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Tandem duplication (TD) is an important type of structural variation (SV) in the
human genome and has biological significance for human cancer evolution and tumor
genesis. Accurate and reliable detection of TDs plays an important role in advancing
early detection, diagnosis, and treatment of disease. The advent of next-generation
sequencing technologies has made it possible for the study of TDs. However, detection
is still challenging due to the uneven distribution of reads and the uncertain amplitude of
TD regions. In this paper, we present a new method, DINTD (Detection and INference
of Tandem Duplications), to detect and infer TDs using short sequencing reads. The
major principle of the proposed method is that it first extracts read depth and mapping
quality signals, then uses the DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) algorithm to find the possible TD regions. The total variation penalized least
squares model is fitted with read depth and mapping quality signals to denoise signals.
A 2D binary search tree is used to search the neighbor points effectively. To further
identify the exact breakpoints of the TD regions, split-read signals are integrated into
DINTD. The experimental results of DINTD on simulated data sets showed that DINTD
can outperform other methods for sensitivity, precision, F1-score, and boundary bias.
DINTD is further validated on real samples, and the experiment results indicate that it
is consistent with other methods. This study indicates that DINTD can be used as an
effective tool for detecting TDs.

Keywords: tandem duplications, DBSCAN, next-generation sequencing, read depth, mapping quality

INTRODUCTION

Genome structural variations (SVs) are polymorphic rearrangements of 50 base pairs or greater
in length and affect about 0.5% of the genome of a given individual (Eichler, 2012). SVs
include deletions, insertions, duplications, inversions, and translocations of segments of DNA
(Balachandran and Beck, 2020). Copy number variation (CNV) can be regarded as an important
type of genome SVs (Redon et al., 2006; Chao and Tammi, 2009; Iacocca and Hegele, 2018). Tandem
duplication (TD) is defined as a structure rearrangement whereby a segment of DNA is duplicated
and inserted serially to the original segment (Olivier et al., 2003). Whole-genome sequencing
(WGS) data from tumors have revealed that massive rearrangements, as in the tandem duplicator
phenotype, are a specific cancer phenotype (Inaki and Liu, 2012). TDs commonly occur in some
cancers (Stephens et al., 2009), particularly in ovarian and breast cancer genomes. A subset of
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ovarian cancer samples shares a marked TD phenotype with
triple-negative breast cancers (Mcbride et al., 2012). The fms-like
tyrosine kinase 3 internal TD (FLT3-ITD) is present in 30% of
cases of acute myeloid leukemia (AML) (Kapoor et al., 2018).
A novel recurrent TD in IFT140 was found in patients with
uncharacterized ciliopathies using WGS (Geoffroy et al., 2018).
Therefore, TDs play an important role in the mechanism of
human disease, the detection of which has great significance for
genome analysis and the study of human evolution.

Next-generation data has made it possible to detect and
genotype SVs in the human genome. The primary strategies
for the characterization of SVs include paired-end mapping
(PEM), read depth (RD), split read (SR), de novo assembly, and
a combination of the above strategies (CB). PEM uses discordant
alignment features, such as insert size and directions of paired-
end reads, to infer the presence of SVs (Korbel et al., 2007;
Chen et al., 2009; Kai et al., 2009; Zeitouni et al., 2010). RD is
based on the read counts aligned to genome windows (Yoon
et al., 2009; Abyzov et al., 2011; Miller et al., 2011; Boeva
et al., 2012; Yuan et al., 2018). If regions of some consecutive
windows have a significantly higher or lower read count, they
will be identified as CNV. SR uses the SR signals to infer
SVs and their breakpoints. SR tries to align clipped reads and
one-end-anchored reads to find the matching breakpoints or
refine the breakpoints identified by discordant alignment reads
(Jiang et al., 2012; Rausch et al., 2012; Zhang et al., 2012;
Hart et al., 2013; Schroder et al., 2014; Wang et al., 2015;
Guan and Sung, 2016). When the reads are aligned across
breakpoints, they will be split into separate parts and only some
parts will be mapped to the reference genome. The de novo
assembly first arranges the contigs from the entire or unmapped
sequencing reads, then aligns the contigs to the reference
genome (Wang et al., 2011; Li, 2015; Zhuang and Weng, 2015;
Kavak et al., 2017).

These strategies are commonly used in detecting SVs, but they
all have certain defects. RD can only detect unbalanced SVs,
and the boundaries of the regions it detects are often rough.
SR can detect SVs at the nucleotide level but there are usually
a lot of discordant alignments, and thus SR is often integrated
with other strategies. The strategy of de novo assembly requires
assembling short reads, which has high time and space challenges.
CB integrates some or all of the above strategies (Jiang et al., 2012;
Layer et al., 2014; Bartenhagen and Dugas, 2016; Chen et al., 2016;
Eisfeldt et al., 2017; Soylev et al., 2019), and often works more
effectively than strategies using merely one signal.

