puberty, when the
methylation imprinting of the germ cells happens, increased
the lifespan of the grandchildren with years. At the same
time, the cardiovascular mortality decreased. In contrast,
the overeating of grandfather in the same time decreased
the granchildren's life span with years and four times
increased their diabetes mortality. Starvation of the father in
similar life period also decreased the cardiovascular
mortality of children and the overeating of father protected
them from diabetes. These effects were more expressed in
grandfather–grandson relation than grandmother–grand-
daughter relation. Considering this, the sex-specifity is not
disclosed (Handel and Ramagopalan 2009), what calls
attention to the importance of sex chromosomal genes'
methylation. Not only the transgenerational effect of
nutrition was observed, but it also was found in case of
smoking (Pembrey et al. 2006) and in the case of DES
mothers, where hypospadias is more frequent in the
progenies (Brouwers et al. 2006).

The study of human imprinting is more difficult than it is
in animal experiments. This means that—although the
above-mentioned data support the presence and importance
of hormonal imprinting and transgenerational imprinting in
man—new and thorough investigations are needed for
mapping it. The mechanism of the most studied nutritional
imprinting also is not cleared: there is a possibility of direct
effect to the methylation through methyl donors and co-
factors; however, it can be done indirectly by hormones or
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by starvation stress, which disturbs the whole hormonal
system.

Conclusions

Considering the above-mentioned data and facts, it is
obvious that molecules acting at receptor level provokes
imprinting in critical phases of ontogenetic development.
The most critical period is the perinatal one; however, in
any time of life, imprinting can develop in organs and
cells which are in a developing state (bone marrow, brain
etc). In the developing embryo, the teratogenic effects are
gradually decreasing, and in the fetal period, the
imprintability is gradually increasing, reaching the top
perinatally, when the physiological imprinting is taking
place and the possibility of faulty imprinting by exoge-
neous substances appears.

The physiological imprinting, coded by the genetic
program is needed for the normal function of cells
(receptors), its absence could be as harmful, as the faulty
imprinting. However, faulty imprinting durably alters the
function of cells, provoking a state, different from the
normal one. It is not sure that this state is wrong or
harmful, as there is a chance to improve cell function by
stimulating it; however, it differs from the function
prescribed in the original program. Nevertheless, more
likely that the faulty imprinting spoils the original
program, as the partial original program is the suitable,
which adapts to the whole program of the organism, and
this serves the health of the person. The faulty imprinting
can develop in the critical periods (of organ or cell)
because the developing receptor is not able to differen-
tiate between the self (target) and related foreign
molecules, and these later change the methylation pattern.
The functional difference provoked by the faulty imprint-
ing finds room in the physiological variants approching
extreme variants; however, it is not able to tolerate
loading. Till now, the role of the amount of imprinter,
the time of the intervention, or other accompanied factors
are not known.

Hormonal imprinting has a role in the rise of some
diseases (Waterland and Garza 1999; Csaba 2008;
Plagemann 2006)). This could mean the initiation to or
induction of the disease. This means that not only genes
can be responsible (not considering outer factors) for the
rising of or a resistance to a disease, but also epigenetical
endowments (faulty imprinting). As the DES treatment of
the mother was responsible for the the vaginal cancer of
daughters (and other pathological states also in boys), so
as the perinatal soy imprinting could be responsible for the
relative resistance to mammary and prostete cancers of the
Asian population.

Considering the presence of transgenerational imprint-
ing, we have to suppose that the imprinters alter the
methylation pattern not only on the genes of the target cells,
but they are able to do it on the germ cells. Theoretically,
only these cells would be able to transmit the epigenetic
information to the offspring. However, there is a possibilty
of transmission by the maternal milieu (intrauterine or by
mother milk). If the germ cells are the transmitters, this is a
regular epigenetic inheritance. If the maternal role is likely,
this means a special mechanism characteristic to the
imprinting.

Hormonal imprinting is a basic biological mechanism,
which sets the receptorial system to the natural environ-
ment present in the infant already not protected by the
maternal organism. However, this mechanism is not
prepared to the mass of imprinters which appear in our
present chemically contaminated environment. Proportia-
nally to the increasing number of car increases, the
amount of aromatic hydrocarbons (benzpyrene, TCDD)
and steroids are increasing in our drinking water; as a
consequence of oral anticonception and plant protection,
hormone-like molecules are increasing in our foods; as a
consequence of plant protection, agriculture, soy bean,
and these materials cause faulty imprinting already
perinatally. To this ground, the medical intervention is
added, with medicaments acting at receptorial level. The
physician does not treat untouched people, but (faulty)
imprinted ones, and influence them further. In the early
phase of development, the medical intervention also
artificially imprints the receptors and not only molecules
with DES strength, but by such molecules as perinatal
vitamin A and D treatment (McGrath 2001), by surfac-
tants as cortisol, by oxytocin and antihistamines. However,
longer is the list of imprinter molecules which were not
mentioned, as it is not allowed by the volume of the
article, or their imprinter effect was not tested till now,
although it would be important, as they are in connection
with the endocrine system and/or they act at receptor level
(Igaz et al. 2000). This flood of imprinting influences the
life of people who were the direct victims of imprinting or
transgenerationally inherited it (Jirtle and Skinner 2007).
This means that with interventions acting at receptor level
in the critical phases of life, we influence not only the life
of our own, but the life of the progeny generations (Ho
and Burggren 2010), epigeneticaly intervening to the
human evolution (Csaba 2007; Anway et al. 2005; Kaiser
2005; Ubeda and Wilkins 2008; Turner 2009).

Imprinting-like interventions in the critical phases of life
must be seriously considered, especially if these are done
en masse (as it was in case of DES and its successors, the
oral contraceptive agents, or oxytocin). These interventions
have to be considered as the factors of the anamnesis as
basic factors of therapy and as influencing factors of the
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human evolution. As our cells develop in a flood of
imprinters, we have to know that receptor level-acting
medicaments used in the last decades can have other effects
and can provoke other reactions than it was observed
earlier, and modern medical care professionals should
consider these effects and adapt therapeutical procedures
to them.
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