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Abstract
Background: Enterobacter sakazakii is an opportunistic pathogen that can cause infections such as
necrotizing enterocolitis, bacteraemia, meningitis and brain abscess/lesions. When the species was
defined in 1980, 15 biogroups were described and it was suggested that these could represent
multiple species. In this study the taxonomic relationship of strains described as E. sakazakii was
further investigated.

Results: Strains identified as E. sakazakii were divided into separate groups on the basis of f-AFLP
fingerprints, ribopatterns and full-length 16S rRNA gene sequences. DNA-DNA hybridizations
revealed five genomospecies. The phenotypic profiles of the genomospecies were determined and
biochemical markers identified.

Conclusion: This study clarifies the taxonomy of E. sakazakii and proposes a reclassification of
these organisms.
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Background
Enterobacter sakazakii was defined as a new species in 1980
by Farmer et al [1]. DNA-DNA hybridization gave no clear
generic assignment for E. sakazakii as it was shown to be
53–54% related to species in two different genera, Entero-
bacter and Citrobacter. However the species was placed in
Enterobacter as it appeared phenotypically and genotypi-
cally closer to E. cloacae than to C. freundii, the type species
of these genera. In the original study fifteen biogroups of
E. sakazakii were described. Recently the existence of a six-
teenth biogroup has been reported and a correlation
between 16S rRNA gene sequence analysis, which sepa-
rated E. sakazakii strains into several genetic groups, and
biogroups has been demonstrated [2-4]. The existence of
these divergent groups seems to support the suggestion of
Farmer et al that E. sakazakii may harbour different species
[1]. However previous studies were based on only partial
(~500 bp) 16S rRNA gene sequence analysis, whereas for
taxonomical purposes the complete gene should be
sequenced (>1300 bp with less than 0.5% undetermined
bases) [5,6]. It has until recently been generally accepted
that it is unlikely that two bacterial strains belong to the
same species if the similarity between their 16S rRNA
genes is <97% [7-9], but based on an extensive evaluation
of published data this value has been amended to a range
between 98.7–99%. [10]. For strains whose 16S rRNA
gene similarity exceeds this threshold value, a DNA-DNA
reassociation assay must be performed and only if this test
reveals more than 70% relatedness can it be concluded
that the strains belong to the same species [7,11-14].

DNA profiling methods such as ribotyping [15,16] and
amplified fragment length polymorphisms (AFLP) have
been shown to discriminate at the species and subspecies
level and may provide valuable additional information in
taxonomic studies. The AFLP technique has been
employed in plant and microbiological research to
describe the molecular ecology of various niches and this
technique can be used to determine inter- and intra-spe-
cies relatedness [17-19]. Mougel et al [20] found that
members of the same genomic species cluster consistently
using AFLP analysis and suggested that future genomic
delineation of bacterial species could be based on this
approach.

In this study, independent molecular methods, including
f-AFLP, automated ribotyping, full-length 16S rRNA gene
sequencing and DNA-DNA hybridization, were employed
to clarify the taxonomic relationship of 210 strains cur-
rently described as E. sakazakii and amendments to the
classification of these organisms are proposed.

Results and Discussion
The 210 E. sakazakii strains were assigned to biogroups as
originally described by Farmer et al [1] with the addition

of biogroup 16 as described by Iversen et al [4]. The defin-
ing characteristics used to identify each biogroup (Addi-
tional file 1) are as previously described [1,4]. Full length
16S rRNA gene sequences, comprising greater than 1300
bp with less than 0.5% undetermined positions, were
obtained for 66 E. sakazakii strains representative of the
different biogroups and 13 strains representative of other
species. Additional sequences were downloaded from the
EMBL database. In agreement with previous partial 16S
rRNA gene sequencing, the majority of the full-length E.
sakazakii 16S rRNA gene sequences clustered closely with
the type strain, E. sakazakii ATCC 29544T (Figure 1 – group
1). The remaining sequences formed three clusters (Figure
1 – groups 2–4). Representative strains (n = 51) were com-
pared using f-AFLP (Figure 2). Calculation of point-bisec-
tional correlations to statistically delimit relevant clusters
resulted in two groups equating to 16S rRNA groups 1 & 2
and 16S rRNA groups 3 & 4. At a cut off level of 50% sim-
ilarity six clusters could be delineated, which corre-
sponded to strains belonging to 16S rRNA groups 1 to 4
plus a subset of group 1 comprising strains of biogroups 5
& 9 (Figure 2 – f-AFLP group 1a) and a subset of group 2
(Figure 2 – f-AFLP group 2a). Ribotyping was performed
for 209 strains including representatives of all different
biogroups (Figure 3). All the E. sakazakii strains shared
more than 62% pattern similarity whereas other Entero-
bacteriaceae shared less than 62% pattern similarity with
the E. sakazakii strains. A similarity of greater than 70%
was used to delineate separate E. sakazakii groups resulting
in four clusters 1-R, 2-R, 3-R, and 4-R, which correspond
to 16S rRNA groups 1–4.