In this work, we focus on the detection of TD regions and
inference of their breakpoints from short sequencing reads.
We first provide a brief introduction to existing methods that
are used to detect TDs. VNTRseek (Gelfand et al., 2014)
maps short sequencing reads to a set of reference TDs and
then identifies putative TDs based on the discrepancy between
the copy number of a reference and its mapped read; it
is designed for minisatellite TDs. When the TD length is
medium or long, it does not work well. TARDIS (Soylev et al.,
2019) detects TDs by calculating maximal valid clusters for
SVs that encompass all the valid read pairs and SRs for the
particular SV. If discordant read pairs and SRs are mapped

in special opposing strands, they are identified as TDs. DBDB
(Yavas et al., 2014) predicts TDs based on the distribution
of fragment length using discordantly aligned reads, and the
breakpoints are inferred by applying a probabilistic framework
that incorporates the empirical fragment length distribution to
score each feasible breakpoint. LUMPY (Layer et al., 2014) is
also based upon a general probabilistic representation of an SV
breakpoint. TIDDIT (Eisfeldt et al., 2017) utilizes discordant
read pairs and SRs to detect the location of SVs with the RD
signal for classification. These methods all have assumptions.
RD-based methods often assume observed RD and that the
number of discordant read pairs follows a Poisson distribution.
PEM-based methods assume the insert size follows a normal
distribution. Some derive general distributions or a probabilistic
framework from empirical fragment length distributions. But
the real distributions of the observed RD signals are uncertain
due to sequencing error, mapping error, GC content bias,
and uneven nature of the data, thus deviating from the
assumed distribution.

We propose a new method called DINTD (Detection and
INference of TDs) using density-based spatial clustering of
applications with a noise (DBSCAN) algorithm (Ester, 1996;
Schubert et al., 2017). DINTD builds a pipeline that integrates
the RD and SR signals mentioned previously. Also, we integrate
mapping quality (MQ) signals (Li et al., 2008), which is a measure
of the confidence that a read comes from the position it is aligned
to by the mapping algorithm. In the first stage of the pipeline,
the rough TD regions will be detected. To achieve this goal,
RD and MQ signals are pre-processed and are treated as two
features of the DBSCAN algorithm. To smooth consecutive bins,
the TV (total variation) model (Duan et al., 2013) is used. The
running result of DBSCAN provides clusters for the bins and
TD regions are detected as noise. The distances between bins are
frequently calculated when the DBSCAN algorithm is searching
for the nearest neighbors. To reduce the required number of
distance calculations, the 2D binary search tree (BST) approach
(Bentley, 1975) is used to divide the search space into nested
orthotropic regions. In the second stage of the pipeline, the
boundaries of TD regions are refined based on the discordant
SR signals. We test the performance of DINTD on simulation
data by comparing it to existing methods. The experiment results
demonstrate that DINTD achieves superior results in terms
of sensitivity, precision, F1-measure, and boundary bias. We
further apply DINTD to real sequencing samples to demonstrate
its reliability.

METHODS

Workflow of DINTD
The workflow of the DINTD method is depicted in Figure 1. It
consists of three main steps. In the first step, a donor sample and
a reference genome (e.g., GRCh38) are prepared as the input.
An alignment file (in BAM format) is obtained by aligning all
the short reads to the reference genome utilizing the BWA-MEM
approach (Li and Durbin, 2009). BWA is one of the most popular
alignment tools due to its high accuracy. The alignment file is
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FIGURE 1 | Diagram showing the workflow of the DINTD method. DINTD is composed of three primary parts, including input files, preparing informative profiles, and
declaring TDs.
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sorted by the genome position utilizing SAMTools software (Li
et al., 2009). SAMTools is a popular library that provides utilities
for manipulating high-throughput sequence alignments. In the
second step, read counts and mapping qualities are extracted
from the alignment file and put into the feature profile. SRs and
discordant reads are extracted and put into the split profile. A pre-
processing of the feature profile can then be carried out, such
as dealing with value-lost and N positions to generate bins and
correcting GC-bias for bins across the genome. In this step, the
entire genome is divided into a number of continuous and non-
overlapping bins; two features, including RD and MQ signals,
can be obtained. These two features can be smoothed using
the TV model to reduce noise. In the third step, a pipeline
composed of detection and refinement is used to detect TD.
The pipeline integrates the RD- and SR-based strategies. Some
bins are detected as noise using DBSCAN based on RD and MQ
signals. To speed the search for the nearest neighbor, the 2D BST
strategy is embedded in the DBSCAN algorithm. For the detected
noised bins, we merge the continuous ones into a large segment
and that is then regarded as a rough TD region. Subsequently, we
further use the split profile and the breakpoint positions of the TD
regions are inferred. In the following subsections, the principle
and implementation of each step will be described in detail.

Pre-processing of Informative Profiles
The data pre-processing of informative profiles provides a data
foundation for the pipeline of detecting TDs. It includes N
position processing, RD and MQ calculation, GC correction,
noise smoothing, and normalization.

