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ABSTRACT
Objective Competing tools are available online to assess
the risk of developing certain conditions of interest, such
as cardiovascular disease. While predictive models have
been developed and validated on data from cohort
studies, little attention has been paid to ensure the
reliability of such predictions for individuals, which is
critical for care decisions. The goal was to develop
a patient-driven adaptive prediction technique to improve
personalized risk estimation for clinical decision support.
Material and methods A data-driven approach was
proposed that utilizes individualized confidence intervals
(CIs) to select the most ‘appropriate’ model from a pool
of candidates to assess the individual patient’s clinical
condition. The method does not require access to the
training dataset. This approach was compared with other
strategies: the BEST model (the ideal model, which can
only be achieved by access to data or knowledge of
which population is most similar to the individual),
CROSS model, and RANDOM model selection.
Results When evaluated on clinical datasets, the
approach significantly outperformed the CROSS model
selection strategy in terms of discrimination (p<1ee14)
and calibration (p<0.006). The method outperformed the
RANDOM model selection strategy in terms of
discrimination (p<1ee12), but the improvement did not
achieve significance for calibration (p¼0.1375).
Limitations The CI may not always offer enough
information to rank the reliability of predictions, and this
evaluation was done using aggregation. If a particular
individual is very different from those represented in
a training set of existing models, the CI may be
somewhat misleading.
Conclusion This approach has the potential to offer
more reliable predictions than those offered by other
heuristics for disease risk estimation of individual
patients.

Complexity in decisions involving multiple factors
and variability in interpretation of data motivate
the development of computerized techniques to
assist humans in decision-making.1e3 Predictive
models are used in medical practice, for example,
for automating the discovery of drug treatment
patterns in an electronic health record,4 improving
patient safety via automated laboratory-based
adverse event grading,5 prioritizing the national
liver transplant ‘queue’ given the severity of
disease,6 predicting the outcome of renal trans-
plantation,7 guiding the treatment of hypercholes-
terolemia,8 making prognoses for patients
undergoing certain procedures,9 10 and estimating
the success of assisted reproduction techniques.11

Numerous risk assessment tools for medical deci-
sion support are available on the web12e14 and are
increasingly available for smart phones.15e17

While many predictive models have been devel-
oped and validated on data from cohort studies,
little attention has been paid to ensure the reli-
ability of a prediction for an individual, which is
critical for point-of-care decisions. Because the goal
of predictive models is to estimate outcomes in new
patients (who may or may not be similar to the
patients used to develop the model), a critical
challenge in prognostic research is to determine
what evidence beyond validation is needed before
practitioners can confidently apply a model to their
patients.18 This is important to determine
a patient’s individual risk.19e21 As each model is
constructed using different features, parameters,
and samples, specific models may work best for
certain subgroups of individuals. For example,
many calculators and charts use the Framingham
model to estimate cardiovascular disease (CVD)
risk.8 22e24 These models work well, but may
underestimate the CVD risk in patients with dia-
betes.25 Table 1 illustrates a case in which a patient
can get significantly different CVD risk scores from
different online risk estimation calculators. This
type of inconsistency provides another motivation
for selecting an appropriate model.29

In order to obtain a patient-specific recommen-
dation at the point of care, it is necessary that
physicians interpret the information in the context
of that patient. These scenarios are related to
personalized medicine, which emphasizes the
customization of healthcare.30 31 In this research,
we address the problem of selecting the most
appropriate model for assessing the risk for
a particular patient. We developed an algorithm for
online model selection based on the CI of predic-
tions so that clinicians can choose the model at the
point of care for their patients, as illustrated in
figure 1.
Our approach is purely data driven because it

adapts to any ‘appropriate’ model that is available
for assessing the risk of a patient without the
need for external knowledge. The ‘appropriateness’
refers to the ability of the model to generate
a narrow CI for the individualized prediction.
The article is organized as follows: the following
paragraphs present related work, the Methods
section introduces the details of the proposed
method, the Results section presents results on
simulated and clinically related datasets, and the
Discussion section discusses advantages and
limitations.

< Additional appendices are
published online only. To view
these files please visit the
journal online (www.jamia.bmj.
com/content/19/e1.toc).

