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Abstract 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic 
respiratory infectious disease COVID-19. However, clinical manifestations and outcomes differ 
significantly among COVID-19 patients, ranging from asymptomatic to extremely severe, and it remains 
unclear what drives these disparities. Here, we studied 159 sequentially enrolled hospitalized patients 
with COVID-19-associated pneumonia from Brescia, Italy using the VirScan phage-display method to 
characterize circulating antibodies binding to 96,179 viral peptides encoded by 1,276 strains of human 
viruses. SARS-CoV-2 infection was associated with a marked increase in immune antibody repertoires 
against many known pathogenic and non-pathogenic human viruses. This antiviral antibody response was 
linked to longitudinal trajectories of disease severity and was further confirmed in additional 125 
COVID-19 patients from the same geographical region in Northern Italy. By applying a 
machine-learning-based strategy, a viral exposure signature predictive of COVID-19-related disease 
severity linked to patient survival was developed and validated. These results provide a basis for 
understanding the role of memory B-cell repertoire to viral epitopes in COVID-19-related symptoms and 
suggest that a unique anti-viral antibody repertoire signature may be useful to define COVID-19 clinical 
severity. 

 

Introduction 
Coronavirus disease-2019 (COVID-19) is a severe 

acute respiratory disease caused by the infection of 
SARS-CoV-2, which belongs to a group of virus es 
with a positive-sense, single-stranded RNA genome, 
similar to other known β-coronaviruses including 

SARS-CoV (also known as SARS-CoV-1), MERS-CoV, 
and other seasonal and less pathogenic coronaviruses 
(e.g., HKU and OC43) [1-7].  SARS-CoV-2, discovered 
in January 2020, is directly responsible for more than 
115 million confirmed cases and 2.56 million deaths 
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globally, as of March 4, 2021. SARS-CoV-2 infection is 
associated with a wide spectrum of clinical 
manifestations that range from an asymptomatic 
infection to lower respiratory tract involvement and 
multifocal interstitial pneumonia, in some cases 
progressing to severe hypoxic respiratory failure with 
acute respiratory distress syndrome (ARDS), 
multiorgan failure, and death [8]. The clinical course 
and animal models of COVID-19 disease suggest a 
biphasic trajectory initially dominated by innate and 
early adaptive immune responses that can result in 
viral clearance and clinical resolution, but in cases of 
ineffective early responses, by a persistent and 
dysregulated inflammatory response associated with 
high morbidity and mortality. It is unclear, however, 
why some patients are asymptomatic while others 
develop severe symptoms. Among hospitalized 
patients, older patients [9, 10] and cancer patients are 
more likely to develop severe disease [11-13]. As 
COVID-19-related severe clinical presentations are 
associated with persistent viral shedding and 
dysregulated inflammatory response, it is plausible 
that ineffective host immune responses may 
contribute to determine the severity of clinical 
manifestations [14].  

Viruses may affect human health by altering host 
immunity, contributing to the pathogenesis of 
inflammatory disorders such as autoimmune disease 
and cancer [15-17]. Various human viruses may 
interact with one another in the host and may alter a 
host’s response to new infections and thereby affect 
disease severity. It is known that viruses that persist 
or are cleared in the host may leave unique molecular 
footprints, known as viral epitope-specific reactive 
antibodies, that can affect host susceptibility to other 
infections, which may be a surrogate of disease 
severity and progression. For example, prior infection 
of human herpesvirus 5 (CMV) could improve 
immune response to influenza [18]. The recent 
identification of cross-reactive T cells to SARS-CoV-2 
in unexposed individuals may provide a hint about a 
possible impact of past exposure to seasonal 
coronaviruses on COVID-19-related outcomes [19, 
20]. Thus, the pattern and type of serological 
responses to human viruses represent a unique 
immunological, host-specific signature that provides 
insight into the history of viral exposures, host 
immunity of each individual, and disease onset. 

We have recently employed a synthetic virome 
technology, VirScan, to detect the exposure history to 
most known human viruses [21]. VirScan implements 
a phage display library that covers 96,179 viral 
peptides that are each 56 residues in length tiling the 
protein sequences with 28 residue overlaps, which 
corresponds to 206 viral species and 1,276 human 

viral strains [22]. Using this technology, we developed 
a viral exposure signature (VES) that could 
discriminate liver cancer patients from at-risk or 
healthy individuals and validated the results in a 
longitudinal cohort with at-risk patients who had 
long-term follow-up for liver cancer development 
[21]. Remarkably, VES could predict cancer among 
at-risk patients prior to a clinical diagnosis and 
appeared clinically applicable for liver cancer 
surveillance. In the present study, we show how 
VirScan may provide a sensitive approach to identify 
immunological footprints predictive of different 
clinical outcomes of SARS-CoV-2 infection. With that 
aim, we performed serological profiles of 284 
hospitalized patients with pneumonia who were 
suspected to be infected with SARS-CoV-2, as part of 
the NIAID-NCI COVID-19 Consortium studies. 