DNA-DNA hybridizations were performed with two
strains from each of the four groups (Table 1). The E. saka-
zakii type strain, ATCC 29544T, and ATCC 12868 (group
1) showed 70% DNA relatedness suggesting that they
belong to the same species considering that a DNA
homology of 70% is generally regarded as the limit for
species delineation [14]. Although the value appears low,
the similarity between the 16S rRNA gene sequences for
these two strains was 99.6% and they clustered closely
using the f-AFLP analysis and ribotyping, which supports
their same species relationship. Previously, DNA-DNA
hybridization of 13 strains of E. sakazakii resulted in rela-
tive binding ratios between 72–95% at an optimal rena-
turation temperature of 59.5°C [21]. Group 1 comprises
biogroups 1–5, 7–9, 11, 13, and 14 as described by
Farmer et al [1]. Isolates belonging to biogroups 5, 9 and
14 grouped together as a subcluster of group 1 in the
ribotype analysis (Figure 3 – 1-R5) and representative
strains of this subgroup also formed a coherent cluster in
the f-AFLP analysis (Figure 2 – f-AFLP 1a). No other rela-
tionship between biogroup and subcluster was identified
for the other strains within group 1. The 16S rRNA gene
sequences of biogroup 5, 9 and 14 strains displayed
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16S rRNA gene phylogenetic tree of Cronobacter and related speciesFigure 1
16S rRNA gene phylogenetic tree of Cronobacter and related species. A Neighbor-Joining analysis was used with 
Felsenstein correction (1000 bootstrap replicates). The bar indicates 10% estimated sequence divergence.
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99.6% similarity with ATCC 29544T. These strains share
the common feature of being positive for malonate utili-
zation and are proposed as a subspecies of group 1.

Two strains from different branches within group 3, ATCC
51329T and CDC 3523-75, showed 92% DNA relatedness
whereas their relatedness to the group 1 strains was only
31–53% (Table 1). Also the similarity of the 16S rRNA
gene between group 3 strains was 99.9% but only 97.9%
similarity was shared with ATCC 29544T (Table 2). This is
below the threshold of 98.7% recently proposed at which
DNA-DNA hybridization is mandatory [10]. Further,
these strains shared greater than 50% pattern similarity
using f-AFLP analysis but less than 50% similarity to all
other strains (Figure 2). From these results it can be con-
cluded that the group 3 strains represent a single distinct
species from ATCC 29544T. Group 3 comprises strains
identified as biogroup 15 [1].

Group 4 is comprised of strains identified as biogroups 6,
10 and 12 along with NCTC 9846. DNA-DNA hybridiza-
tion of CDC 5960-70 (biogroup 6) and NCTC 9844 (bio-
group 10) showed 77% DNA relatedness, whereas the
DNA relatedness to the group 1 strains was 16–55%
(Table 1). Also the 16S rRNA gene similarity within group
4 was 99.6% compared with a similarity to ATCC 29544T

of 98.7% (Table 2). Using f-AFLP analysis group 4 strains
shared more than 50% pattern similarity supporting the
conclusion that these all belong to the same novel species
(Figure 2). This leads to the conclusion that the group 4
strains represent a single distinct species from ATCC
29544T.

Group 2 equates to strains recently identified as biogroup
16. Two strains from different branches within this group,
3032 (= LMG 23827T) and NCTC 9529, showed approxi-
mately 55% DNA homology, which is clearly below 70%,
suggesting the two branches within group 2 represent dif-

f-AFLP dendogram of Cronobacter and related speciesFigure 2
f-AFLP dendogram of Cronobacter and related species. A DICE coefficient and UPGMA algorithm were used with an 
optimization of 0% and position tolerance of 0.2%. The scale bar represents the percentage of similarity.
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Ribotype dendogram of Cronobacter and related speciesFigure 3
Ribotype dendogram of Cronobacter and related species. A DICE coefficient and UPGMA algorithm were used with an 
optimization of 1% and position tolerance of 1.5%. The scale bar represents the percentage of similarity.
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ferent species. The DNA relatedness of LMG 23827T to
group 1 was approximately 52% and the 16S rRNA gene
similarity was 98.7%. The DNA relatedness of NCTC 9529
to group 1 was approximately 55% with 98.5% 16S rRNA
gene similarity (Tables 1 &2). The 16S rRNA gene
sequences for all strains in group 2 were more than 99%
similar to each other, but were only 98.5–98.7% similar
to the 16S rRNA gene sequence of E. sakazakii ATCC
29544T (Table 2). The ribotype analysis clustered eight of
the group 2 strains together with a pattern similarity of
greater than 70% (Figure 3). These strains also shared
more than 50% pattern similarity in the f-AFLP analysis
(Figure 2). However two strains, NCTC 9529 and E680,
did not cluster with the other biogroup 16 strains using
ribotyping. Also, although they consistently clustered in
close proximity, both strains shared less than 50% pattern
similarity to the other biogroup 16 strains based on f-
AFLP analysis (Figure 2). This indicates there are two spe-
cies within group 2 and both of these are distinct species
from ATCC 29544T.