Division of Biomedical
Informatics, University of
California at San Diego, La Jolla,
California, USA

Correspondence to
Dr Xiaoqian Jiang, Division of
Biomedical Informatics,
University of California at San
Diego, 9500 Gilman Drive, MD
0728, La Jolla, CA 92093-0728,
USA; xiaoqian@cs.cmu.edu

Received 5 December 2011
Accepted 12 March 2012
Published Online First
4 April 2012

This paper is freely available
online under the BMJ Journals
unlocked scheme, see http://
jamia.bmj.com/site/about/
unlocked.xhtml

J Am Med Inform Assoc 2012;19:e137ee144. doi:10.1136/amiajnl-2011-000751 e137

Research and applications



A possible approach to determining the best model for
a patient is to compare the patient with individuals in the study
population used to build the model. However, it is non-trivial to
gather datasets from every published study. The barriers are
partly related to the laws and regulations on privacy and
confidentiality.32 Therefore, we aimed at developing a new
method to determine the most reliable predictive model for an
individual from a candidate pool of models without requiring
the availability of training datasets. Note that our motivation
for selecting the appropriate model in a distributed environment
is somewhat different from the one that motivates adaptive
model selection. Adaptive model selection operates in a central-
ized environment and searches for an optimal subset of patterns
from the entire training set to minimize certain loss functions.33

The idea of data-driven model selection for medical decision
support is related to dynamic switching and mixture models,34

which emphasize capturing the structural changes over time to
adapt a predictive model. Fox et al35 proposed a method for learning
and switching between an unknown number of dynamic modes
with possibly varying state dimensions. Huang et al36 presented
a segmentation approach that divided deterministic dynamics in
a higher-dimensional space into segments of patterns. Siddiqui and
Medioni37 developed an efficient and robust method of tracking
human forearms by leveraging a state transition diagram, which
adaptively selected the appropriate model for the current observa-
tion. Other methods were used in the context of wireless sensor
networks in which the goal was to provide an effective way to
reduce the communication effort while guaranteeing that user-
specified accuracy requirements were met. For example, Le Borgne
et al38 suggested a lightweight, online algorithm that allowed
sensor nodes to determine autonomously a statistically good
performing model among a set of candidate models.

However, most of the aforementioned methods describing
real-world physical systems are not directly applicable to
medical decision support because they rely on physical laws that
are not applicable to medical decision-making. We propose

a novel data-driven method to estimate the probability of the
binary outcome for each new patient. In particular, based on
patient characteristics, our method chooses the model that is
most appropriate (ie, the one with the narrowest CI) from a set
of candidate models and uses its predicted probability.

METHODS
A patient-driven adaptive prediction technique
We consider a binary classification task. Let YK˛f0; 1g and XK ¼
< x1,.,xi.,xn >, respectively be the true class label (ie, the
outcome of interest) and the vector of feature values (ie, the
vector representing values for age, gender, blood pressure, etc) of
the kth individual. Then, Xj and Yj (j˛ð1;.;mÞ correspond to
the jth subpopulation of individuals from the training popula-
tion (Xj 4 X, Yj 4 Y), where X and Y denote the corpus of
features and class labels in the entire population, respectively.
Note that m denotes the number of models, which are trained
from individual pairs of feature vectors Xj and label vectors Yj.
In particular, we can build a classifier fj : XJ/YJ by minimizing
some loss function, for example, the hinge loss for a support
vector machine39 40 or the Hamming distance for a model based
on conditional random fields.41 42

To simplify the analysis, we assume that all candidate models
are constructed by minimizing the log loss function commonly
used in logistic regression, as this is a model widely used and
published in biomedical research,21 43e45 but that they use
different training populations. Under this scenario, imagine
a test pattern X* (ie, feature values of a new patient) that
corresponds to the clinical findings and demographic informa-
tion of a patient for whom we want to assess the risk of
developing CVD. Given a finite number of models f1,.,fi,.,fm
built on different training data in previous studies, the question
is which model would be most appropriate for a novel pattern
X* encountered at the point of care.
Intuitively, we can think of finding out which model used