Results 
Among 159 sequentially enrolled hospitalized 

patients with pneumonia in Brescia, Italy in the 
discovery cohort, 156 patients tested positive and 3 
patients negative for the presence of SARS-CoV-2 
infection by qRT-PCR and/or serology tests. In this 
cohort, 73% of patients were male and the median age 
was 60 years. Twelve patients were classified as 
moderate, 19 as severe, and 128 as critical (Table 1). 
Among the latter, 30 patients died during 
hospitalization. We used version 2 of the VirScan 
phage library to profile this cohort (Figure 1A), which 
yielded on average 2 million single-end reads per 
serum sample with mean mapped reads of 91%, 
comparable to the Maryland (NCI-UMD) cohort 
recently described [21]. Using replicates for setting up 
the reproducibility threshold with built-in blank 
replica for each plate as background controls, we 
obtained 16,536 significantly enriched viral epitopes. 
We detected antibodies reactive to a median of six 
species of virus per sample, slightly lower than the 
median of seven species of virus per sample found 
among healthy individuals from the Baltimore area in 
the United States [21]. Interestingly, while we found 
antibodies reactive to a median of 9 viral epitopes per 
sample in the Brescia cohort, there was an elevation of 
total reactive antibodies to known viruses in 
COVID-19 patients compared to non-COVID-19 
patients, although it did not reach statistical 
significance (Figure 1B). The prevalence of antibodies 
reactive to the most common viruses, such as human 
respiratory syncytial virus (HRSV), related to 
respiratory tract infections, human herpesvirus 1 
(HHV1), related to oral lesions and encephalitis, 
human herpesvirus 4 (EBV), related to infectious 
mononucleosis and human herpesvirus 5 (CMV), was 
comparable between Brescia COVID-19 patients 
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(Figure 1C) and healthy individuals from Baltimore, 
as well as other populations [21, 22]. Interestingly, we 
observed some variations of antibodies for viral 
compositions among moderate, severe, and critical 
patients with a tendency of an increasing level of 
antibodies reactive to unique viral epitopes 
corresponding to disease severity (Figure 1C), and 
this was confirmed by a quantitative analysis of the 
total amount of antibodies reactive to viral epitopes 
across clinical severity patient groups (Figure 1, D and 
E). There was a statistically significant increase in 
reactive antibodies with increasing severity in clinical 
presentations. Noticeably, SARS-CoV antibodies were 
detected in 27% of moderate patients but 53% of 
severe patients and 49% of critical patients (Figure 1C, 
Supplemental Table 1). The difference of viral 
antibody composition and levels of antibodies 
reactive to unique epitopes was comparatively small 
when stratified by age and sex (Supplemental Figure 
1, A-D). Similar results were also observed in a 
validation cohort of 125 COVID-19 patients from 
three hospitals in the region of Lombardy, Northern 
Italy (Supplemental Figure 1E). Remarkably, the 
levels of viral antibodies were significantly elevated in 
patients in the acute phase of COVID-19 but declined 
in convalescent patients (Supplemental Figure 1E). 
Taken together, these results indicate that an 
individual’s immune memory antibody repertoires 
due to a history of viral exposure showed a marked 
increase during acute SARS-CoV-2 infection. 

 

Table 1. Clinical characteristics of hospitalized patients with 
pneumonia from Italy 

Clinical Variable Discovery 
(Brescia) 
(n=159) 

Validation 
(Brescia/Monza/Pavia) 
(n=125) 

p valuef 

 SARS-CoV-2 statusa - no. 
(%) 

    0.86g 

 Negative 3 (2) 2 (2)   
 Positive 156 (98) 114 (91)   
 Convalescent 0 6 (5)   
 No data 0 3 (2)   
 Sex - no. (%)     0.30 
 Male 116 (73) 84 (67)   
 Female 43 (27) 41 (33)   
 Age - median (range) 60 (23-89) 63 (0.1-95) 0.25g 
 Location - no.     NAh 
 Brescia 159 60   
 Monza 0 31   
 Pavia 0 34   
 Sample time pointb - no.     0.74g 
 T0 159 125   
 T1 76 62   
 T2 41 27   
 T3 22 12   
 T4 0 5   
 T5 0 3   
 Clinical Severityc - no.     <0.001 
 Moderate 12 56e   
 Severe 19 13   
 Critical 128 56   
 HIV status - no. (%)     0.31 

Clinical Variable Discovery 
(Brescia) 
(n=159) 

Validation 
(Brescia/Monza/Pavia) 
(n=125) 

p valuef 

 Postitive 7 (5) 2 (2)   
 Negative 152 (95) 123 (98)   
 Immunodeficiencyd - no. (%)     0.60 
 Yes 23 (14) 15 (12)   
 No 136 (86) 110 (88)   
 Dexamethasone treatment - no. (%)   <0.001 
 Yes 59 (37) 10 (8)   
 No 100 (63) 115 (92)   
 Outcome - no. (%)     0.01 
 Alive 129 (81) 111 (89)   
 Deceased 30 (19) 11 (9)   
 No data 0 3 (2)   
 Enrollment date March 2020 Apr-May 2020   
aSARS-CoV-2 status was determined by quantitative real-time 
reverse-transcriptase-polymerase-chain-reaction (qRT-PCR) assay of nasal and 
pharyngeal swab specimens and/or by positive serology tests. bLongitudinal time 
points of blood collection are indicated as T0 - T5. T0, the first blood collection; T5, 
the last blood collection. cDefinition details in Materials and Methods. dIncluding 
primary and secondary immunodeficiency. eModerate (n=56) combined 1 
asymptomatic, 6 Convalescent, 21 mild and 28 moderate cases. fFisher's exact test, 
unless specified. gUnpaired t-test. hNot available 

 
Nearly 50% of COVID-19 patients from Brescia 

had antibodies reactive to SARS-CoV peptides (Figure 
1C, left panel). We also detected antibodies reactive to 
peptides corresponding to several common 
coronaviruses including NL63, 229E, HKU1 and 
OC43, but their prevalence was low (7%, 4%, 2% and 
1%, respectively). The levels of SARS-CoV positive 
cases were unexpectedly high in Brescia patients, 
given the fact that reactive antibodies to SARS-CoV 
epitope sequences were hardly detectable in our 
previous VirScan study of 899 Baltimore patients and 
other populations, suggesting that the SARS-CoV 
prevalence is extremely low in the general population 
[21, 22]. Consistently, SARS-CoV reactivity could not 
be detected in patients diagnosed with pneumonia 
that tested negative for SARS-CoV-2 while its level 
was high in COVID-19 patients, in both the discovery 
cohort (Figure 2A) and the validation cohort 
(Supplemental Figure 2A). Noticeably, SARS-CoV 
reactivity was undetectable in 6 convalescent patients 
in the validation cohort. We hypothesized that 
SARS-CoV peptides used in the phage library may 
detect SARS-CoV-2 cross-reactive antibodies. Upon 
close examination of the VirScan phage library, we 
found that it contained 80 epitope tiles corresponding 
to the SARS-CoV sequence, namely 44 epitopes for the 
spike protein, 15 epitopes for the nucleocapsid 
protein, and 21 epitopes for 3a, 3b, 7a, and 9b proteins. 
Among them, 4 peptides spanning the spike protein 
sequence and 8 peptides spanning the nucleocapsid 
protein showed strong reactive signals to COVID-19 
positive patients (Figure 2B). Since SARS-CoV and 
SARS-CoV-2 share a similar viral structure (Figure 
2C) with an overall 79% genetic similarity, we 
determined sequence similarities between SARS-CoV 
epitopes used in the library and the newly identified 
SARS-CoV-2 sequences.  