DNA homology values amongst strains belonging to dif-
ferent groups were all clearly below 70%, therefore it was
concluded that the E. sakazakii strains in this study repre-
sent five separate species (Table 1). Statistical analysis of
phenotypic profiles (using a Fisher's exact test) showed
that important biochemical tests for species differentia-

tion were indole production, malonate utilization and
acid production from dulcitol and methyl-α-D-glucoside
(Table 3). Phenotypic profiles allowed the differentiation
of four DNA hybridization groups and within group 1 two
phenotypic subgroups could be delineated. NCTC 9529
and E680 could not be distinguished from the other bio-
group 16 strains using the tests within this study.

It is important, however, that reclassification of species is
not detrimental to health protection measures already in
place and that all risk organisms continue to be recog-
nized. The different species currently identified as E. saka-
zakii contain clinical isolates cultured from body sites that
would normally be sterile. As there is insufficient evidence
regarding the virulence potential of these species to con-
clude that any one of them does not represent a health risk
to neonates, it is proposed that Enterobacter sakazakii be
reclassified as four species, one genomospecies, and two
subspecies in a new genus within the family Enterobacte-
riaceae. These organisms are a microbiological hazard
occurring in the infant food chain with historic high mor-
bidity and mortality in neonates [22]. Therefore Crono-
bacter gen. nov. is proposed after the Greek mythological
god, Cronos, who was described as swallowing his chil-
dren at birth [23]. This genus would contain the type spe-
cies, C. sakazakii comb. nov. (comprising group 1 strains)
with C. sakazakii subsp. sakazakii comb. nov. and C. saka-

Table 1: DNA-DNA % relatedness of Cronobacter strains (in 2 × SSC + 5% formamide at 70°C)

C. sakazakii 
ATCC 29544T

C. sakazakii 
ATCC 12868

C. turicensis 3032 
(LMG 23827T)

C. muytjensii 
ATCC 51329T

C. dublinensis 
NCTC 9844

C. sakazakii ATCC 12868 70.0 (2.4)§

C. turicensis 3032 (LMG 23827T) 51.8 (2.8) 51.9 (2.6)
C. muytjensii ATCC 51329T 53.3 (3.0) 42.0 (4.0) 56.0 (4.2)
C. muytjensii CDC 3523-75 37.7 (1.8) 31.3 (6.2) 91.9 (4.9)
C. dublinensis NCTC 9844 16.7 (7.6) 43.0 (9.8) 36.8 (2.2) 54.5 (4.7)
C. dublinensis CDC 5960-70 37.3 (0.0) 54.8 (2.1) 77.4 (7.5)
Cronobacter genomospecies 1 NCTC 9529 55.5 (1.0) 54.4 (3.9) 55.0 (3.3) 53.1 (6.6) 45.9 (2.0)

§% relatedness values are averages of duplicate measurements and standard deviations are given in parentheses (values can be reproduced in a range 
of about 10%).

Table 2: 16S rRNA gene % similarity of Cronobacter species type strains to Cronobacter species and related Enterobacteriaceae.

C. sakazakii 
ATCC 29544T

C. turicensis 3032 
LMG 23827T

C. dublinensis CFS237 
LMG 23823T

C. muytjensii 
ATCC 51329T

Cronobacter genomospecies 
1 NCTC 9529

C. sakazakii sp. (44)§ 99.6 ± 0.232 98.9 ± 0.13 98.9 ± 0.13 98.3 ± 0.19 98.9 ± 0.18
C. turicensis sp. (8) 98.7 ± 0.08 100.0 ± 0.04 99.5 ± 0.07 98.4 ± 0.07 99.6 ± 0.07
C. dublinensis sp. (7) 98.7 ± 0.19 99.4 ± 0.14 99.6 ± 0.24 98.4 ± 0.17 99.2 ± 0.17
C. muytjensii sp. (7) 97.9 ± 0.00 98.4 ± 0.13 98.3 ± 0.15 99.9 ± 0.20 98.7 ± 0.10
Cronobacter genomospecies 1 (2) 98.5 ± 0.00 99.6 ± 0.00 99.1 ± 0.00 98.6 ± 0.00 100.0 ± 0.00
Citrobacter spp. (5) 96.8 ± 0.46 96.5 ± 0.33 96.5 ± 0.32 97.1 ± 0.44 96.7 ± 0.34
Enterobacter spp. (24) 96.8 ± 0.04 96.6 ± 0.16 96.4 ± 0.08 97.2 ± 0.12 96.7 ± 0.12

