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SUMMARY

Covariate measurement error and missing responses are typical features in longitudinal data
analysis. There has been extensive research on either covariate measurement error or missing
responses, but relatively little work has been done to address both simultaneously. In this paper,
we propose a simple method for the marginal analysis of longitudinal data with time-varying
covariates, some of which are measured with error, while the response is subject to missingness.
Our method has a number of appealing properties: assumptions on the model are minimal, with
none needed about the distribution of the mismeasured covariate; implementation is straight-
forward and its applicability is broad. We provide both theoretical justification and numerical
results.

Some key words: Functional measurement error; Generalized method of moments; Inverse probability weighting;
Longitudinal data; Measurement error; Missing response; Structural measurement error.

1. INTRODUCTION

Longitudinal data analysis has attracted considerable research interest and a large number of
inference methods have been proposed in the literature. Their validity relies on the important
requirements that variables are perfectly measured and data are complete. In practice, however,
these conditions are commonly violated, and ignoring this could result in seriously biased results.
Although there has been discussion of inference methods to address longitudinal data with either
missing values or measurement error, relatively little attention has been directed to accounting
simultaneously for both features, which is partly attributable to complexity in modelling and
computation. In this paper, we propose a simple method for the marginal analysis of longitudinal
data with time-varying covariates, some of which are measured with error, while the response is
subject to missingness.

Our method has these important features. First, our model is marginal: we do not spec-
ify a full distribution for the complete data, but instead we use estimating equations based
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on moment restrictions. Secondly, our method does not require the assumption that E(Yi j |
Xi , Zi ) = E(Yi j | Xi j , Zi j ), which has been widely used in marginal analysis, especially
when using the generalized estimating equation approach, e.g., Pepe & Anderson (1994) and
Lai & Small (2007). Here Yi j and (Xi j , Zi j ) represent the response and covariates for sub-
ject i at time j , and (Xi , Zi ) are the vector-valued subject level covariates. This is useful
because in applications it is often difficult to assess this assumption. Moreover, this relaxation
extends the scope of applicability of our method. Thirdly, we develop a functional measure-
ment error method, i.e., nothing is assumed about the distribution of the variables measured
with error.

In this paper, we explore how covariate measurement error may affect the association structure
between the response and the covariates. We show that a conditional independence relationship
between Yi j and the true covariates (Xik, Zik) for j |= k may be distorted when replacing Xik by
its observed surrogate Wik . In the presence of missing values, we show that measurement error
will usually alter the missing data mechanism. For example, a missing-at-random mechanism in
error-prone covariates Xi is not retained when Xi is replaced by its surrogate Wi . To adjust for
missing responses, we use inverse probability weighting based on the observed data. However, the
development of a model for the probability of missingness is tricky. See § 2·4, where we discuss an
obvious method that leads to difficulties and then a simple method that is completely transparent.
In our development, the generalized method of moments, discussed by Hansen (1982), is used to
combine unbiased estimating functions in the observed data.

There is considerable work on the measurement error problem in longitudinal data using
the structural approach, namely when the distribution of the error-prone covariates is speci-
fied. References include Wang et al. (1998), Palta & Lin (1999), Lin & Carroll (2006), Liang
(2009), Zhou & Liang (2009) and Xiao et al. (2010). Pan et al. (2009) investigate a transition
model and apply the conditional and sufficient score approach of Stefanski & Carroll (1987) to
analyse it. Similar uses of the conditional and sufficient score approach are seen in Li et al. (2004,
2007).

Papers that address all three facets of the problem, namely missing responses, longitudinal
data and mismeasured covariates include Liu & Wu (2007), Wang et al. (2008), Yi (2005, 2008)
and Yi et al. (2011). Liu & Wu (2007) and Yi et al. (2011) take a mixed model framework for
the response process, and likelihood-based inferential procedures are used for which the miss-
ingness probability is modelled as a function of the true covariate and response variables, while
Wang et al. (2008) and Yi (2005, 2008) use a marginal model framework. Except for the latter,
these methods take a structural approach and assume that there is a model for the distribution of
the mismeasured covariate X given error-free covariates. In modelling the missing data process,
Yi (2005) and Wang et al. (2008) assume that the missingness probability is covariate free. Yi
(2008) takes a functional approach to relax the need to model the covariate process, and allows
the missingness probability to depend on covariates, but the resultant estimator is not exactly
consistent due to the use of the simulation-extrapolation method (Cook & Stefanski, 1995).