Int. J. Biol. Sci. 2022, Vol. 18 
 

 
https://www.ijbs.com 

5594 

 
Figure 1. Overview of viral exposure across Italian COVID-19 cohorts. (A) Discovery and validation workflow of our VirScan study. (B) Total number of unique 
epitopes in non-COVID-19 and COVID-19 cases in the Brescia discovery cohort. (C) Viral prevalence (left), number of unique epitopes of moderate, severe, and critical groups 
of patients (3 center panels) and composition of prevalence across patient groups (right) for 156 COVID-19 cases in the Brescia discovery cohort. (D) Antibody reactivity of all 
epitopes detected in at least two cases. Rows represent epitopes and columns represent COVID-19 cases from the Brescia discovery cohort, where -log10 (p-value) was used 
to quantify peptide enrichment. (E) Log-transformed total enrichment across all epitopes in the moderate, severe, and critical groups from the Brescia discovery cohort. For each 
violin plot, the embedded box spans the interquartile range around the median (thick horizontal line), whereas the contour denotes the kernel density estimate of the 
distribution. Box plots represent 25th to 75th percentiles and whiskers extend to 10th and 90th percentiles. P-values were determined with Student’s t-test. 
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We found that reactive SARS-CoV epitope 
sequences share a high homology to SARS-CoV-2, 
especially in the regions predicted to be strongly 
antigenic by the B-cell epitope prediction tool of the 
Immune Epitope Database (http://tools.iedb.org) 
(Figure 2, D-F). Thus, we concluded that VirScan’s 
SARS-CoV peptides may be effectively used to detect 
SARS-CoV-2 antibodies. We measured the antibody 
epitope binding signal (EBS) to estimate the antibody 
titer for each epitope recently described [23]. Similar 
to an overall increase in the immune memory 
antibody repertoire diversity to all known pathogenic 
viruses corresponding to clinical severity, we found a 
significant increase in levels of antibodies to the spike 
protein, but not to the nucleocapsid protein, with 
increased disease severity (Figure 2G). We also found 
an increasing trend in antibody production to the 
spike protein over time during hospitalization (Figure 
2H). Consistently, a significant increase in antibodies 
to the spike protein was found in patients requiring 
intensive care unit (ICU) care compared with non-ICU 
patients (Supplemental Figure 2B). However, no 
statistical difference was observed for antibodies 
against the nucleocapsid protein (Supplemental 
Figure 2C). Moreover, levels of anti-Spike antibodies 
did not correlate with mortality (Supplemental Figure 
2D). To further validate the above finding, we 
performed correlation analysis of antibody reactivity 
against spike and nucleocapsid proteins between 
VirScan and the luciferase immunoprecipitation 
system (LIPS) that employs an immunoassay to detect 
both linear and conformational antibodies against 
full-length nucleocapsid and spike proteins [24]. We 
found a significant concordance between VirScan and 
LIPS (Supplemental Figure 2, E and F). In contrast, 
there was no correlation between the total amount of 
reactive antibodies detected by VirScan and the levels 
of circulating immunoglobulin (Supplemental Figure 
2, G and H). However, consistent with the results of 
the discovery cohort, we found that the total amount 
of antibodies reactive to all viral epitopes was 
significantly elevated corresponding to the disease 
severity among patients in the validation cohort 
(Supplemental Figure 2I). 

The above results suggest that an individual’s 
immune memory antibody repertoires may be 
modulated upon acute infection by SARS-CoV-2. To 
further explore this hypothesis, we tracked the 
longitudinal progression of EBS for individual 
patients. Figure 3A shows the individual trajectories 
over time for COVID-19 patients grouped by disease 
severity (gray lines), which were generated from 
discrete timepoints using LOESS regression. The 

average trajectory for each group (solid blue line) was 
then fitted by linear regression (dashed blue line) to 
extract the slope's value and standard error (shown in 
the legend). While the rate of change of the moderate 
and severe groups is almost flat (i.e. the slope is 
consistent with zero after taking the standard error 
into account), the critical group shows a significant 
positive slope. Therefore, in addition to having an 
increased EBS at baseline, COVID-19 patients in the 
critical group display a characteristic overall increase 
across the entire antibody repertoire over time. 
Consistent with these observations, the EBS rate of 
change among ICU patients is observed to be 
significantly larger compared with that of non-ICU 
patients (Supplemental Figure 3A) and, analogously, 
the EBS slope among deceased patients appears 
significantly larger than that of survivors 
(Supplemental Figure 3B). Furthermore, similar 
analyses of sex and age effects on the humoral 
immune response of COVID-19 patients show that 
both the total epitope enrichment at baseline 
(Supplemental Figure 4, A and B) and the longitudinal 
EBS progression (Supplemental Figure 4, C-F) 
increase with age and are significantly higher among 
males compared with female patients. In agreement 
with well-established observations of older patients, 
preferentially male, being more susceptible to severe 
COVID-19 progression and death [9, 10, 25], our 
findings solidify the emerging picture of disease 
severity being robustly associated with an elevated, 
non-specific humoral immune activation. The EBS 
signal calculated across all epitopes (horizontal axis) 
correlated with the EBS signal from the 785-840 
epitope in the spike protein, the 141-196 epitope in the 
nucleocapsid protein, and all available SARS-CoV 
peptide sequences, respectively (Figure 3B). While, as 
expected, restricting the EBS signal to one or a few 
epitopes yields noisier measurements, we nonetheless 
observe significant positive correlations with the 
overall EBS across the cohort. The heatmap in Figure 
3C shows in greater detail the integrated longitudinal 
EBS progression from the three patient groups 
(indicated by the color bar on the left), which 
emphasizes the intriguing complexity and 
heterogeneity of the COVID-19 time course.  

To determine if virus-related memory antibody 
repertoires could be used to define COVID-19 clinical 
manifestations predictive of clinical outcomes, we 
utilized a gradient boosting machine learning app-
roach, XGBoost, to build a COVID-19-related virus 
exposure signature (COVID-VES) corresponding to 
the severity of patients’ conditions in the discovery 
cohort, which follows a strategy used previously [21].  