Processing of N Positions
In any version of a reference genome, there are a large number
of N values in genome positions (Yuan et al., 2019). The value
of N means that the base has not been determined yet in
the construction of the reference genome. The short reads are
composed of A, T, C, and G. When a short read is compared with
an N on the reference genome, the read count will be equal to
zero. If the regions of N are removed directly, the final results
about tandem duplication positions are biased. The observed read
count is biased from the real read count since some reads have
not mapped to the reference due to the N positions. To solve
this problem, N positions in the reference genome are saved. The
read count at each N position can be set to NA to represent the
uncertain data. The read count of non-N positions is measured
by counting the number of mapped reads.

Calculation of RD and MQ
The read count profile can be divided into non-overlapping bins.
The RD for each bin on the reference genome can be calculated
using the following formula:

RDi =

∑len_bini
j=1 RCj

len_bini
. (1)

RDi and RCj represent the RD value and the RC value of the
j-th position for the i-th bin, respectively, and len_bini represents
the length of the i-th bin, which is specified by the user, such as

2000 bp. If the RD value of a bin is equal to NA, this bin will
be filtered out.

The calculation of RD is slightly different from traditional
approaches (Yoon et al., 2009) that assign each read only
once with its start position. However, if a read matches the
breakpoint of two adjacent bins of the reference genome, the
traditional method only increases the RD value of the previous
bin by one, whereas our calculation method can increase the RD
value of both bins.

The MQ value for each bin on the reference genome can
be calculated using formula (2). It is similar to the calculation
method of RD, except that the read count is modified to the value
of MQ. The value of MQ during the alignment can be directly
extracted from the alignment file.

MQi =

∑len_bini
j=1 Mqj
len_bini

. (2)

MQi represents the value of MQ for the i-th bin and Mqj
represents the value of MQ of the j-th position for the i-th bin.

Correction of GC Content Bias
Sequence coverage on the Illumina Genome Analyzer platform is
influenced by GC content (Bentley et al., 2008; Dohm et al., 2008).
Therefore, we need to adjust the value of RD and MQ for each bin
based on the observed deviation in coverage for a given G and C
percentage (Dohm et al., 2008; Yoon et al., 2009; Abyzov et al.,
2011; Boeva et al., 2012). The adjustment can be calculated using
the following formula:

∼
ri =

n
nGC

ri. (3)

In this,
∼
ri and ri represent the corrected and original value of

RD or MQ of the i-th bin, respectively, n represents the whole
median of all the bins; andnGC represents the median RD or MQ
of all bins that have a similar G and C percentage as the i-th
bin. The similar GC percentage is defined as the bins whose GC
percentage deviation from the GC percentage of the i-th bin does
not exceed 0.001.

Denoising Using TV (Total Variation)
Due to the noise data during the sequencing process, the RD and
MQ between adjacent bins may vary randomly. The RD and MQ
between adjacent bins have a natural correlation (Yuan et al.,
2012, 2019), so the RD and MQ after GC corrections need to
be further smoothed and denoised. Traditional median denoising
and linear denoising do not distinguish between edges and noise.
TV is based on the principle that signals with excessive (and
possibly spurious) detail have high total variation, which is only
sensitive to noise and can preserve edge information between
bins. So, the TV method can be used to denoise RD and MQ. RD
and MQ can be smoothed using the following formula:

min
a
{

1
2
∣∣∣∣b-a

∣∣∣∣2 + λ ||Da||1}. (4)

In this, a and b represent the vector forms of ai and bi, i.e.,
a = [a1,a2,...,an]T and b = [b1,b2,...,bn]T; n is the number of bins;
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T represents the transpose operation; a represents the denoised
signal; b represents the signal obtained from the above step; λ

is a penalty parameter;
∣∣∣∣b− a

∣∣∣∣2 denotes the L2 norm, i.e., the
Euclidean distance between a and b; and || . ||1 denotes the L1
norm, i.e., the Manhattan distance. D is a matrix of the size
(n− 1)× n that calculates the first-order derivatives of signal a:

D =



−1 1 0 . . . 0
0 −1 1 0 . . .

. . . . . .

. . . . .

. . . . 0
0 . . . 0 −1 1


. (5)

The symbol λ represents the penalty parameter that controls the
trade-off between the first term (which can be called fitting error)
and the second term (which can be called the total variation
penalty). It is difficult to determine the value of λ (Condat, 2013;
Duan et al., 2013; Yuan et al., 2019). When it tends to zero, the
effect of the penalty term is minimal, and a is equal to b. When it
tends to positive infinity, the effect of the fitting error is minimal
and the denoised signals are all equal. Our method allows the user
to specify the value of the parameter λ.