2. RESPONSE MODEL AND ITS ASSUMPTIONS

2·1. No measurement error

Our data set-up is the following. There are i = 1, . . . , n independent individuals, with the
possibility of j = 1, . . . , m visits. At visit j , the complete data are (Yi j , Xi j , Zi j ), where
Yi j is the response, Zi j are covariates observed exactly, and Xi j are error-prone covariates
whose true values are unobserved. Denote Yi = (Yi1, . . . , Yim)T, Xi = (X T

i1, . . . , X T
im)T and
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Zi = (Z T
i1, . . . , Z T

im)T. Let μi j = E(Yi j | Xi j , Zi j ) and vi j = var(Yi j | Xi j , Zi j ) be the time-
specific conditional expectation and variance of Yi j , respectively, given Xi j and Zi j .

Consider the regression model

g(μi j ) = X T
i jβx + Z T

i jβz, (1)

where g(·) is a known monotone function, and B = (βT
x , β

T
z )T is the vector of regression param-

eters. If necessary, an intercept may be included in βz by including unity in the covariate vec-
tor Zi j . Further, assume vi j = h(μi j , φ), where h(·) is a known function and φ is a dispersion
parameter that is known or may be estimated. For instance, for binary data there is no φ and
vi j = μi j (1 − μi j ). We treat φ as known here with emphasis on estimation of B.

2·2. Measurement error process

Let Wi j be the observed version of the covariate Xi j . Denote Wi = (W T
i1, . . . , W T

im)T. We
assume that Xi j and Wi j follow a classical additive measurement error model, i.e., given
(Xi j , Zi j , Yi j ),

Wi j = Xi j + ei j , (2)

where ei j ∼ N (0, � j ) is independent of Xi , Zi and Yi .
Here we merely model marginal characteristics of the measurement error process for each

time-point, and employ a functional modelling strategy with the distribution of Xi j left unspec-
ified. Model (2) accommodates the general scenario of dependent measurement errors. We
assume that the � j are known or estimated from replication experiments (Carroll et al., 2006).

2·3. Working independence and evolving covariates

In our approach, we build separate unbiased estimating functions for B at each time-point
j = 1, . . . , m, eventually combining them via the generalized method of moments. This section
describes why such an approach is practical in the context of measurement error.

Model (1) for the response postulates the population mean at each time-point as a function of
time-specific covariates. Because of the measurement error, attention must be paid to how the
true covariates evolve over time, and how they are related to responses at other time-points.

The conventional assumption when there is no measurement error and no missing data is
that E(Yi j | Xi , Zi ) = E(Yi j | Xi j , Zi j ), which is effectively the same thing as stating that given
(Xi j , Zi j ), Yi j is independent of (Xik, Zik) for j |= k. Covariates satisfying this condition are
called Type I by Lai & Small (2007). Thus, for example, assume that there is no Z , m = 2,
cov(Xi1, Xi2) = �x , Yi j = μ(Xi j ,B) + εi j and cov(εi1, εi2) = �ε . Under the Type I assumption,
an unbiased estimating function for B is

{μB(Xi1,B), μB(Xi2,B)}�−1
ε [(Yi1, Yi2)