a training set population that best matches X*, and choose that
model built to predict the outcome of X*. In reality, however,
this is often impossible because the training data are often
unavailable. In addition, the computational burden of case-wise
comparisons is huge, and thus may not be applicable at the
point of care. Therefore, a practical solution to the problem
should avoid the need for accessing the training data. Our
approach, a patient-driven adaptive prediction technique
(ADAPT), only needs the model coefficients (ie, the weights of
a logistic regression model), and the covariance matrix of these
coefficients to assess the reliability of their predictions. In
particular, we pick the model f* that generates the narrowest
CI for the prediction of a test pattern X*

f �
�
X �

�
¼ argminjCIjðX�ÞjfjðX �

�
;cj˛

�
1;.;m

�
(1)

where CIj (X*) is the CI of the jth model predicting the test
pattern X*, and m is the number of available models to choose

Table 1 The same patient can get different risk scores from different
online tools

Patient: Bob

Age, years 38

Smoker Yes

Total cholesterol 235 mg/dl

HDL cholesterol 39 mg/dl

Treatment for HBP Yes

. .

Systolic blood pressure 145 mm Hg

Family history of early heart disease Yes

Bob’s cardiovascular disease risk

NHLBI risk assessment web tool26 16%

American Heart Association online27 25%

Cleveland Clinic28 20%

HBP, high blood pressure; HDL, high-density lipoprotein; NHLBI, National Heart, Lung, and
Blood Institute.

Figure 1 A clinician has to decide at
the point of care which model to use,
given the characteristic of the patient.
Note that p* is the probability estimate
for this particular patient. CI is the
confidence interval for this estimate, or
prediction. The clinician chooses the
model that produces the prediction with
the narrowest CI.
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from. The CI of individual predictions are calculated using the
covariance matrix of the coefficients46 and the feature values for
the individual. In well-specified models, the non-diagonal

elements of this matrix should be close to zero. For a well-
specified model, the CI is wider if a test pattern is closer to the
decision boundary; it is narrower if a test pattern (ie, feature

Figure 2 Applying a logistic regression (LR) model to four
test patterns (stars) in two dimensions. The dots correspond
to positive and negative samples drawn from two Gaussian
distributions N ((2,1), (2,0;0,2)) and N ((�2,�1), (4,0;0,3)),
respectively. Each graph illustrates a test pattern, a 95% CI
in the output space, and its neighborhood convex hull (ie,
points that receive similar estimates by the model).
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values of a new patient) is further away from the decision
boundary. Another factor determining the width of the CI is
associated with the ‘local density’ in the region where the test
pattern would lie if it were part of the training set. That is, in
areas with high density, the prediction is more stable, and thus it
has a smaller CI. Away from high-density areas, the predictions
become less stable, as there is weaker evidence to support the
predictions.

Both situations are illustrated in figure 2, where simulated
data are used to build a logistic regression model. Different test
patterns were arbitrarily selected to illustrate the effects of
a point (1) being in a dense region (ie, several individuals with
similar characteristics) versus a sparse region (ie, few individuals
with similar characteristics), and (2) being close the zone of
highest uncertainty, the decision boundary. We illustrate the
four possible combinations, ie, a point close to the decision
boundary in a dense region, close to the decision boundary in
a sparse region, far from the decision boundary in a dense region,
and far from the decision boundary in a sparse region. The
widths of their CI are summarized in table 2. The values in the
first column are smaller than those in the second column. This
illustrates our first point that the CI get narrower when the test
pattern is further away from the decision boundary. On the
other hand, the values in the first row are smaller than those in
the second row, which illustrates our second point that narrow
CI are associated with dense regions. The narrowest CI (ie, 0.02)
among these four arbitrarily selected illustration points corre-
sponds to the prediction of the pattern lying in a dense region far
from the decision boundary. For details, please refer to our
discussion about mathematical implications of individualized CI
in supplementary appendix A (available online only).

Data description
We used both simulated data and a clinical dataset to demon-
strate the algorithm. The simulated data were simple and
designed to make it easy to understand how the algorithm
works through visualization and perfect knowledge of the gold
standard. The clinical data were used to illustrate the algorithm
in a more realistic scenario.