Normalization
RD and MQ will serve as two features of the DBSCAN algorithm.
RD is the average number of short reads aligned to each position
in a bin and MQ is the average MQ of short reads aligned to
each position of a bin. The value of MQ is much greater than the
value of RD. When the DBSCAN algorithm looks for the nearest
neighbor, a distance calculation equation is needed. Then MQ
will affect the search for the nearest neighbor and the influence
of RD becomes smaller. To reduce the influence of value ranges
of different features on the DBSCAN algorithm, MQ can be
normalized using the following formula:

∼

MQ =
MQ−MQmin

MQmax −MQmin
(RDmax − RDmin)+ RDmin. (6)

The value of MQ is transformed by scaling to the range of the
RD value. This normalization method will not change the data
distribution. Then the distance calculation is meaningful and the
convergence rate of the gradient descent algorithm is faster.

Detection of Rough TDs
In this step, we focus on the detection of rough TDs. The
implementation is based on the principle that RD and MQ signals
in the TD regions are different from other regions where no
mutation has occurred. Here, MQ is used as a feature of the
method. MQ describes the reliability of read alignment to a
position in the reference sequence, which equals −10log10p(x).
Here, p(x) is an estimate of the probability that the alignment
position is wrong. It can be combined with other features
for variation detection (Zhao et al., 2020). If there are TDs
in the genome, then a read is mapped to multiple positions.
In the BWA-MEM algorithm (Li and Durbin, 2009), the best
one is selected; and if there are two or more best-matching

positions, one is randomly selected from them. But according
to a previous calculation method (Li et al., 2008), the value
of MQ will still be relatively low. If we assume a TD in the
genome of interest, MQ is not the intrinsic feature. From
the perspective of observed sequencing reads without knowing
where TDs occur, read mapping can provide much information
for finding TDs. Here, RD is chosen as the measurement for
evaluating whether each genome region is different from others,
and then making a declaration for TDs accordingly. Since MQ
can influence the calculation of RDs and it is not easy to eliminate
the influence via a cutoff value, we use such factors together
with RD as part of the features for the detection of TDs. If
low quality reads simply are filtered at the onset, the depth of
coverage is equivalent to a reduction. The depth of coverage
of the genome is close to average, so we do not filter the low
quality reads out.

If the pre-processed RD and MQ features are considered as
points of the 2D data space S, then the difference of these two
signals between different regions can be regarded as the difference
of density between the regions. The core idea of DBSCAN is
that for a given radius and minimum number of data points, the
neighborhood of each point in a cluster has to contain at least a
minimum number of points (Ester, 1996; Schubert et al., 2017).
Furthermore, the density within the areas of noise is lower than
the density in any of the clusters. This is suitable for our goal of
detecting TD regions, which can be viewed as noise containing
lower density. Therefore, it is meaningful to use DBSCAN for
the detection of TD regions. For simplicity of description, the
two features (RDi, MQi) of the i-th bin can be called a point
oi in space S. Before introducing the algorithm, several related
definitions will be introduced, i.e., the ε-neighborhood of a point
o, core point, border point, directly density-reachable, density-
reachable, density-connected, cluster, and noise (Ester, 1996;
Schubert et al., 2017).

Definition 1: The ε- neighborhood of a point o is defined by
the following formula:

Nε(o) = {q ∈ S|dist(o, q) ≤ ε}, (7)

where dist(o,q) represents the distance function between o and
q. The function dist works with any distance function, such
as Manhattan distance, or Euclidean distance. Here we use
Euclidean distance.

Definition 2: If the ε- neighborhood of a point o contains at
least MinPts points, then o is called the core point. It is defined as
the following:

|Nε(o)| ≥ MinPts. (8)

|Nε(o)| represents the number of points in Nε (o).
Definition 3: If o is a non-core point and is in the ε-

neighborhood of a certain core point, then o is called a border
point. There are core points in the ε- neighborhood of o. It is
defined as the following:

q ∈ Nε(o)
⋂

Sc. (9)

Nε(o) represents the ε- neighborhood of o, and Sc represents the
set of core points. The set of non-core points can be represented
by Snc = S\Sc.
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Definition 4: If a point q is in the ε-neighborhood of a point o,
and o is the core point, then q is directly density-reachable from
o. It is defined by the following formula:

q ∈ Nε(o)and |Nε(o)| ≥ MinPts. (10)

Definition 5: If there is a chain of points {p1,p2, ...,pn} , and
o = p1, q = pn, then q is density-reachable from o. Here pi is
directly density-reachable from point pi−1.

Definition 6: If a point p is density-reachable form a point o,
and a point q is density-reachable from point o too, then point p
is density-connected to point q.

Definition 7: If a non-empty subset C of space S satisfies
Maximality and Connectivity, then C is called a cluster.
Maximality is achieved when o ∈ C and q is density-reachable
from o, and then q ∈ C. Connectivity is achieved when o ∈ C and
q ∈ C, and then o is density-connected to q. Here o and q are
random points in the space S.