T − {μ(Xi1,B), μ(Xi2,B)}T],

where the subscript B denotes differentiation with respect to B. Accounting for the correla-
tion among the εi j leads to more efficient estimation of B than ignoring the correlation. It
is an unbiased estimating function because, under the Type I assumption, for any function
G(·, ·), E[G(Xik, Xi j ){Yi j − μ(Xi j ,B)}] = 0 for j |= k. However, Pepe & Anderson (1994),
Pepe & Couper (1997) and Lai & Small (2007) point out that if Xi2 is not independent of Yi1
given Xi1, then this generalized estimating function is not unbiased, i.e., does not have mean
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zero when evaluated at the model, so the resulting estimates may be inconsistent. This fact has
led many authors to assume that �ε is diagonal, the so-called working independence assumption
that leads to consistent estimators. This is an interesting debate, and indeed in cases that the Xi j

can be observed, Lai & Small (2007) show how to test the Type I assumption.
We are dealing with a very different problem. Suppose that the Type I assumption holds in the

underlying data, so that for any j , given (Xi j , Zi j ), Yi j is independent of (Xik, Zik) for k |= j .
We can show that in the presence of measurement error, the observed data, Yi j and (Wik, Zik),
given (Wi j , Zi j ) for j |= k, are generally dependent. Thus, testing the Type I assumption based
on observed, error-prone data is likely to be difficult in practice. We sum this up in the follow-
ing result.

LEMMA 1. Suppose the Type I assumption of Lai & Small (2007) holds in the complete data
(Yi j , Xi j , Zi j ), and thus that Yi j and (Xik, Zik) are independent given (Xi j , Zi j ) for j |= k. In
general, it is not the case that the Type I assumption holds in the observed data (Yi j , Wi j , Zi j ).

See Appendix A1 for a proof of Lemma 1. As illustrated there, with dependent errors, the
dependence of Yi j on the observed Wik may not be fully captured by that of Yi j on Wi j . Even
when the true covariates Xi j and Xik are independent, the dependence between the errors ei j and
eik induces correlation between the observed Wi j and Wik , which may distort the relationship
between the response and the true covariates.

2·4. Missing data process

First we examine how measurement error may change the missing data mechanism classifica-
tion in the error-free context. In general, the model structure between the missing data indicator
and the covariates is not preserved when the true covariates Xi are replaced with their surrogate
Wi . In particular, Appendix A2 sketches an illustration of the following result. Let Ri j = 1 if Yi j

is observed and Ri j = 0 otherwise. Let R̃i j = {Ri1, . . . , Ri, j−1} be the history of the missing data

indicator at time-point j , and let Y (o)
i contain the observed response measurements of Yi .

LEMMA 2. If pr(Ri j = 1 | R̃i j , Yi , Xi , Zi ) = pr(Ri j = 1 | R̃i j , Y (o)
i , Xi , Zi ), then it is possible

that pr(Ri j = 1 | R̃i j , Yi , Wi , Zi ) |= pr(Ri j = 1 | R̃i j , Y (o)
i , Wi , Zi ). That is, the missingness pro-

cess could be missing at random in Xi , but not missing at random in Wi .

Next, we discuss how and why we model the missing data process. There are two obvious
ways to do so. In the first case, one would take a measurement error view, and model the missing
data process in terms of the underlying unobserved Xi j data, and then adjust this in terms of the
observed Wi j data. This method is needlessly complex because it involves two stages:

Stage I. Fit a possibly complex logistic measurement error model with Ri j being the response
and with covariates involving the unobserved Xi j , forming in the simplest case, for example, a
model with probabilities π(Xi j , Zi j , α) = pr(Ri j = 1 | Xi j , Zi j ), where α is a parameter.

Stage II. Obtain the observed probabilities by regressing π(Xi j , Zi j , α) on (Wi j , Zi j ). This
almost inevitably requires a model for Xi j , which goes against the philosophy of functional
measurement error models, and seems an indirect way to estimate probabilities in the observed
data space.
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In the second case, one simply models the missing data process directly in terms of the
observed data. The first case is needlessly complex, even if there are no repeated measures,
and thus for the reasons described above we use the second approach.