§number of full-length 16S rRNA gene sequences compared. 2mean % similarity of the sequences to the Cronobacter species type strains ± standard 
deviation.
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zakii subsp. malonaticus subsp. nov.; C. muytjensii sp. nov.
(group 3 strains); C. dublinensis sp. nov. (group 4 strains);
C. turicensis sp. nov. (the majority of group 2 strains); and,
as NCTC 9529 and E680 cannot be phenotypically distin-
guished from C. turicensis subsp. nov. and there are only
two of these strains, it is proposed that they are referred to
as Cronobacter genomospecies 1 for the present. The phe-
notypic differentiation of Cronobacter spp. from other
common Enterobacteriaceae genera is presented in Table 4.

Isolates associated with neonatal meningitis were identi-
fied as belonging to C. sakazakii subsp. sakazakii subsp.
nov., C. sakazakii subsp. malonaticus subsp. nov. and C.
turicensis sp. nov. However, C. muytjensii sp. nov. and C.
dublinensis sp. nov. contained human isolates from nor-
mally sterile sites, bone marrow (CDC 3523-75) and
blood (CDC 5960-70) respectively [1]. The creation of a
new genus simplifies the inclusion of these potentially
pathogenic organisms in legislation and current identifi-
cation schemes developed for E. sakazakii remain applica-
ble for the Cronobacter genus.

Description of the genus Cronobacter gen.nov
The genus Cronobacter comprises oxidase negative, cata-
lase positive, facultative anaerobic, peritrichous, Gram
negative rods approximately 3 µm by 1 µm in size. They
are generally motile, reduce nitrate, utilize citrate, hydro-
lyze esculin and arginine, and produce acid from D-glu-
cose, D-sucrose, D-raffinose, D-melibiose, D-cellobiose,
D-mannitol, D-mannose, L-rhamnose, L-arabinose, D-
xylose, D-trehalose, galacturonate and D-maltose. Crono-
bacter strains metabolize the substrates 5-bromo-4-
chloro-3-indolyl-α-D-glucopyranoside, 4-methylumbel-
liferyl-α-D-glucopyranoside, 4-nitophenyl-α-D-glucop-
yranoside, 4-nitophenyl-β-D-glucopyranoside, 4-
nitophenyl-α-D-galactopyranoside and 4-nitophenyl-β-
D-galactopyranoside. They are also generally positive for

acetoin production (Voges-Proskauer test) and negative
for the methyl red test indicating 2,3-butanediol rather
than mixed acid fermentation. Negative reactions include
hydrogen sulphide production, urea hydrolysis, lysine
decarboxylation, β-D-glucuronidase and metabolism of
D-sorbitol, erythritol, mucate, tartrate, 5-ketogluconate,
D-saccharic acid, sodium pyruvate, glucose-1-phosphate,
glucose-6-phosphate, adonitol and arabitol [[1,2,4,24,25]
and this study]. Previously, G+C ratios of 57% and 56.7%
have been reported for strains belonging to the type spe-
cies [1,26].

Description of Cronobacter sakazakii comb. nov. 
including C. sakazakii subsp. sakazakii comb. nov. and 
Cronobacter sakazakii subsp. malonaticus subsp. nov
Cronobacter sakazakii comb. nov., named in honour of the
Japanese microbiologist Riichi Sakazaki when the species
was first designated in 1980 as Enterobacter sakazakii [1], is
the type species of the proposed genus Cronobacter and the
type strain is ATCC 29544T (ATCC, Manassas, VA, USA)
also available as NCTC 11467T (NCTC, London, UK). The
type strain was originally isolated from a child's throat [1].

C. sakazakii subsp. sakazakii, comprises biogroups 1, 2, 3,
4, 7, 8, 11 and 13 previously described [1] and is generally
indole, dulcitol and malonate negative, but methyl-α-D-
glucopyranoside positive (Table 3).