Simulated data
To verify the efficacy of the proposed method, we simulated two
datasets (XA, XB) by sampling from two-dimensional Gaussian

distributions, Nðð1:5; 1:5Þ;
h 1; 0
0; 1

i�
and, Nðð�1;�1Þ;

h 1; 0
0; 1

i�
,

respectively. Next, we assigned class labels of these simulated
data using the logistic regression model, ie, drawing random
samples from the binomial distribution using probability
p� ¼ logit�1ðu0 þ+2

i¼1uixliÞ, where xli is the ith feature of the ith

sample in one of the simulated datasets and W ¼ ½u0;u1;u2�9 is
the weight (ie, intercept and coefficients) parameter. In particular,
we used weight vectors that are nearly orthogonal to each other
(WA ¼ ½�0:3; 0:5; 0:5�9), WB ¼ ½0;�0:5; 0:5�9 so that class labels
generated by one model would generalize poorly to the other.
For both datasets, we drew 300 samples, of which 80% were
used for training, and the remaining 20% were used for testing.
Figure 3 illustrates an instance of both datasets, and decision
boundaries of logistic regression models learned from them. One
can see that the decision boundaries are close to orthogonal,
which matches our simulation.
We repeated the sampling process 50 times to evaluate the

overall performance of our proposed method for picking the
right prediction model. We compared it with two other model
selection techniques. Table 3 lists different strategies for model
selection. Note that BEST, which includes A2A and B2B, was
meant to have the best performance (ie, expected to have the
best results because data from a test set from population X are
used in a model built from a training set from population X),
CROSS, which includes B2A and A2B that were meant to be
baselines of the CROSS model selection strategy (ie, expected to
have the worst performance, because models trained on
a training set from population X are tested on a sample
from population Y), and RANDOM, which refers to
a RANDOM model selection strategy, was meant to represent
what online users might be doing (ie, they use any calculator
they can find online), which is expected to have an intermediary
performance between the best and worst model selection
strategies. We acknowledge that the simulation data cannot
serve as a ‘perfect benchmark’. The goal was to illustrate the
efficacy of ADAPT in a simple and intuitive two-dimensional
case. An evaluation in a more realistic dataset is certainly

Table 2 Width of CI of predictions of test patterns in figure 1AeD

Local density

Distance to decision boundary

Near Far

High 0.19 0.02

Low 0.58 0.17
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Figure 3 Simulated datasets for model evaluation. The first and second subfigures show datasets XA, XB, and decision boundaries logistic
regression (LR)(A), LR(B) learned from each dataset. We show both datasets combined, and their nearly orthogonal decision boundaries in the last
figure.
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warranted, so we also compared those four strategies using
clinical data.

Clinical data
We applied our method to two clinical datasets for illustration
purposes. The myocardial infarction (MI) data contain infor-
mation about patients with and without MI. These patients
were seen at emergency departments at two medical centers in
the UK,47 where 500 patients with chest pain were observed in
Sheffield, England, and 1253 patients with the same symptoms
were observed in Edinburgh, Scotland. The total number of
patients is 1753, and the feature size is 48. The target is a binary
variable indicating whether a patient had an MI or not.

We preprocessed those data by replacing every categorical
feature by a number of binary ones to preserve the categorical
information. To construct learning models, we randomly split
both datasets into (80%/20%) training and test sets. Note that
the proportion of the positive outcomes of training and test sets
were approximately the same. We compared our proposed
method, ADAPT, with other strategies, as indicated in table 4.
Similar to the simulation study, E2E and S2S were meant to
represent the best performing strategies, S2E and E2S represent
baselines of CROSS model selection (ie, the worst performing
strategy), and RANDOM refers to the RANDOM model selec-
tion strategy, similar to what we did for the simulated data.

We repeated the random split 50 times, and evaluated
discrimination and calibration, as explained next.

Evaluation methods
We used two measures, the area under the receiver operating
characteristic curve (AUC)48 and the HosmereLemeshow good-
ness-of-fit test (HL test),49 to evaluate the performance of

predictive models in terms of discrimination and calibration,
respectively. In particular, we used a one-tailed paired t test to
compare the performance of the models through cross-validation.

Area under the receiver operating characteristic curve
The AUC measures the predictive model’s ability to discriminate
positive and negative cases: an AUC of 0.5 corresponds to
a random assignment into one of the two categories, and an
AUC of 1.0 corresponds to a perfect assignment. Predictive
models used in medical decision-making vary widely between
these two extremes, but most published models have AUC
exceeding 0.7, and just a few have AUC over 0.9.