Because the problems considered here involve covariate measurement error, it is not sensible
to stick to the usual classification of missing data mechanisms that are defined in the error-free
context. Therefore, we abandon the usual modelling scheme of postulating the dependence of
the missing data indicator on the true covariates Xi along with other variables, but modulate the
missingness probability based on the observed surrogates Wi . This treatment of the missing data
process enables us to build a more sensible model and allows more transparent interpretation of
model parameters.

To reflect the dynamic nature of the observation process over time, we assume that pr(Ri j = 1 |
R̃i j , Yi , Wi , Zi ) = pr(Ri j = 1 | R̃i j , Y (o)

i , Wi , Zi ). This assumption is analogous to the missing-
at-random mechanism in the error-free context, and it says that the missingness probability
depends on the observed data. As required in marginal analysis within the error-free context,
inclusion of such an assumption is merely to ensure model identifiability related to the missing
data process, a necessary condition for estimating the associated parameters. This assumption is
not essential to the development here, and it can be removed when conducting sensitivity analyses
is of interest.

Because subjects are assessed sequentially over time, it is natural to make a further assumption
to reflect inherent ordering in time, i.e.,

pr(Ri j = 1 | R̃i j , Y (o)
i , Wi , Zi ) = pr(Ri j = 1 | R̃i j , Ỹ (o)

i j , W̃i j , Z̃i j ),

where S̃i j = {Si1, Si2, . . . , Si, j−1} represents the history of variable Si j at time-point j for Si j =
Y (o)

i j , Wi j and Zi j .

Let πi j = pr(Ri j = 1 | R̃i j , Ỹ (o)
i j , W̃i j , Z̃i j ). One may use a logistic regression model to posit

the missing data process, i.e., logit(πi j ) = uT
i jα, where ui j is the vector consisting of the infor-

mation on the history of surrogates Wi j , covariates Zi j and the observed responses Y (o)
i j as well

as the missing data indicator Ri j . Here α is the vector of regression parameters.

Estimation of α can proceed using a likelihood-based method. Let Li (α) = ∏m
j=1 π

Ri j
i j

(1 − πi j )
1−Ri j be the likelihood contribution from subject i , and Si (α) = (∂/∂α) log Li (α). Then

solving
∑n

i=1 Si (α) = 0 leads to a consistent estimator α̂ of α.

3. METHODOLOGY

3·1. Overview

In this section, we propose an inference method based on the time-specific marginal structure
of the response process. The method is simple to implement but flexible enough to accommo-
date a wide class of applications. The key idea is to construct an unbiased estimating function,
say Gi j (Yi j , Xi j , Zi j ,B), for each time-point j under the ideal situation when neither missing
responses nor covariate measurement error is present. Then in § 3·2 we correct for the error
effects by using the marginal moments for the error process, and denote by G∗

i j (Yi j , Wi j , Zi j ,B)

the adjusted estimating functions that are expressed in terms of the responses and the observed
covariates. In the next step, in § 3·3 we modify these estimating functions by using inverse proba-
bility weights to incorporate missingness effects. Finally, in § 3·4, we use the generalized method
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of moments to combine those time-specific unbiased estimating functions to formulate one that
is efficient in the class of all of their linear combinations.

3·2. Corrected scores adjusting for error effects

For each time-point j = 1, . . . , m, let Gi j (Yi j , Xi j , Zi j ,B) be unbiased estimating functions
for B when there is neither measurement error nor missing observations. Specifically, we take

Gi j (Yi j , Xi j , Zi j ,B) = ∂μi j

∂BT
v−1

i j (Yi j − μi j ),

which requires the weakest model assumption for the response process as made in § 2·1. For
example, a logit link function for binary data yields Gi j (Yi j , Xi j , Zi j ,B) = {Yi j − H(X T

i jβx +
Z T

i jβz)}(X T
i j , Z T

i j )
T, where H(t) = exp(t)/{1 + exp(t)} is the logistic distribution function.