Cronobacter sakazakii subsp. malonaticus subsp. nov.
(mă.lō.nă.t'cs. N.L. n. malonas -atis, malonate; L. suff. -
icus, suffix used with the sense of belonging to; N.L. masc.
adj. malonaticus, pertaining to the utilization of
malonate) is comprised of biogroups 5, 9 and 14 previ-
ously described [1]. The proposed type strain for this sub-
species, CDC 1058-77, was originally isolated from a
breast abscess and is also available as LMG 23826T

(BCCM/LMG, Ghent, Belgium) and DSMZ 18702T

(DSMZ, Braunschweig, Germany). C. sakazakii subsp.
malonaticus, is indole, and dulcitol negative, but malonate
and methyl-α-D-glucopyranoside positive (Table 3).

Description of Cronobacter muytjensii sp nov
Cronobacter muytjensii sp. nov. (mœ.tjn.s.&#x012B;. N.L.
gen. n. muytjensii, of Muytjens) named in honour of the
Dutch microbiologist Harry Muytjens who performed
much of the early work on E. sakazakii [27-31]. This spe-
cies comprises biogroup 15 as previously described [1].
The proposed type strain is ATCC 51329T (ATCC, Manas-
sas, VA, USA) also available as CIP 103581T (Collection de
l'Institut Pasteur, Paris, France). This strain was originally
deposited by bioMérieux, La Balme-les-Grottes, France. C.
muytjensii sp. nov. is indole, dulcitol, and malonate posi-
tive but palatinose and methyl-α-D-glucopyranoside neg-
ative (Table 3).

Table 3: Statistically relevant biochemical tests for the 
differentiation of proposed Cronobacter species and subspecies.

Dul Ind Malo AMG

Cronobacter sakazakii subsp. 
sakazakii

(163)§ - - - +

Cronobacter sakazakii subsp. 
malonaticus

(22) - - + +

Cronobacter muytjensii (7) + + + -
Cronobacter dublinensis (8) - + v +
Cronobacter turicensis (8) + - + +
Cronobacter genomospecies 1 (2) + - + +

§number of isolates; Dul, production of acid from dulcitol; Ind, 
production of indole; Malo, malonate utilization; AMG, production of 
acid from methyl-α-D-glucoside; +, 85–100% positive; v, 15–85% 
positive; -, less than 15% positive.
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Table 4: Biochemical differentiation of Cronobacter from other Enterobacteriaceae.
Description of Cronobacter dublinensis sp nov
Cronobacter dublinensis sp. nov. (db.ln.ĕn'ss. N.L. masc.
adj. dublinensis, pertaining to Dublin, Ireland, the origin
of the type strain) is comprised of biogroups 6, 10 and 12
as previously described [1]. The type strain, CFS237, is
from a milk powder manufacturing facility and is availa-
ble as LMG 23823T (BCCM/LMG, Ghent, Belgium) and
DSMZ 18705T (DSMZ, Braunschweig, Germany). C. dub-
linensis sp. nov. is dulcitol negative and methyl-α-D-glu-
copyranoside positive and generally positive for indole
production.

Description of Cronobacter turicensis sp. nov
Cronobacter turicensis sp. nov. (t.r.sĕn'ss. L. masc. adj. turi-
censis, pertaining to Turicum, the Latin name of Zurich, as
the type strain originates from Zurich, Switzerland). The
proposed type strain, 3032, is available as LMG 23827T

(BCCM/LMG, Ghent, Belgium) and DSMZ 18703T

(DSMZ, Braunschweig, Germany). This strain was isolated
from a fatal case of neonatal meningitis occurring in
Zurich in 2005 [32]. C. turicensis sp. nov. strains are indole
negative but malonate, dulcitol and methyl-α-D-glucop-
yranoside positive.

Description of Cronobacter genomospecies 1
As no phenotypic differentiation of these strains from
other strains within biogroup 16 could be determined and
only two strain exist in this group, at the present time it is
proposed to designate a novel genomospecies [33] repre-
sented by strain NCTC 9529. This strain was originally
isolated from water and deposited at the NCTC, London,
UK, in 1954.

Cronobacter genomospecies 1 strains are indole negative
but malonate, dulcitol and methyl-α-D-glucopyranoside
positive.

Conclusion
This study clarifies the taxonomy of E. sakazakii and pro-
poses a reclassification of these organisms.