Definition 8: The noise is a set of points not belonging to any
cluster. It can be defined by the following formula:

Snoi = {o ∈ S|∀i : o /∈ Ci}. (11)

Here, o is a data point and Ci is a cluster of the space S. The set of
noise points can be represented by Snoi = S\(Sc

⋃
Snc).

For a given ε and MinPts, Algorithm 1 describes the steps of
DBSCAN in detecting TD bins.

ALGORITHM 1 | Detecting TD bins.

1: Retrieve all data points to find Sc;

2: Choose an arbitrary point o in Sc and retrieve all points density-reachable from
point o. A cluster Co is generated;

3: Remove the points in Co from the remaining Sc;

4: Repeat steps 2 and 3 from the updated Sc until all the core points are retrieved
or removed.

In step 2, to obtain all points density-reachable from core
points, one method is an exhaustive search, which sequentially
calculates the distance from each point to the core point, and then
takes the MinPts points with the smallest distance. This method
is a naive nearest neighbor search. In the naive nearest neighbor
search, a large number of distance calculations are needed. To
reduce computational cost and speed up the search for density-
reachable points, the strategy of the binary search tree can be used
if there is only one feature RD. But we use two features RD and
MQ, so 2D BST can be embedded in DBSCAN.

The 2D BST is a binary tree structure which recursively
partitions the parameter space along the data axes, dividing it
into nested orthotropic regions into which data points are filed
(Bentley, 1975). The 2D BST has the properties of a binary search
tree. For example, if its left sub-tree is not empty, the values of
all nodes in the left sub-tree are less than the values of its root
nodes; if its right sub-tree is not empty, the values of all nodes in
the right sub-tree are greater than the value of its root node; its
left and right sub-trees are binary search trees too. Algorithm 2
describes the steps of tree building.

ALGORITHM 2 | Building 2D BST.

1: Select a feature, and then select the median m of this feature as a pivot to
divide the data point space S to obtain two sub-collections;

2: Create a tree node to store (RD, MD) corresponding to m;

3: Repeat steps 1 and 2 for two sub-collections until all sub-collections can no
longer be divided. If a sub-collection can no longer be divided, save the data in
the sub-collection in the leaf node.

In step 2, the MD feature is selected for the first time and the
RD feature is selected for the next iteration. These two features
are used alternately to divide the space S. The following search
process is also based on this feature order. Algorithm 3 describes
the method of finding the density-reachable points within a
distance of ε from a point o.

ALGORITHM 3 | Finding the density-reachable points.

1: Compare the value of the split dimension of o and the split node, enter the
left sub-tree if the value of the split dimension of o is less than or equal that of
the split node, otherwise enter the right sub-tree;

2: Repeat step 1 until the leaf node, which is in the same subspace as o and is
the approximate nearest neighbor of o;

3: Backtrack the search path and determine whether there are other
sub-spaces of the node. If there is a point whose distance from o is less than ε,
jump to other sub-space to search and add it to the search path;

4: Repeat step 3 until the search path is empty.

After performing the DBSCAN and 2D BST algorithms, the
noise points returned can then be regarded as the set of bins
where TD occurs. So, we can connect the consecutive bins to get
the TD regions. This method uses the RD and MQ signals of the
bin, so the region boundaries are not accurate. Subsequently, we
will use the SR signals to refine the rough TD regions.

Inference of Precise TD Region
With the rough TDs detected, we further infer the precise
boundaries of the TD regions based on the SR signals. Generally,
in the alignment result of short sequencing reads to the reference
genome, most of the aligned reads are completely concordant. As
for the discordant alignment states, we consider two situations:
one is to skip first and then match. We call this case the
post-alignment, and can be denoted as x “S”(L-x) “M.” Here
x is the number of mismatched bases; L is the length of the
short sequencing read; “S” is the clip on the sequence and “S”
can be a soft clip or hard clip in the BWA-MEM algorithm.
“M” is defined as match. The other case is to match first
and then skip. We call this case pre-alignment, and can be
denoted as y “M” (L-y) “S.” Here y is the number of matched
bases. In aligning, in addition to the marked characters of
“M” and “S,” there are other marked characters. Our method
is to focus on detecting TDs, so we will not consider other
marked characters.

When the short sequencing read spanning the breakpoint
aligns to the reference genome, there will be discordance of pre-
alignment or post-alignment. An example is shown in Figure 2.
When the short sequencing read R1 aligns to the reference
genome, it may match to the position a or the position b.
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FIGURE 2 | An example illustrating the pre-alignment and post-alignment
approaches.

The positions of a and b are the boundaries of the TD region.
The BWA-MEM algorithm randomly selects a reference genome
position for this short sequencing read of multiple matching. IfR1
matches near the position a, this is the post-alignment, where the
low coordinate position of the TD region can be determined by
a = R1.pos. Here R1.pos represents the position of the reference
genome matched by R1, which can be directly extracted from the
BAM file. To explain the mismatch more clearly, we give the other
matching example of the short sequencing read R2. Assuming
that it matches near the position b, that is, there is a pre-
alignment, then the high coordinate position of the TD region
can be determined by b = R2.pos+ y−1. Here y represents the
number of bases that are matched.