In the absence of measurement error and missing observations, Gi j (Yi j , Xi j , Zi j ,B) are unbi-
ased estimating functions for B, and hence they can be used to estimate B. When Xi j is subject to
measurement error, however, we cannot directly use Gi j (Yi j , Xi j , Zi j ,B) by replacing Xi j with
its observed value Wi j , because the resulting estimating functions are not unbiased. One strategy
to remedy this is to work on the conditional expectation E{Gi j (Yi j , Xi j , Zi j ,B) | Yi j , Wi j , Zi j } to
correct for the error effects. However, this approach requires a distributional assumption for Xi j ,
which is difficult to specify in many applications. Alternatively, we proceed with a correction
approach which does not require specification of the distribution of Xi j . The idea is to construct
estimating functions G∗

i j (Yi j , Wi j , Zi j ,B) such that

E{G∗
i j (Yi j , Wi j , Zi j ,B) | Yi j , Xi j , Zi j } = Gi j (Yi j , Xi j , Zi j ,B). (3)

With this construction, unbiasedness of Gi j (Yi j , Xi j , Zi j ,B) under the response model (1)
ensures unbiasedness of G∗

i j (Yi j , Wi j , Zi j ,B) in the absence of missingness. This strategy has
the same spirit as the so-called corrected likelihood method discussed by Nakamura (1990) for
generalized linear models, but it applies more generally to estimating functions.

With regression models such as linear regression, Gamma regression, inverse Gaussian
regression and Poisson regression, Yi (2005) presents the expressions of the G∗

i j (Yi j , Wi j , Zi j ,B)

functions. However, with logistic regression for binary data under error model (2), there exist no
analytical functions G∗

i j (Yi j , Wi j , Zi j ,B) such that (3) is true (Stefanski, 1989). This nonexis-

tence is basically caused by the terms like Xi j [1 + exp{−(X T
i jβx + Z T

i jβz)}]−1 involved in the
logistic regression.

To develop a more flexible method, we next propose to introduce proper weights for the esti-
mating functions Gi j (Yi j , Xi j , Zi j ,B) so that a workable version G∗

i j (Yi j , Wi j , Zi j ,B) is readily
constructed. To be specific, let η(Xi j , Zi j ,B) be a function that does not depend on the response
Yi j or missing data indicators Ri , but could depend on covariates and parameters. Define

Gwi j (Yi j , Xi j , Zi j ,B) = η(Xi j , Zi j ,B)Gi j (Yi j , Xi j , Zi j ,B).

If there is a function G∗
i j (Yi j , Wi j , Zi j ,B) such that

E{G∗
i j (Yi j , Wi j , Zi j ,B) | Yi j , Xi j , Zi j } = Gwi j (Yi j , Xi j , Zi j ,B),

then
∑n

i=1 G∗
i j (Yi j , Wi j , Zi j ,B) is an unbiased estimating function for B in the absence of miss-

ing observations. This scheme can be used in other contexts as well. For instance, with binary
data Huang & Wang (2001) use this strategy for the logistic regression model, and in unpublished
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work, the first author has invoked this technique to construct estimating functions for analysis of
interval count data.

In particular, for binary data with logistic regression, setting η(Xi j , Zi j ,B) = 1 +
exp{−(X T

i jβx + Z T
i jβz)} leads to

Gwi j (Yi j , Xi j , Zi j ,B) = {Yi j H−1(X T
i jβx + Z T

i jβz) − 1}(X T
i j , Z T

i j )
T.

By the moment identities associated with the error model (2), E(Wi j | Xi j ) = Xi j ,

E{exp(W T
i jβx ) | Xi j } = exp(X T

i jβx + βT
x� jβx/2) and E{Wi j exp(W T

i jβx ) | Xi j } = (Xi j + � jβx )

exp(X T
i jβx + βT

x� jβx/2), hence we take G∗
i j (Yi j , Wi j , Zi j ,B) to be {Yi j H−1(W T

i j βx + Z T
i j βz+

βT
x� jβx/2) − 1}(W T

i j , Z T
i j )

T + Yi j {H−1(W T
i jβx + Z T

i jβz + βT
x � j βx/2) − 1}{(� j βx )

T, 0T}T,
where the column vector 0 has the dimension of Zi j .