Int. J. Biol. Sci. 2022, Vol. 18 
 

 
https://www.ijbs.com 

5596 

 
Figure 2. SARS-CoV epitope reactivity in moderate, severe, and critical cases from the Brescia discovery cohort. (A) Total reactivity of all SARS-CoV epitopes 
in non-COVID and COVID-19 cases. Log transformation was applied. (B) Antibody reactivity of 85 SARS-CoV epitopes. Each row represents the significant peptide tiling 
corresponding to spike protein (1-1255) and nucleocapsid protein (1-422). The color intensity of each cell corresponds to the scaled -log10(p value) measure of significance of 
enrichment for a peptide in a sample. (C) Organization of SARS-CoV-2 genome encoding various viral proteins. (D) B-cell epitope prediction score for spike and nucleocapsid 
based on the Immune Epitope Database and Analysis Resource (IEDB). (E-F) Sequence alignment of reactive peptides corresponding to spike (E) and nucleocapsid protein (F) 
of SARS-CoV and SARS-CoV-2. Only peptide sequences in the phage library are shown. Residues with perfect match are capitalized. Predicted epitopes by IEDB are highlighted. 
(G) Normalized EBS of spike (785-840, left) and nucleocapsid (141-196 right) proteins in moderate, severe, and critical patients. (H) Normalized EBS of spike (785-840, left) and 
nucleocapsid (141-196 right) proteins in patients at different time points. In violin plots, boxes span the interquartile range; lines within boxes represent the median; the width 
of violin plots indicates the kernel density of values. Box plots represent 25th to 75th percentiles and whiskers extend to 10th and 90th percentiles. P-values were determined with 
Student’s t-test. 
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Figure 3. Longitudinal progression of the normalized EBS across individuals from the Brescia discovery cohort. (A) Individual trajectories over time for patients 
grouped by disease severity (gray lines), which were averaged (solid blue line) and fitted by linear regression (dashed blue line; slope and standard error shown in the legend). 
Baseline refers to the first sample obtained after admission to the hospital. (B) Normalized EBS in SARS-CoV spike, nucleocapsid, and all SARS-CoV reactive proteins compared 
against the normalized EBS across all VirScan epitopes. (C) Heatmap showing the longitudinal progression of individual patients integrated across all three patient groups by 
disease severity. P-values were determined with Student’s t-test. 
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We only included baseline samples (i.e., the first 
sample available upon hospitalization) to search for 
COVID-VES in order to minimize the potential 
disturbance of serological responses due to either the 
acute infection by SARS-CoV-2 or the length of 
hospitalization. Patients with a moderate to severe 
condition were compared to those with a critical 
condition. A total of 100 iterations were performed by 
applying the algorithm ROSE to generate balanced 
classes; for each iteration, XGBoost with 10-fold cross 
validation was found capable to significantly 
discriminate moderate samples from critical samples 
with area-under-the-curve (AUC) performance values 
close to 1 during training and above 0.9 during 
cross-validation (Figure 4A). The resulting 
COVID-VES signature consisted of 28 viral strains 
that were selected in at least 50 of the 100 iterations. 
All of these viral strains were positively associated 
with patients with critical condition (Figure 4B). We 
then tested if the resulting COVID-VES was 
associated with overall survival by applying the 
survival risk prediction algorithm successfully used in 
previous studies [26, 27]. The survival risk prediction 
based on 10-fold cross-validation predicted patients 
into low- and high-risk groups with a significant 
difference in survival, as shown in the Kaplan-Meier 
plot (Figure 4C), yielding the log-rank P-value = 0.008. 
The resulting cross-validated misclassification rates 
were significantly lower than expected by chance 
(permutation P-value=0.04 based on 100 random 
permutations). The Cox proportional hazards 
regression analysis was also stratified by several 
clinical subgroups. COVID-VES risk was significantly 
associated with overall survival within the ICU, older 
(age ≥ 60 years), and male subcohorts (Figure 4D). The 
small size of our cohort, however, did not allow us to 
perform multivariable Cox regression analysis. To 
further validate the clinical utility of our COVID-VES, 
we performed survival risk prediction of this 
signature in 113 patients with survival data from the 
validation cohort. We found that COVID-VES was 
able to discriminate high-risk and low-risk patients 
with a significant difference in overall survival 
(Figure 4, E and F).  

As the demographic factors such as age and sex 
could contribute to disease severity, we also examined 
the age and sex distribution in the two risk groups 
described in Figure 4C and E and found there were no 
statistically significant differences between the two 
risk groups (data not shown). These results suggest 
that predicted risk differences are mainly driven by 
the history of viral exposure rather than by differences 
in demographic factors.  

As noticed above, one of the limitations of the 
sequentially enrolled discovery cohort is that the 
patient numbers in different clinical severity groups 
are imbalanced, with only 12 moderate and 19 severe 
but 128 critical patients, and only 3 COVID-19 
negative patients. To ameliorate this limitation, we 
combined the discovery and validation cohorts, thus 
improving the balance across mild (n=22), moderate 
(n=37), severe (n=31), and critical (n=172) COVID-19 
positive patients. We also included 5 COVID-19 
negative and 6 convalescent patients. There was a 
statistically significant increase in total reactive 
antibodies in COVID-19 positive patients correlated 
with clinical severity and, moreover, statistically 
significant increases in various strata of COVID-19 
positive patients (namely, moderate, severe, and 
critical) compared to convalescent patients for 
COVID-19 (Figure 5). To further validate that the 
elevated immune memory antibody repertoires were 
modulated upon acute infection by SARS-CoV-2, we 
compared COVID-19 patients to another cohort of 
patients including 54 HIV-1-infected subjects on 
antiretroviral therapy and 37 healthy control patients 
enrolled at the NIH Clinical Center (Supplemental 
Table 2) and profiled with VirScan concurrently with 
COVID-19 patients. As shown in Figure 5, the 
HIV-1-infected group did not show increased 
antibody levels compared to its demographically 
matched healthy control group. Both groups appear 
to have total epitope enrichment levels significantly 
lower than those of COVID-19 positive subjects 
(Supplemental Table 3).  