Methods
Sources of bacterial strains
A total of 312 strains obtained from the culture collec-
tions at Nestlé Research Centre, Lausanne, Switzerland
(NRC), the Institute for Food Safety and Hygiene, Vetsu-
isse Faculty, University of Zurich (UZH) and the Centre

4-NP-α-Glc VP ADH ODC SAC RAF CEL ARA CIT MR ADO SOR LDC H2S

Cronobacter spp. + + + + + + + + + - - - - -
Buttiauxella agrestis v - - + - + + + + + - - - -
Citrobacter koseri - - v + v - + + + + + + - -
Citrobacter freundii - - v - v v v + v + - + - +
Edwardsiella tarda - - - + - - - - - + - - + +
Enterobacter aerogenes - + - + + + + + + - + + + -
Enterobacter asburiae - - v + + v + + + + - + - -
Enterobacter cancerogenus - + + + - - + + + - - - - -
Enterobacter cloacae - + + + + + + + + - v + - -
Enterobacter gergoviae - + - + + + + + + - - - + -
Enterobacter hormaechei - + v + + - + + + v - - - -
Enterobacter pyrinus v v - + + - + + - v - - + -
Enterobacter helveticus* + - - - - - + + - + - - - -
Enterobacter turicensis* + - - - - - + + - + - - - -
Escherichia coli - - v v v v - + - + - + (+) -
Hafnia alvei (-) (+) - + - - (-) + - v - - + -
Klebsiella pneumoniae (-) + - - + + + + + - + + + -
Kluyvera spp. v - - + + + + + (+) + - v v -
Leclercia adecarboxylata - - - - v v + + - + + - - -
Morganella morganii - - - + - - - - - + - - - (-)
Pantoea spp. - v - - v v v + v v - v - -
Proteus vulgaris + - - v (+) - - - v v - - - +
Providencia spp. - - - - v - - - v + v - - v
Rahnella aquatilis - - v - + + + + (-) - - + - -
Raoultella terrigena - + - (-) + + + + v v + + + -
Salmonella sv. - - v (+) - - v (+) v + - v (+) v
Serratia marcescens v + - + + - - - + (-) v + + -
Yersinia enterocolitica - - - + + - v + - + - + - -

4-NP-α-Glc, metabolism of 4-NP-α-glucoside; VP, Voges-Proskauer; ADH, arginine dihydrolase; ODC, ornithine decarboxylase; SAC, acid from 
sucrose; RAF, acid from raffinose; CEL, acid from cellobiose; ARA, acid from arabinose; CIT, use of citrate as sole carbon source (Simmon's); ADO, 
acid from adonitol; SOR, acid from sorbitol; LDC, lysine decarboxylase; MR, methly red test; H2S, production of hydrogen sulphide. +, 90–100% 
positive; (+), 80–90% positive; v, 20–80% positive; (-), 10–20% positive; -, less than 10% positive. Data was derived from this study and from Manual 
of Clinical Microbiology, 7th Edition [25]. *Enterobacter helveticus and E. turicensis are novel Enterobacter species [38].
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for Food Safety (CFS), University College Dublin (UCD)
were analyzed in this study. The strains comprised 210
isolates currently identified as E. sakazakii and 102 repre-
sentative strains of related species. At least one strain from
each of the biogroups described when the E. sakazakii spe-
cies was designated were included [1]. The majority of
strains were environmental and food isolates from NRC,
UZH and UCD. Additional clinical, food and environ-
mental isolates were originally obtained from the ATCC,
Manassas, VA, USA; NCTC, London, UK; CDC, Atlanta,
GA, USA; HC-SC, Health Products and Food branch, Can-
ada; Oxoid Ltd., Basingstoke, UK; the Department of Med-
ical Microbiology, University of Nijmegen, Netherlands;
Food Safety Lab, Cornell University, Ithaca, NY, USA; US
FDA Center for Food Safety and Applied Nutrition, Col-
lege Park, MD, USA; R & F Laboratories, Downers Grove,
IL, USA; bioMérieux, La Balme Les Grottes, France and the
Institute for Medical Microbiology and Immunology,
University of Bonn, Germany.

Phenotypic characterization
Biochemical tests were performed as follows with negative
tests being incubated for 7 days before discarding unless
otherwise indicated. Motility was determined at 37°C
using motility medium (tryptose 10 g l-1, NaCl 5 g l-1, agar
5 g l-1, pH 7.2 ± 0.2). Acid production from carbohydrate
(D-sucrose, D-melibiose, D-raffinose, D-sorbitol, L-rham-
nose, D-cellobiose, D-trehalose, palatinose, adonitol,
myo-inositol, dulcitol and methyl-α-D-glucopyranoside)
was tested in phenol red broth base (10 g l-1 peptone, 1 g
l-1 yeast extract, 5 g l-1 NaCl, 0.018 g l-1 phenol red) with
addition of filter-sterilized carbohydrate solution (final
concentration 0.5%). Gas production from glucose and
methyl-α-D-glucopyranoside was determined by collec-
tion in Durham tubes. Utilization of citrate as a sole car-
bon source was determined on Simmons Citrate agar
(85463, Fluka). Malonate utilization was determined
using sodium malonate broth (M8802, Sigma). The
Methyl Red test was performed by addition of indicator
(0.1 g methyl red per 300 ml 95% ethanol) to cultures
grown for 48 h in 10 ml Methyl Red Voges-Proskauer
Broth (MR-VP; 39484, Fluka). The Voges-Proskauer test
was performed by addition of VP1 and VP2 reagents
(bioMérieux) to cultures grown for 24 h in MR-VP broth.
Indole production was measured by addition of James
Reagent (70542 bioMérieux) to cultures grown for 24 h in
Peptone Water (CM0009 Oxoid Ltd). Nitrate reduction
was measured by addition of NIT1 and NIT2 reagents
(bioMérieux) to turbid cultures in nitrate broth (72548
Fluka). Durham tubes were used for collection of nitrogen
gas and zinc dust was added to negative tubes to confirm
the presence of unreduced nitrate.