3·3. Inverse probability weights adjusting for missingness effects

Let 
∗
i j = (Ri j/πi j )G∗

i j (Yi j , Wi j , Zi j ,B). Then 
∗
i j is unbiased by the definition of πi j .

Indeed, let ERi , ERi1 and ERi j |R̃i j
denote the conditional expectations taken with respect to the

conditional densities f (ri | Yi , Wi , Zi ), f (ri1 | Yi , Wi , Zi ) and f (ri j | R̃i j , Yi , Wi , Zi ). Then

ERi (

∗
i j ) = ERi1[ERi2|R̃i2

. . . {ERim |R̃im
(
∗

i j )}]
= ERi1(ERi2|R̃i2

. . . [ERi j |R̃i j
{(Ri j/πi j )G∗

i j (Yi j , Wi j , Zi j ,B)}])
= ERi1(ERi2|R̃i2

. . . [ERi, j−1|R̃i, j−1
{G∗

i j (Yi j , Wi j , Zi j ,B)}])
= G∗

i j (Yi j , Wi j , Zi j ,B),

where the sign . . . represents the evaluation for the sequence of conditional expectations
ERi3|R̃i3

, . . . , ERi, j−1|R̃i, j−1
, and the third identity is due to the assumptions made in § 2·4 and

the definition of πi j . As a result, E(
∗
i j ) = 0 by the unbiasedness of G∗

i j (Yi j , Wi j , Zi j ,B) estab-
lished in § 3·2.

The unbiasedness of 
∗
i j allows us to express all unbiased estimating functions in the form

Ri j

πi j
G∗

i j (Yi j , Wi j , Zi j ,B) + Ri j − πi j

πi j
H(Wi j , Zi j ,B),

for some function H(·). In cases such as ours where G∗
i j (·) is linear in Yi j , so that G∗

i j (·) =
A(Wi j , Zi j ,B)Yi j − B(Wi j , Zi j ,B) say, we propose setting H(Wi j , Zi j ,B) = B(Wi j , Zi j ,B).
This is algebraically equivalent to replacing argument Yi j with (Ri j/πi j )Yi j in G∗

i j (·), and we
thus propose the estimating function


i j (B) = G∗
i j {(Ri j/πi j )Yi j , Wi j , Zi j ,B},

where dependence of 
i j (B) on the parameter α is suppressed.

3·4. Generalized method of moments

We now optimally combine the functions
∑n

i=1 
i j (B) across j = 1, . . . , m, using the gen-
eralized method of moments (Hansen, 1982). Let 
i (B) = {
T

i1(B), . . . , 
T
im(B)}T and 
(B) =∑n

i=1 
i (B). Then a generalized method of moments estimator of B is obtained by minimiz-
ing 
T(B)G
(B), where G is a weight matrix. The asymptotically optimal weight matrix G is
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the inverse of the covariance matrix of 
i (B). Equivalently, the optimal generalized method of
moments estimator solves the estimating equations

n∑
i=1

�i (B) = 0, (4)

where �i (B) = DV −1
i (B), D = E{(∂/∂B)
T
i (B)} and V = E{
i (B)
T

i (B)}.
In implementing (4), we replace D and V by the consistent estimates D̂ =

n−1 ∑n
i=1(∂/∂B)
T

i (B) and V̂ = n−1 ∑n
i=1 
i (B)
T

i (B). Set �̂i (B) = D̂V̂ −1
i (B). Then

solving
∑n

i=1 �̂i (B) = 0 leads to the estimator B̂ of B.