To further examine a potential bias of 
COVID-VES due to an initial search based on 
unbalanced numbers of patients with moderate and 
critical conditions in the discovery cohort, we 
performed XGBoost with ROSE on a combined 
discovery and validation cohort. Using the same 
feature selection criteria, we found 35 significant viral 
strains that could discriminate mild/moderate from 
critical cases (Supplemental Figure 5A-B). Most of 
them overlapped with COVID-VES. Despite some 
differences in the feature importance with the 
XGBoost modeling, this alternative COVID-VES 
showed good performance to capture the low- vs 
high-risk overall survival differences of the stratified 
cohort (log rank p<0.01; permutation p<0.01) 
(Supplemental Figure 5C).  

Discussion 
Humoral immunity plays an important role in 

antiviral response by producing antibodies against 
various pathogens such as SARS-CoV-2, among 
others, which may result in convalescence.  
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Figure 4. Development and validation of a viral exposure signature predictive of disease severity. (A) XGBoost with 10-fold cross validation for 100 iterations of 
balanced input data generated by ROSE. Each iteration showing the AUC value of training and cross validation sets. (B) The COVID-VES signature consisted of 28 viral strains 
that were selected in at least 50 of the 100 iterations predicted by XGBoost. (C and E) Survival risk predictions based on the COVID-VES signature in low- and high-risk patient 
groups in the discovery (C) and validation (E) cohorts, respectively. Survival time was based on days since admission. (D and F) Results from Cox proportional hazards regression 
analyses in the discovery (D) and validation (F) cohorts, respectively. Patients within each clinical group were classified into low- and high-risk categories based on the 
COVID-VES, then Cox proportional hazards ratios were determined. ND, not determined. P-values were determined with Logrank and Student’s t-test. Error bars represent 
95% confidential intervals.  
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Figure 5. Total epitope enrichment comparison in COVID-19 and HIV-1-infected patients. Log-transformed total enrichment across all epitopes in the combined 
discovery and validation cohorts of COVID-19 patients from Northern Italy, and a cohort of HIV-1-infected (n=54) and healthy subjects (n=37) from NIH, USA. Significant 
p-values (<0.05) from the pairwise comparison of all patient groups are shown in the right-hand side panel. Covid-Neg, Covid negative; Mod, Moderate; Sev, Severe; Crt, Critical; 
Conv, Convalescent; Hlty, Healthy subjects. Box plots represent 25th to 75th percentiles and whiskers extend to 10th and 90th percentiles. P-values were determined with 
Student’s t-test. 

 
Using VirScan, we have determined the 

exposure history of COVID-19 patients to most 
known human viruses. Our findings suggest that the 
dysregulation or imbalanced activation of humoral 
immunity may be associated with poor COVID-19 
outcomes. A surprising finding of this study is a 
marked increase in the overall immune memory 
antibody repertoire activity in COVID-19 patients 
linked to the trajectories of disease severity. This 
conclusion is supported by the following 
observations. First, levels of total reactive antibodies 
against unique epitopes of known viruses were much 
higher in hospitalized COVID-19 patients than in 
non-COVID-19 patients who were also hospitalized 
due to pneumonia. Second, COVID-19 patients in 
critical condition had much higher levels of reactive 
antibodies to known viruses than those in severe or 
moderate condition. These results suggest that 
COVID-19 patients in critical condition may have a 
uniquely different host immune response and 
presumably a different host genetic background. This 
view is consistent with a recent genome-wide 
association study identifying a 3p21.31 gene cluster as 
a genetic susceptibility locus in patients with 
COVID-19 with respiratory failure [28] and with the 
recent identification of monogenic defects of type I 
interferon immunity in patients with critical 
COVID-19 [29]. Third, longitudinal analysis revealed 
that during their hospitalization, patients in critical 
condition showed the highest elevation of reactive 
antibodies to known viruses compared to patients in 
severe or moderate condition. It appears that the 
elevated immune memory antibody repertoire 
activity is associated with poor clinical trajectories in 
COVID-19 patients. Levels of antibodies against a 

single linear epitope corresponding to SARS-CoV 
spike protein with 100% homology to SARS-CoV-2 
were also linked to trajectories of disease severity. 
There was no significant difference in immune 
memory antibody repertoires between older or 
younger patients but a small difference between men 
and women who had acute infections of SARS-CoV-2. 
This is in contrast to the observations that both male 
and older individuals are more likely to experience 
severe COVID-19-related symptoms than female or 
younger individuals [30]. Our data suggest that 
SARS-CoV-2 may directly stimulate an individual’s 
overall immune memory antibody repertoire activity. 
These results are unexpected since humoral immunity 
is thought to be very stable over time due to 
long-lived plasma cells since long-term antibody 
responses are critical for protective immunity against 
pathogens [31-33]. Interestingly, a recent study 
revealed that measles virus infection can diminish 
preexisting antibodies that offer protection from other 
pathogens, which may in turn create potential 
vulnerability to future infections [23]. It appears that 
COVID-19 acute infection and measles virus infection 
may follow different molecular mechanisms to alter 
humoral immune memory. Consistently, a recent 
study demonstrated that COVID-19 infection is 
associated with increased frequencies of proliferation 
of memory B cell subsets but no changes in naïve 
B-cell frequencies [34]. The ability of SARS-CoV-2 to 
selectively promote proliferation of memory B cells 
could explain our findings of a marked increase in an 
overall immune memory antibody repertoire activity 
linked to poor clinical trajectories of COVID-19 
patients. Future studies will explore whether 
dampening COVID-19-induced reactivation of 
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memory B cells may be a viable strategy to control the 
clinical severity of COVID-19 patients. Encouraging 
results were obtained with the use of dexamethasone 
[35], a synthetic corticosteroid as a broad-spectrum 
immunosuppressor that can affect both T cells and B 
cells. Inhibition of Bruton tyrosine kinase, a regulator 
of B-cell maturation [36], could be another viable 
therapeutic strategy to improve clinical outcomes of 
COVID-19 patients [37].  