There are probably many discordant alignments, but not all
mismatches can be used to determine breakpoints. We have
detected the rough TD regions, which can be denoted as [a, b],
using DBSCAN and 2D BST. So, we can now search for the
discordant alignment near the TD region boundary, denoted as
[a-, b+]. Thus, precise positions of the TD region boundary
are inferred. It can improve the TD boundary accuracy to the
nucleotide level, rather than the bin level. Algorithm 4 describes
the method of inferring the precise TD region.

ALGORITHM 4 | Inferring the precise TD region.

1: Scan all TD regions, represented as [a, b];

2: For each [ai , bi ], extract all discordant alignment within the range of [ai-, bi+];

3: If there are post-alignments, modify a according to the post-alignment
boundary changing method; If there are pre-alignments, modify b according to
the pre-alignment boundary changing method;

4: Repeat steps 2 and 3 until all TD regions have been processed.

RESULTS

The DINTD software is implemented in Python language based
on the methods described above, and the code is publicly available
at https://github.com/SVanalysis/DINTD. The software is easy to
install and requires a BAM file sorted by coordinate as input.

To evaluate the performance of DINTD, we conduct
experiments by using simulation data first. This is because
simulation data can provide ground truths for us to quantify
sensitivity and precision (Yuan et al., 2017). From the
experiment results, we compare metrics such as sensitivity,
precision, F1-score, and boundary bias with existing methods

(Rausch et al., 2012; Eisfeldt et al., 2017; Soylev et al., 2019).
DINTD is run on real short sequencing data obtained from the
1000 Genomes project (Genomes Project et al., 2015; Sudmant
et al., 2015) and EGA1. Since there is no single answer in real
samples, the overlapping density score (Yuan et al., 2018) for
the results among the methods is analyzed to show the reliability
of DINTD. During the experiments, the parameter related to
RD and MQ calculation is set to len_bin = 2000. The parameter
related to TV denoising is assigned by users. By default, it is
set to λ = 0.25. MinPts set as twice the number of features
is appropriate (Schubert et al., 2017). So, in our algorithm,
MinPts = 4. Users assign a value to the parameter ε. By default,
it is set to ε = 0.7. Also, different values of parameters len_bin
and λ will impact the results. A detailed discussion is provided in
Supplementary Text.

Simulation Studies
The comprehensive software SInC (Pattnaik et al., 2014) and
seqtk2 are used to generate various short sequencing data sets
based on chromosome 21 in the reference hg19. Here the
reference genome can also be hg38. The sequence coverage is
set to 10X, 20X, and 30X, and the tumor purity is set 0.3–0.9. In
each configuration, 50 replicated samples are generated. For each
simulation replication, a total of 10 TD regions are embedded,
and the number of duplications changes from 1 to 6. The number
of bases in the TD region is from 10,000 to 50,000.

Based on this simulation dataset, DINTD and the other three
methods are performed. For the evaluation, metrics such as
sensitivity, precision, F1-score, and boundary bias are used. The
running times of these methods are also evaluated, and the result
of comparison is showed in Supplementary Text. Sensitivity is
defined as the ratio of true positives to true positives and false
negatives, which is the ratio of the number of true TDs to the
total TDs in the donor genome. Precision is defined as the ratio
of true positives to true positives and false positives, which is the
ratio of the number of true TDs to the total TDs detected by the
method. Here, if half of the region of one real TD is covered
by one of the regions of the called TDs, one true positive is
counted. The overlapping intervals are half of the region of one
real TD. Taking into account the sensitivity and precision, the F1-
score can be regarded as a harmonized average of sensitivity and
precision, and it is defined as 2 times the product of sensitivity
and precision divided by the sum of sensitivity and precision.
The boundary bias is defined as the deviation of the detected TD
boundary from the actual TD boundary at the nucleotide level.
To demonstrate the stability of the algorithm performance, we
calculate each mean of different evaluation metrics in 50 samples
for each sequence coverage and purity configuration. The results
of sensitivity, precision, and F1-score calculations are presented
in Figure 3.