DNA-DNA hybridizations
Isolates were grown in BHI 24 h at 37°C and centrifuged
at 4,000 rpm for 30 min at 4°C to obtain 3 g wet biomass.
Biomass was suspended in iso-propanol/H2O (1:1, v/v).
DNA-DNA hybridizations were performed by DSMZ, Ger-
many. DNA was isolated using a French pressure cell
(Thermo Spectronic) and was purified by chromatogra-
phy on hydroxyapatite as described by Cashion et al [34].
DNA-DNA hybridizations were carried out spectrophoto-
metrically in 2 × SSC + 5% formamide as described by De
Ley et al [11] at 70°C with consideration of the modifica-
tions described by Huss et al [13] using a model Cary 100
Bio UV/VIS-spectrophotometer equipped with a Peltier-
thermostatted 6 × 6 multicell changer and a temperature
controller with in-situ temperature probe (Varian). DNA
homology values were determined in duplicate.

AFLP
DNA was prepared using the method of Gevers et al [35].
Purified total DNA was digested by two restriction
enzymes, a 4- and a 6-base cutter. Small DNA molecules
(15–20 bp) containing one compatible end were ligated
to the appropriate 'sticky end' of the restriction fragments.
Restriction enzyme: EcoR I [hexacutter], adaptor: 5'-CTC
GTA GAC TGC GTA CC-3'; 3'-CTG ACG CAT GGT TAA-5'.
Restriction enzyme: Taq I [tetracutter], adaptor: 5'-GAC
GAT GAG TCC TGA C-3'; 3'-TAC TCA GGA CTG GC-5'.
Selective amplification of the restriction fragments was
performed using the following primer combination: E01:
5'-GAC TGC GTA CCA ATT CA-3'; T01: 5'-CGA TGA GTC
CTG ACC GAA-3'.

Amplicons were separated according to their length on a
high resolution polyacrylamide gel using a DNA
sequencer (ABI 377) and visualized by the 5'-end label-
ling of the 6-bp cutter with the fluorescent dye FAM. The
resulting electrophoretic patterns were tracked and nor-
malized using the GeneScan 3.1 software (Applera, USA).
Normalized tables of peaks, containing fragments of 50 to
536 base pairs, were transferred into the BioNumerics™
4.5 software (Applied Maths, Belgium). For numerical
analysis, data intervals were delineated between the 75-
and 500-bp bands of the internal size standard. Clustering
of the BioNumerics™ 4.5 software generated AFLP™ DNA
fingerprint patterns was performed using the Dice coeffi-
cient and the UPGMA algorithm with an optimization of
0% and position tolerance of 0.2%.

Ribotyping
Ribotyping was performed using the automated Ribo-
Printer™ Microbial Characterization System (Qualicon
Inc., DE, USA). Isolates were grown on TSA (18 h, 37°C)
and prepared according to standard procedures [36] using
the EcoR1 restriction enzyme. Riboprint patterns were
downloaded to Bionumerics v.4.5, a UPGMA dendogram
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was constructed using a DICE coefficient with an optimi-
zation of 1% and a position tolerance of 1.5%.