Autoimmune diseases are complex disorders 
resulting from the failure of immunologic tolerance 
leading to an immune response against the host 
antigens. Autoimmune reactions signify an imbalance 
between effector and regulatory immune responses 
[38]. They may arise from a combination of genetic 
and environmental factors. Viral infection is 
considered as an environmental factor to trigger 
autoimmune disease [39]. Examples of human viruses 
that may precipitate autoimmune manifestations 
include HHV-4 (EBV) and HHV-6 linked to multiple 
sclerosis [40, 41], parvovirus B19 linked to rheumatoid 
arthritis [42], and hepatitis C virus linked to 
cryoglobulinemia [43]. Several recent studies suggest 
a possible involvement of SARS-CoV-2 infection in 
inducing autoimmune and autoinflammatory 
manifestations such as multisystem inflammatory 
syndrome in children (MIS-C) [44, 45]. It is plausible 
that various clinical manifestations of COVID-19 may 
be the result of SARS-CoV-2-induced autoimmunity. 
While how COVID-19 induces autoimmunity remains 
unclear, molecular mimicry has been suggested as a 
plausible mechanism [39]. This mechanism suggests 
the presence of similar antigens between viruses and 
hosts to facilitate pathogens to avoid the host immune 
response and is mainly mediated via a T-cell response 
[39]. However, our results suggest that COVID-19 
may affect B-cell repertoires as we observed a marked 
elevation of memory antibodies to past history of viral 
infection of most known viruses, regardless of viral 
types. These results are consistent with the idea that 
SARS-CoV-2 may directly activate memory B cells, a 
concept supported by a recent observation that 
COVID-19 infection is mainly associated with 
increased frequencies of proliferation of memory 
B-cell subsets and expansion of plasmablasts [34]. It is 
possible that memory B cells are much more sensitive 
than naïve B cells to SARS-CoV-2 and that patients 
with activation of certain memory B cell subsets may 
be more vulnerable to COVID-19-induced disease 
severity. This could explain our finding that HCV 
infection was seen exclusively in hospitalized Brescia 
COVID-19 patients with a critical condition. Although 
speculative, it will be interesting to determine if HCV 
patients who have achieved a sustained virologic 
response by anti-HCV therapy are still vulnerable for 

COVID-19-mediated disease severity. Additional 
prospective studies with larger cohorts are warranted 
to test these hypotheses. 

VirScan is a powerful technique to profile the 
humoral response induced by infectious diseases. 
During the preparation and peer-review of this 
manuscript, other studies using the VirScan 
technology have been published showing consistent 
findings. In one of these studies, Shrock et al [46] 
updated the VirScan virome phage library including 
SAS-CoV-2 epitopes which was used for serological 
profiling of COVID-19 patient and pre-COVID-19 era 
control sera. It showed that COVID-19 patients 
mounted a strong antibody response to specific 
regions of the spike and nucleocapsid proteins of 
SARS-CoV-2, similar to the findings reported here. 
Interestingly, this study revealed that serum samples 
from COVID-19 patients also exhibited a significantly 
higher level of reactivity to seasonal HCoV peptides 
compared to pre-COVID-19 era controls, which is 
speculated to be likely due to an anamnestic response 
boosting B cell memory against HCoVs. In another 
study, Zamecnik et al [47] introduced ReScan, a 
modified version of VirScan, which combines 
paper-based microarrays and programmable phage 
display and was used to screen for and isolate the 
most immunogenic peptides for SARS-CoV-2 
antibody diagnostics. In excellent agreement to our 
findings, this study isolated epitopes within the spike 
and nucleocapsid proteins with a strong 
immunogenic reactivity, which are the same as those 
reported here. 

In summary, by determining serological 
responses to history of infection from most known 
human viruses, we linked the activity of memory 
antibody immune repertoires to clinical manifesta-
tions of COVID-19 patients. We developed a 
COVID-19-related viral exposure signature as 
serological biomarkers that may be useful to identify 
COVID-19 patients who may progress to autoimmune 
and autoinflammatory disease that may require 
tailored treatments. The main limitations of this study 
are the inclusion of only 284 COVID-19 patients with 
imbalanced number of patients in the discovery 
cohort and only a few SARS-CoV-2 negative acute 
infectious pneumonia control patients. While we 
observed a consistent and clear elevation of 
individual immune memory antibody repertoires 
linked to trajectories of disease severity over time, 
there remains a substantial heterogeneity within each 
patient group, which will require expanding our 
analysis in the future to larger cohorts with 
well-balanced severity groups controlled by 
SARS-CoV-2 negative acute infectious pneumonia 
control patients and increased time resolution in order 
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to gain a deeper understanding of the complex 
interplay between host immunity and SARS-CoV-2 
infection. 

Methods 
Study cohorts. Sera were prepared from blood 

donated by patients admitted in hospitals in Italy due 
to suspected COVID-19 since March 2020. We first 
analyzed sequentially collected blood samples of 159 
patients from Brescia, Italy in March 2020 when 
Northern Italy was hit by the first wave of COVID-19, 
as a discovery cohort. We then analyzed additionally 
collected blood samples from 125 patients from 
Brescia, Monza and Pavia, Italy from April to May 
2020, when the stress on the healthcare system was 
relieved, as an independent validation cohort. 
Patients were classified into categories of 
asymptomatic, mild, moderate, severe, and critical 
according to clinical features (National Health 
Commission & National Administration of 
Traditional Chinese Medicine, 2020). Specific 
definitions of clinical severity are: (1) Asymptomatic 
(individual who tested positive by qRT-PCR but did 
not develop symptoms); (2) Mild (modest symptoms 
and no pneumonia); (3) Moderate (fever and 
respiratory symptoms plus radiological evidence of 
pneumonia; use of low-flow oxygen is still part of this 
category but O2 saturation is >93% at rest); (4) Severe 
(oxygen saturation at rest of 93% or lower OR 
respirate rate >30/min OR PaO2 FiO2 <300 mmHg; 
use of oxygen is still part of this category); (5) Critical 
(any of the following: mechanical ventilation via 
CPAP, BiPAP, intubation, or high-flow oxygen; septic 
shock; organ damage requiring admission in the ICU); 
(6) Convalescent (tested positive at the time of 
hospital admission, then negative at the time of blood 
sample collection). Patient clinical information and 
eligibility were surveyed with the standard COVID-19 
Human Genetic Effort Patient Screen form. Sera were 
isolated from whole blood for analysis. Sera from 
HIV-1-infected individuals on antiretroviral therapy 
and from anonymous healthy blood donors were 
collected after informed consent was obtained under 
the NIH IRB-approved protocols NCT02081638 and 
NCT00001846, respectively.  