According to the comparisons, for most algorithms, as the
sequencing depth increases, the value of the F1-score and
sensitivity increase slightly whereas precision decreases slightly.
DINTD achieves the highest F1-score at all different sequence

1https://ega-archive.org/
2https://github.com/lh3/seqtk
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FIGURE 3 | Sensitivity and precision between DINTD and three other methods (TARDIS, TIDDIT, and DELLY) when the sequence coverage is 10X, 20X, and 30X.
F1-score levels are compared and shown by the gray curves.
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FIGURE 4 | Comparisons of boxplot of the boundary bias between DINTD and three other methods (TARDIS, TIDDIT, and DELLY) when the sequence coverage is
10X, 20X, and 30X. To better demonstrate the distribution of data, we draw boundary biases of 50 experiments under each configuration uniformly with gray dots
under each method.
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coverage and purity configurations. When the sequence coverage
is at 10X, in terms of F1-score, DINTD is followed by TIDDIT,
TARDIS, and DELLY when the purity is higher; and followed
by TARDIS, TIDDIT, and DELLY when the purity is lower. In
terms of sensitivity, DINTD, TARDIS, and TIDDIT are similar,
with DELLY the lowest. In terms of precision, when the purity
is higher, DINTD is the best, followed by TIDDIT, TARDIS,
and DELLY; when the purity is lower, TARDIS is the best.
When the sequence coverage is at 20X, in terms of F1-score,
TIDDIT is the better if the purity is higher and TARDIS is
better if the purity is lower. In terms of sensitivity, when the
purity is higher, DINTD, TARDIS, and TIDDIT have similar
performance, with DELLY the lowest; when the purity is lower,
the performance of DINTD is the best, followed by TARDIS,
TIDDIT, and DELLY. In terms of precision, DINTD has the
best performance, followed by TIDDIT, DELLY, and TARDIS
when the purity is higher, and followed by TARDIS, TIDDIT,
and DELLY when the purity is lower. DELLY does not seem to
perform well on the sensitivity, precision, and F1-score metrics.
But when comparing the boundary bias, it does perform well.
The smaller the boundary bias, the higher the accuracy of the
method. The boxplot of boundary bias for each method is shown
in Figure 4.

From Figure 4, we can see that as the purity and sequencing
coverage increase, the boundary bias decreases. When the
sequencing coverage is at 10X and the tumor purity is relatively
low, DELLY performs best. When the tumor purity increases,
the performance of DINTD improves so that it is slightly better
than DELLY. When the sequencing coverage is at 30X, DINTD
is always better than DELLY. These two methods are followed by
TIDDIT and TARDIS.

We performed statistical tests to calculate a P-value for each
pair of results (i.e., the result of DINTD and that of each of
other methods). The results are provided in Supplementary Text.
The central point is to test the difference between each pair of
samples. For example, in our experiments with 10 simulated
TDs, each method has obtained 10 values to reflect the boundary
bias, and then our purpose is to test the difference between two
samples each with 10 values. Here, we adopt the permutation
test methodology. The idea is to choose a statistic and generate
a number (e.g., 10,000) of random samples via permutation
processes, and compare the observed statistic value to those of
permutated samples. Some details about the permutation test can
be referred to our previous work (Yuan et al., 2012). Here, we use
the absolute difference of mean value between two samples as the
statistic, s =

∣∣X − Y
∣∣. The P-value is calculated as the ratio of the

number of permutated samples with statistical values larger than
s to the total number of permutated samples.

The number of bases in the TD region between 2,000
and 10,000 is also estimated, and the detailed results are in
Supplementary Text. From the comparison results, we can see
that TARDIS has the highest F1-score when the purity is lower,
followed by DINDT, TIDDIT, and DELLY. As purity increases,
the F1-score of TIDDIT becomes the highest, and DINTD is
slightly lower. When the purity is 0.9, the F1-score of the two
is almost the same. From the comparisons of boundary bias, we
can see that as the purity increases, the boundary bias decreases.

FIGURE 5 | A Venn diagram for four samples (NA19238, NA19239,
NA19240, HG00311) demonstrates the overlapping and non-overlapping
TDs. The numbers here are the sum of TDs in the four samples. The orange,
purple, green, and blue colors represent TARDIS, TIDDIT, DELLY, and DINTD,
respectively.

TABLE 1 | Comparison among the four methods in terms of ODS for four samples
from 1000 Genomes project.

TARDIS TIDDIT DELLY DINTD

NA19238 55.37 48.49 42.46 57.49

NA19239 13.66 19.84 13.92 20.39

NA19240 17.71 26.71 20.04 29.03

HG00311 141.89 138.37 85.30 176.65

When the tumor purity is relatively low, DELLY performs best.
Although the average value of DINTD is similar to DELLY, there
are some samples whose boundary bias deviates from the average
value. When the tumor purity is increasing, the performance
of DINTD improves, and the number of samples with large
boundary bias is decreasing such that DINTD is slightly better
than DELLY. Overall, the efficiency of DINTD is the best.

To demonstrate the efficiency of DINTD more
comprehensively, we also performed experiments on all
autosome chromosomes, and the detailed results are in
Supplementary Text. In terms of sensitivity, precision, and
F1-score, the results are similar to those of only chr21. In
terms of boundary bias, the samples deviating from the average
boundary bias decreased significantly.