16S rRNA gene sequences
16S rRNA gene sequencing was performed by Fasteris SA,
Switzerland. Isolates were grown 18 h in 5 ml BHI at 37°C
and 1 ml centrifuged at 13,000 g for 5 min, the pellet was
washed with 1 ml H2O. PCR-ready DNA was prepared by
washing 10 µl of the concentrated culture with 200 µl
H2O and resuspending the pellet in 50 µl Prepman Ultra
(Applied Biosystems). The cells were heated at 99°C for
10 min. Ribosomal 16S rRNA gene was amplified from 1
µl of PCR-ready DNA using the high-fidelity polymerase
PrimeStar (Takara) and the primers P0 and P6 in the pres-
ence of betaine: 3 min at 95°C; 30 cycles of 30 sec at
95°C, 30 sec at 56°C, 2 min at 72°C; 5 min at 72°C. P0
– 5'-AGA GTT TGA TCC TGG CTC AG-3'; P6 – 5'-GTA
CGG CTA CCT TGT TAC GA-3'. The PCR was carried out
in 3 × 15 µl, which were subsequently pooled. After puri-
fication the amplified fragments were sequenced using the
primers P0 and P6. Some templates produced a double
sequence close to the P0 site, these were sequenced using
another primer that binds in the reverse orientation to a
conserved region in the middle of the 16S region (095P:
5'-TAC GGC GTG GAC TAC CAG-3'). The new reactions
produced a double sequence less than 80 bases from the
end of the PCR fragment (P0 site). Additional sequences
were downloaded from EMBL database.

Full-length 16S rRNA gene sequences (> 1300 bases) were
added to an ARB alignment of about 28,000 small-subu-
nit rRNA sequences by using the alignment tool
ARB_EDIT of the ARB program package [37]. Alignments
were refined by visual inspection. The neighbor-joining
method, combined with a Felsenstein correction, was
used to infer the distance-matrix tree; 1,000 bootstrap rep-
licates were performed.

Submission of 16S rRNA gene sequences
The accession numbers of the 16S rRNA genes included in
this study are as follows: ATCC 12868 [GenBank:
EF059844], ATCC 29004 [GenBank: EF059868], ATCC
29544T [GenBank: EF059843], ATCC 51329 [GenBank:
EF059845], CDC 1716-77 [GenBank: EF059883], CDC
3128-77 [GenBank: EF059882], CDC 3523-75 [GenBank:
EF059875], CDC 5960-70 [GenBank: EF059874], E265
[GenBank: AY803191], E266 [GenBank: AY803190],
E269 [GenBank: EF059819], E271 [GenBank: EF059820],
E272 [GenBank: EF059821], E274 [GenBank: EF059822],
E280 [GenBank: EF059823], E283 [GenBank: EF059824],
E292 [GenBank: EF059825], E302 [GenBank: EF059826],
E309 [GenBank: EF059827], E314 [GenBank: EF059828],
E328 [GenBank: EF059829], E393 [GenBank:
AY752941], E413 [GenBank: EF059830], E423 [Gen-
Bank: EF059831], E429 [GenBank: EF059832], E436
[GenBank: EF059833], E440 [GenBank: EF059834], E444
[GenBank: EF059835], E450 [GenBank: EF059836], E456

[GenBank: EF059837], E465 [GenBank: EF059839], E468
[GenBank: AY752942], E488 [GenBank: EF059840],
E531 [GenBank: EF059842], E604 [GenBank: EF059846],
E607 [GenBank: EF059847], E609 [GenBank: EF059848],
E616 [GenBank: EF059849], E620 [GenBank: EF059850],
E621 [GenBank: EF059851], E622 [GenBank: EF059852],
E624 [GenBank: EF059853], E625 [GenBank: EF059854],
E626 [GenBank: EF059855], E627 [GenBank: EF059856],
E632 [GenBank: EF059857], E639 [GenBank: EF059858],
E644 [GenBank: EF059859], E676 [GenBank: EF059860],
E680 [GenBank: EF059861], E681 [GenBank: EF059862],
E688 [GenBank: EF059863], E694 [GenBank: EF059864],
E717 [GenBank: EF059865], E739 [GenBank: EF059867],
E757 [GenBank: EF059869], E761 [GenBank: EF059870],
E768 [GenBank: EF059871], E769 [GenBank: EF059872],
E775 [GenBank: EF059873], E814 [GenBank: EF059880],
E872 [GenBank: EF059884], E883 [GenBank: EF059886],
E888 [GenBank: EF059887], E890 [GenBank: EF059888],
E895 [GenBank: EF059889], E904 [GenBank: EF059890],
CFS237 LMG 23823 [GenBank: EF059892], LMG 23824
[GenBank: EF059841], E464 LMG 23825 [GenBank:
EF059838], CDC 1058-77 LMG 23826 [GenBank:
EF059881], 3032 LMG 23827 [GenBank: EF059891],
M609 [GenBank: EF059885], NCTC 8155 [GenBank:
EF059866], NCTC 9238 [GenBank: EF059876], NCTC
9529 [GenBank: EF059877], NCTC 9844 [GenBank:
EF059878], NCTC 9846 [GenBank: EF059879], z1084
[GenBank: AY803192], z759 [GenBank: AY752939], z858
[GenBank: AY752936], z954 [GenBank: AY752938],
zES11 [GenBank: AY803187], zES4 [GenBank:
AY803186], zESVO7 [GenBank: AY803189].
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