VirScan T7 phage epitope library. The sera samples 
from enrolled patients were used to perform high 
through-put phage-immunoprecipitation (Phage-IP; 
VirScan) with a T7 phage library expressing epitopes 
of humoral virome. We used the v2.0 epitope library 
which consists of 96,179 viral peptides generated from 
the human virome of all 1,276 known humoral virus 
strains [22]. In this phage library, there are 3,663 
epitopes from 16 species of coronaviruses, including 
80 epitopes from SARS-CoV. The virome was tiled to 

56 aminoacid long epitopes with 28 aminoacid 
overlaps. The epitope tiling was then cloned to a T7 
phage library for displaying. Phage library was 
amplified using BLT5403 E. coli strain with the plate 
lysate method previously described [22]. The phage 
library quality was assessed in two ways. First, it was 
titrated with standard protocol to ensure the titer of 
phage is about 1x1011pfu/mL. Second, a 10µl aliquot 
of the amplified phage library was lysed by boiling at 
95°C for 10 min followed by two steps of PCR to 
amplify and index the cloned epitope sequences in the 
phage genome. The constructed sequencing library 
was then sequenced at the NCI CCR Frederick 
Sequencing Facility. The phage library passed quality 
control as a total coverage of more than 99.99% of the 
designed epitopes was achieved. These sequencing 
results also serve as input for downstream analysis of 
phage-IP-seq. 

Phage-IP-seq. Phage-IP was then performed using 
collected sera samples and phage library as 
previously described [21]. The day before phage-IP, 
96-deep-well plates (BradTech, Catalog #EW- 
07904-04) were blocked using bovine serum albumin 
in TBST buffer. After overnight incubation, the 
blocking buffer was aspirated and sera samples 
containing 2 µg of total IgG were mixed with 2x1010 
pfu T7 library in 1mL dilution buffer (20 mM 
Tris-HCl, pH 8.0, 100 mM NaCl, 6 mM MgSO4) 
supplemented with 50 µg/mL chloramphenicol and 
50µg/mL kanamycin into the deep well plate, and 
rotated at 4°C for 20 hours for the phage to form 
complex with the antibodies from sera. Technical 
duplicate plates were introduced during this step. 
After overnight complex formation, 20 µl protein A 
and 20 µl protein G Dynabeads (Thermo Fisher, 
Catalog #10008D and #10009D) were added to each 
well containing the phage and antibody complex, and 
rotated for another 4 hours at 4°C. The finally formed 
Dynabeads-antibody-phage complex was then 
washed three times with washing buffer (50 mM 
Tris-HCl, pH7.5, 150 mM NaCl, 0.1% NP-40) to 
eliminate the non-specific binding. After wash, the 
Dynabeads with antibody-phage complex were 
suspended in 40 µl ultrapure water and transferred 
into a 96-well PCR plate, followed by boiling at 95°C 
for 10min to recover the phage genomic DNA. The 
recovered phage genomic DNA was used as template 
of first round PCR to amplify the epitope expressing 
sequences. A second round PCR was employed to add 
index barcode to the DNA product of first round PCR 
of each sample well on the 96-well plate. The products 
of second PCR were then pooled together and loaded 
to a 2% agarose gel and target size fragment were cut 
and recovered using a gel extraction kit (Qiagen, 
Catalog #28704). With this, the DNA sequencing 
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library was successfully constructed. Recovered 
sequencing library now contained barcoded DNA 
fragments encoding viral epitopes that were 
recognized by antibodies in the sera. This DNA 
library was then sequenced the same way as phage 
epitope library did, on an Illumina NextSeq 500 
platform with 75bp single read, at NCI CCR Frederick 
Sequencing Core Facility. A total of 200 million reads 
per lane were obtained with an average of one million 
reads per serum sample and minimum 90% mapping 
rates were achieved.  

Sequencing data processing and informatic epitope 
score analysis. Raw data were demultiplexed with 
BCL2FASTQ2 and converted to fastq format. The 
fastq files were mapped to the virome library 
sequence with Bowtie. To call hits, we first calculated 
P-value of each epitope by fitting the observed 
post-alignment read count abundance distribution of 
phage-IP enriched epitopes in to a zero-inflated 
Generalized Poisson null distribution regression 
model. Then initial QC was performed by using 
scatterplots of the -log10(P-values) and a sliding 
window width of 0.005 from 0 to 2 across the axis of 
one replicate. A threshold of -log10(P-value) was set 
between 2.3 and 4.7 in both replicates based on 
-log10(P-value) distribution to correct batch effect and 
background noises. A hit was called to reference 
epitope if present in both technical replicate samples. 
Hits that were present in less than two sera samples or 
more than three mock immunoprecipitation wells 
were eliminated as background noise. The called 
epitope hits were then grouped to the virus it is 
derived. Another threshold was also used to 
bioinformatically remove cross-reactive antibodies: 
called viruses were sorted by total hits number in 
descending order, and then iterate through each virus 
in this order to remove any called epitope that shares 
more than seven amino acids homology with epitopes 
of previous virus in this list. All left epitopes and virus 
are now used as specific signal of each sample. The 
number of epitope hits of each virus after phage-IP 
are summed and used as the so-called feature score of 
each virus. As a complementary epitope binding 
quantitation strategy and to overcome possible 
limitations of the feature score calculation, we also 
employed a recently developed strategy to calculate 
z-scores, by comparing antibody-enriched libraries to 
replicate negative controls (mock IPs). By determining 
the observed abundance excess relative to the 
background, divided by the background signal’s 
standard deviation, and then converting to log scale, 
we assessed the EBS. 

Epitope abundance count and virus prevalence. 
Epitopes with a feature score greater than one were 
counted as unique epitopes. Any virus with more 

than one non-cross-reactive epitope detected is 
counted as positive. Detected viruses are then counted 
at strain level according to epitopes detected and 
grouped to species level. Unique epitopes and 
grouped detected virus species are then counted in 
each sample to plot the unique epitope abundance 
and virus prevalence. Number of detected SARS-CoV 
epitope are extracted and used for heatmap plot and 
subsequent analysis. 

B-cell epitope antigenicity prediction. Sequences of 
SARS-CoV spike and nucleocapsid proteins were 
used for prediction of B-cell antigenicity with the 
B-cell epitope prediction tool of the Immune Epitope 
Database (http://tools.iedb.org). A B-cell antigenicity 
score of 1-100 for each epitope was predicted by the 
online software. 