HL test
The HL test measures how well the model fits the data. As there
is no gold standard for the probability estimate for one indi-
vidual, cases are pooled into groups and the sum of probabilities
in the groups is compared with the sum of positive cases in these
groups using a c2 test. When the p value for the test is below
0.05, we reject the hypothesis that the model fits the data well.
Note that we adopted the C version of the HL test for which
equal-sized subgroups (ie, deciles in our case) are sorted by
probability estimates.

RESULTS
Figure 4 shows the AUC and p values of the HL test obtained by
applying different model selection strategies to the simulated
data (described in the Simulated data section). The strategies of
comparison include the BEST strategy (ie, A2A and B2B), the
CROSS strategy (ie, B2A and A2B), the RANDOM strategy, and
the ADAPTstrategy. There are four plots in this figure. The first
two plots (ie, subfigures on the first row) correspond, respec-
tively, to AUC and to the p values of the HL test, after applying
all four strategies to the test set originating from A. The last two
plots (ie, subfigures on the second row) show the results of
applying the model on the test set originating from B. Our
method labeled ADAPT significantly outperforms the CROSS
and RANDOM model selection strategies for both indices, as
indicated by the p values in the figure. As expected, the CROSS
strategy (ie, B2A and A2B) performed poorly.
In figure 5, we illustrate the results of applying different

model selection strategies to the clinical data (described in the
Clinical data section). The strategies compared include BEST (ie,
E2E and S2S), CROSS (ie, E2S and S2E), RANDOM, and
ADAPT.
In the first experiment with the Sheffield data, ADAPT has

higher discrimination than the CROSS strategy E2S (p<1ee14)
and the RANDOM strategy (p<1ee12) based on a one-tailed
paired t test. Our method also demonstrates better calibration
performance than the CROSS strategy E2S (p¼0.006), but it is
not significantly better than the RANDOM strategy (p¼0.14).
Our approach demonstrated very comparable discrimination
(p¼0.85) and calibration (p¼0.84) with the BEST strategy S2S,
the ideal situation of using the same population to evaluate
a test case.
The second experiment with the Edinburgh data involves

more testing samples compared with the Sheffield experiment.
The AUC of our proposed method was significantly higher than
both the CROSS strategy S2E (p<1ee43) and the RANDOM
strategy (p<1ee33), and it was comparable to that of the BEST
strategy E2E (p¼1.0). The calibration of our method was better
than those of two other strategies (S2E p¼0.0017, RANDOM
p¼0.0072), and it was comparable to the BEST strategy E2E
(p¼0.60), the ideal scenario for testing. Figure 6 shows the

Table 3 Different strategies (BEST, CROSS, RANDOM, and ADAPT) to
choose a model to predict simulated test cases

Strategies Details

BEST

A2A Trained on A (80%), evaluated on A (20%).

B2B Trained on B (80%), evaluated on B (20%).

CROSS

A2B Trained on A (80%), evaluated on B (20%).

B2A Trained on B (80%), evaluated on A (20%).

RANDOM Randomly selected model learned from either
training set of A or B to evaluate the test cases.

ADAPT Use our proposed method to choose a model
for each of the test cases.

Table 4 Different strategies (BEST, CROSS, RANDOM, and ADAPT) to
choose the model to predict test cases

Strategies Details

BEST

E2E Trained on Edinburgh data (80%), evaluated
on Edinburgh data (20%).

S2S Trained on Sheffield data (80%), evaluated
on Sheffield data (20%).

CROSS

E2S Trained on Edinburgh data (80%), evaluated
on Sheffield data (20%).

S2E Trained on Sheffield data (80%), evaluated
on Edinburgh data (20%).

RANDOM Pick a random model learned from either
training set to evaluate a given test set.

ADAPT Use our proposed method to choose model.
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distributions of models picked by ADAPT. As expected, most
Sheffield test cases selected the model based on the Sheffield
training data, and the equivalent result was true for the Edin-
burgh test cases.