Application to the Real Samples
To examine the effectiveness of DINTD, we further apply it to
analyze four short sequencing samples from the 1000 Genomes
project (Genomes Project et al., 2015; Sudmant et al., 2015).
Three of the samples (NA19238, NA19239, NA19240) are from
the Yoruba family trio. They are denoted as mother, father, and
daughter, respectively. One of the samples (HG00311) is a Finnish
male. All four are paired-end at 100bp for each read. DINTD
is also applied to two ovarian cancer samples from EGA3. We
perform the DINTD method and the other three methods on
these samples. Due to the lack of ground truth about real data, we
couldn’t calculate sensitivity, precision, F1-score, and boundary
bias. To assess the methods and to provide a reliable measure,

3https://ega-archive.org/.
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a Venn diagram is used to describe how these four methods
are related. Figure 5 demonstrates the overlapping and non-
overlapping TDs between each pair of methods for four samples
from the 1000 Genomes project. From the Venn diagram where
all the four samples are integrated, we can see that the DINTD
method has a high relative consistency with the other methods.

The overlapping density score (ODS) (Yuan et al., 2018) is
used to measure each method. The value of ODS for a method is
calculated using the following formula:

ODS = Moverlap ×
Moverlap

Ncalled
. (12)

Here,Moverlap represents the average of the number of overlaps
of one method and the others. Ncalled represents the total
number of TDs detected by the method. If the overlaps between
different methods are assumed as true positives, then Moverlap
can be assumed as sensitivity, and the ratio of Moverlap to Ncalled
can be assumed as precision. ODS is somewhat similar to the
area under the roc curve (AUC), and the higher the value of
a method, the better the performance. The ODS calculation
results of the four methods are shown in Table 1. We can
see that DINTD has the highest ODS for the four samples,
followed by TARDIS and TIDDIT, and then DELLY. So, we
may conclude our proposed method is relatively reliable for real
data applications.

We also show an overview of the detected TD distribution of
the four methods in Figure 6. In the Chord diagram, the upper
half of the circle is divided into four parts, and the color arcs
orange, purple, green, and blue represent the method TARDIS,

FIGURE 6 | A Chord diagram demonstrates an overview of detected TD
distribution for four samples (NA19238, NA19239, NA19240, HG00311). The
orange, purple, green, and blue arcs in the upper half of the circle represent
TARDIS, TIDDIT, DELLY, and DINTD, respectively. The gray arcs in the lower
half of the circle represent autosome chromosomes.

TIDDIT, DELLY, and DINTD, respectively. The lower half of
the circle is divided into 22 parts, representing the autosome
chromosomes from the 1st to 22nd. The widths of arcs of different
colors from the upper half to the lower half represent the number
of TDs found by a method on autosome chromosomes. The
length of each arc in the upper half-circle represents the total
number of TDs detected by this method, and the length of
each arc in the lower half-circle represents the number of TDs
detected on this chromosome. We find that the number of TDs
detected by the TARDIS is the lowest, followed by DINTD,
TIDDIT, and DELLY.

We further apply DINTD to two real ovarian cancer samples
EGAR00001004796_2044_2 and EGAR00001004895_3705_2
from EGA. The results and detailed discussion are in
Supplementary Text.

CONCLUSION

We present a new method – DINTD – for the detection of TDs
from short sequencing reads. It successfully builds a pipeline,
the TD regions can be detected in the first stage using RD
and MQ signals, and the regions are refined in the second
stage using SR signals. Three new characteristics of DINTD
can be summarized as: (1) The TD regions are detected using
the DBSCAN algorithm and they are regarded as noise from
clustering. To reduce the number of calculations, a strategy of
the 2D binary search tree is embedded in DBSCAN to divide
the search space; (2) To solve the problem of unsmoothed
signals, the TV algorithm is used to denoise the RD and MQ
signals; and (3) Through the analysis of the SR signals, the
precise location of the TD region is inferred. However, if the
clipping information is missing from the alignment records,
DINTD cannot work. This kind of information is needed for the
inference of the precise TD region boundary and is a limitation
of DINTD.

The performance of DINTD is evaluated and validated
through simulation tests and real sequencing data experiments.
In the simulation tests, DINTD is compared with three other
methods for sensitivity, precision, and F1- score. The boundary
bias is also compared. In general, the results show that DINTD
exhibits the best trade-off between sensitivity and precision, as
well as for the boundary bias metrics. DINTD also is validated
using several real sequencing samples and is compared with
the other methods based on ODS. The results indicate that
DINTD performs better than other methods. The computational
complexity of DINTD is O(m+nlogn), where m is the number of
reads in bam file and n is the number of bins. The detailed analysis
is in Supplementary Text.

For future work, several points should be considered to
improve the current DINTD. First, the detection of other
mutations, such as CNV and interspersed TDs, should be
analyzed. Second, to improve the efficiency of the variation
detection algorithm, some intelligently-optimized clustering
algorithms can be embedded in the current detection algorithm.
Third, after the bin division, there are RD and MQ signals in
each bin, resulting in too many values of RD and MQ signals.
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Whether the whole genome can be effectively divided according
to the connection between bins should be explored.
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