LIPS assays for measurement of SARS-CoV-2 spike 
and nucleocapsid antibodies. Liquid-phase immuno-
assay technology, a luciferase immunoprecipitation 
system (LIPS) assay was used to detect SARS-CoV-2 
spike and nucleocapsid antibodies as previously 
described [24]. Briefly, viral proteins fused to 
light-emitting luciferase are immunoprecipitated with 
patient serum. The SARS-CoV-2 nucleocapsid was 
constructed in the standard pREN2 vector as a 
C-terminal Renilla luciferase fusion protein and the 
spike protein was generated as an N-terminal fusion 
with the Gaussia luciferase in the pGAUS3 vector. The 
nucleocapsid and spike protein-light emitting 
plasmid constructs were then transfected into Cos1 
cells and crude cell lysate were prepared 48 hour later. 
For antibody measurement, heat-inactivated 
serum/plasma samples were diluted 1:10 in assay 
buffer A (20 mM Tris-Cl, pH 7.5, 150 mM NaCl, 5 mM 
MgCl2, and 1% Triton X-100), and 10 µL of the diluted 
sample was then mixed with 1x107 light units (LU) 
Cos1 crude cell lysate in 50 μL of buffer A. After 
incubation for 1 hour, the mixture was transferred to a 
microtiter filter plate containing protein A/G beads 
and another 1-hour incubation. Microtiter plates 
containing the beads were then washed 8 times with 
buffer A and twice with phosphate-buffered saline to 
remove unbound antigens. After the final wash, 
coelenterazine substrate (Promega) was added to 
detect the luciferase activity, and light units (LU) were 
measured using a Berthold LB 960 Centro microplate 
luminometer (Berthold Technologies). 

Sequence alignment. Protein sequences of 
SARS-CoV and SARS-CoV-2 are aligned with the EBI 
Clustal Omega Multiple Sequence Alignment tool 
(https://www.ebi.ac.uk/Tools/msa/clustalo/) and 
NCBI BLASTP tool (https://blast.ncbi.nlm.nih.gov/). 
Cosmetic labeling was made to highlight the region of 
interest in the sequences. 

Analysis of longitudinal EBS progression. The 
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normalized EBS signal across all epitopes was 
analyzed longitudinally for all individuals with two 
or more timepoints. For those with two timepoints, 
the normalized EBS signal was linearly interpolated. 
For those with more than two timepoints, data were 
fitted using LOESS (Locally Estimated Scatterplot 
Smoothing) regression. The fitted curves were then 
averaged within patient groups. Linear regression 
was performed on the averaged profiles to extract the 
slope's value and standard error.  

XGBoost regression of viral exposure signature. To 
extract the viral exposure signature associated with 
the clinical severity of COVID-19 patients, we 
employed the open source software XGBoost, which 
implements machine-learning algorithms under a 
parallel gradient tree boosting framework. Since the 
clinical severity classes were strongly imbalanced, we 
preprocessed the datasets using the ROSE (v. 0.0-3) R 
package, which stochastically generates balanced 
samples according to a smoothed bootstrap approach. 
By implementing ROSE, we generated 100 iterations 
of balanced datasets consisting of moderate (n=70) 
and critical (n=70) groups, which were subsequently 
used for XGBoost regression. We used grid search 
strategy in XGBoost to maximize the computed mean 
AUC value. The AUC was generated with 10-fold 
cross validation where 90% of samples were used for 
training and the remaining 10% of samples were used 
as independent validation. To avoid overfitting, we 
set the early stop of model training to at least 20 
rounds when no incremental improvement was 
observed in the AUC. The data attributes such as 
virus epitope expression and patient meta data were 
assigned scores that indicate each attribute’s 
importance in the construction of the boosted decision 
trees, allowing features to be ranked and compared to 
each other, and subsequently, feature importance 
scores were averaged across all decision trees within 
the model. The final output of XGBoost resulted then 
in an Importance Score (Feature Importance) to each 
feature (virus). This Importance Score quantifies the 
improvement in accuracy brought by a feature to the 
decision tree branches it is on during the tree boosting 
and grid search process. The higher score, the more 
importance of the feature (virus) to the module 
prediction. With this optimized iteration model, 
XGBoost conducted feature selection and output viral 
exposure signatures consisting of 56 viruses, which 
could discriminate the critical versus the moderate 
group of COVID-19 patients across all 100 iterations. 
Among the 56 viruses, 28 were the common viruses 
that were predicted at least 50% of the 100 iterations. 

VES-based survival prediction. We used the 28 viral 
strain exposure signature (referred to as COVID-VES) 
to predict survival in the Brescia cohort. The survival 

risk prediction tool of the BRB-ArrayTools Stable 
Version 4.6.1 was used for survival analysis. Two risk 
groups at median cut off were selected with 10-fold 
cross validation method and 100 permutations were 
performed. With a permutation P-value 0.03, the 
output survival risk prediction of the 156 training 
samples were then used for survival analysis for 
different subgroups of the cohorts with GraphPad 
Prism 8. Hazard ratio and 95% confidential interval 
was used for forest plot of the different groups. 

Statistics. Statistical differences and significances 
between patient groups of moderate, severe and 
critical are examined with XGBoost algorithm and 
survival analyses were done with GraphPad Prism 8. 
P-values were calculated with Student’s t-test or 
log-rank t-test. All plot figures were generated with 
GraphPad Prism 8, R3.5.3 or R3.5.1 based 
BRB-ArrayTools Stable Version 4.6.1. All other 
analyses were performed with GraphPad Prism 8 and 
R 3.6.3. Comparison of different groups were 
analyzed with Fisher’s exact tests and two-sided 
Student’s t-tests. 

Study Approval. De-identified blood samples 
were obtained under protocol NP-4000 approved by 
Comitato Etico Provinciale, Brescia, Italy; protocol 
84/2020 COVID-STORM approved by the Ethics 
Committee of the Italian National Institute of 
Infectious Diseases “Lazzaro Spallanzani”; and 
protocol 20200037677 approved by the IRB of 
Fondazione IRCCCS Policlinico San Matteo, Pavia, 
Italy. Protocols NCT02081638 and NCT00001846 
approved by the IRB committee of the National 
Institutes of Health, Bethesda, Maryland. 
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Supplementary figures and tables.  
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