DISCUSSION
We investigated challenges in selecting models to predict risks
for individual patients. While many previous studies have
shown good predictive accuracy for cohort studies, they did not
always make clear which model would be most appropriate for
an individual. Due to the real-world concerns related to privacy
and confidentiality,50 it is often difficult to access the raw data
that were used to construct these predictive models. We devel-
oped ADAPT to consider the model-specific information that
may be published without the accompanying training datasets.
Many articles describe the coefficients and their p values, but the
publication of variance of coefficients or their CI is less frequent.
Even rarer is the publication of the full covariance matrices,
although preprocessing to eliminate variables with high corre-
lation makes the non-diagonal elements relatively unimportant.
The matrix diagonal (ie, the variance of the parameters) contains
the information that is critical for our method. We believe

authors would be willing to disclose these matrix diagonals, as
they do not increase the risk of subject re-identification signifi-
cantly. In addition, if online calculators included the CI for
a prediction (which is currently not the case), it would be trivial
to ‘manually ’ select the model associated with the narrowest CI
for a particular prediction. Our approach automates this process
and exhibits adequate discrimination and calibration, as
measured by the AUC and the HL test in the prediction of risks
for an individual patient. It adaptively picks the model that is
most appropriate for the individual at hand given the available
information.
Another advantage of ADAPT is that the approach can assess

models trained differently. In practice, even for the same risk
prediction task, different institutions might build their models
with different features, for example, the three CVD risk
models26e28 shown in table 1 used seven, 17, and eight feature
variables, respectively. The model from the American Heart
Association27 consists of a superset of features included in the
other models (ie, National Heart, Lung, and Blood Institute26

and Cleveland Clinic).28 Such differences, however, would not be
an obstacle for ADAPT, as our model always evaluates ‘appro-
priateness’ in output space, which is one-dimensional. As long as

Figure 4 Comparison of different
strategies including BEST (A2A and
B2B), CROSS (A2B and B2A),
RANDOM, and ADAPT in discrimination
(area under the receiver operating
characteristic curve; AUC) and
calibration (p value for
HosmereLemeshow (HL) decile-based
test) using simulated data. Note that
x6y in the labels of the x-axis indicates
that the mean equals x, and the
standard deviation equals y.
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a comprehensive set of patient feature values is available (ie, 17 in
the case of CVD), we can calculate individualized CI for each of
the models listed above without determining how many features
were used to train the model at each hospital/institution.
Evidently, if just certain feature values are available for a given
patient, only certain models will generate a prediction. The model
resulting in the narrowest individualized CI for the prediction
would be the one selected, such as the one conducted in our study
(see supplementary appendix B, available online only). Regarding
evaluation matrices, although we believe AUC and HL tests are
general evaluation standards that are used by many, we noticed
that models could be evaluated using other evaluation indices,
which we would like to explore in our future work.

Despite results showing performance advantages of ADAPT
over other strategies in terms of discrimination and calibration
using simulated data, our simulation study has important
limitations. Orthogonal training patterns are not common in
real-world data: we used this two-dimensional simulated data
mainly for illustration purposes. Although our preliminary
results from the application of ADAPT to the MI data confirm
the performance advantage of ADAPT over CROSS model
adaption and RANDOM model selection strategies, these data-
sets were relatively small. In the future, we plan to use larger
datasets that are increasingly being collected at healthcare
institutions for predictive model building and validation. Addi-
tional concerns relate to the fact that CI may not always offer
enough information to rank the reliability of predictions, and
our evaluation was done on the aggregate. If a particular indi-
vidual is very different from those represented in the training set
of existing models, the CI may be somewhat misleading. Indeed,
the problem of assessing the best result for the particular indi-
vidual at hand is still an open question, as the individual gold
standard for the prediction is not available (ie, the observation is
binarydthe patients develop or do not develop CVD, but the
true gold standard for an individual prediction is the true
probability for the patient to develop the condition, which is not
known). In the future, we would like to work towards the
development of better proxies for the gold standard than the
ones currently available, investigate data-driven model selection

for models constructed using larger datasets across multiple
sites, and extend our framework to include kernel methods.
In summary, this article describes a new method for selecting

one among several competing models for a given individual, and
our results show that there are positive effects on discriminatory
performance. All experiments described in this article were
conducted in a laboratory environment. The evaluation of
the method as a part of a clinical decision support system
is certainly warranted to verify its performance in a clinical
environment.
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