3·5. Asymptotic theory

When α is known to be α0, say, then under regularity conditions, n1/2(B̂ − B) has
an asymptotic multivariate normal distribution with mean zero and covariance matrix
�−1

0 E{�i (B, α0)�
T
i (B, α0)}(�−1

0 )T, where �0 = E{∂�i (B, α0)/∂BT}. However, when α is
unspecified and estimated, the variation of α̂ must be taken into account. A sketch of
the technical details is given in Appendix A3. In this case, under regularity conditions,
n1/2(B̂ − B) has an asymptotic multivariate normal distribution with mean zero and covari-
ance matrix �−1(�−1)T, where � = E{∂�i (B, α)/∂BT},  = E{Qi (B, α)QT

i (B, α)} and
Qi (B, α) = �i (B, α) − E{∂�i (B, α)/∂αT}[E{∂Si (α)/∂αT}]−1Si (α). Thus, inference on B can
be conducted by replacing the asymptotic covariance matrix with its consistent estimate in
the asymptotic normal distribution for B̂. All these quantities can be estimated by method
of moments calculations. Specifically, as n → ∞, � is estimated by the consistent estima-
tor �̂ = n−1 ∑n

i=1{∂�i (B̂, α̂)/∂BT}, and  is estimated by ̂ = n−1 ∑n
i=1{Q̂i (B̂, α̂)Q̂T

i (B̂, α̂)},
where Q̂i (B, α) = �i (B, α) − [n−1 ∑n

i=1{∂�i (B, α)/∂αT}][n−1 ∑n
i=1{∂Si (α)/∂αT}]−1Si (α).

The development here primarily focuses on accounting for the variation induced by estima-
tion of α, the parameter associated with the missing data process. The dispersion parameter φ in
the response model and the parameters governing the measurement error process are typically
assumed known. One does not, however, have to be restricted by this assumption. It is straight-
forward to modify the proof in Appendix A3 to accommodate the variability due to estimation
of those parameters when necessary. For instance, if there are replicates of Wi j , one may use
the method of moments to estimate parameters, say σ , for the measurement error model. Now
let Ui (σ ) be the corresponding vector of estimating functions for σ from subject i . Then under
regularity conditions, n1/2(B̂ − B) has an asymptotic multivariate normal distribution with mean
zero, and its asymptotic covariance matrix assumes the same form as before, except for replacing
Si (α) with S∗

i (θ) = {U T
i (σ ), ST

i (α)}T and replacing α with θ = (σ T, αT)T. In the same spirit, if
the dispersion parameter φ is estimated from an estimating function, one can add this function
to S∗

i (θ) to work out the asymptotic covariance matrix for n1/2(B̂ − B).

4. SIMULATION STUDIES

4·1. Comparison with the other methods

In this section, we discuss the results of simulation studies meant to assess the performance of
our method, and contrast these with other analyses which ignore measurement error or missing-
ness or both. We set n = 500 and m = 5 and generated 1000 simulated datasets for each parameter
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configuration. We generated response measurements Yi j independently from the logistic regres-
sion model

logit(μi j ) = β0 + βx1 Xi j1 + βx2 Xi j2 + βz Zi , (5)

where Zi takes values 0 or 1 with probability 0·5. Independent of Zi , Xi j = (Xi j1, Xi j2)
T was

generated as N (μx , �x ) where μx = (μx1, μx2)
T, while �x has variances (σ 2

x1, σ
2
x2) and cor-

relation ρx , with μxr = 0·5 and σxr = 1 for r = 1, 2. We set β0 = −0·1, βx1 = 0·3, βx2 = 0·6
and βz = 0·5. The surrogate value Wi j = (Wi j1, Wi j2)

T was generated as N (Xi j , � j ), where
� j has variances (σ 2

1 , σ 2
2 ) and correlation ρ. Various configurations were considered to fea-

ture distinct scenarios of measurement error in the covariate Xi j . Specifically, we considered
(σ1, σ2) = 0·15, 0·5, 0·75 to feature minor, moderate and severe marginal measurement error,
and (ρx , ρ) = (0, 0), (0, 0·5), (0·5, 0) or (0·5, 0·5) to allow for various correlations. Since the
main conclusions are similar in all cases, we will display only the last case.

We considered a case with drop-outs where the missing data indicator is generated from the
model

logit(πi j ) = α0 + αyYi, j−1 + αwWi, j−1,1 + αz Zi , (6)

where we set α0 = −0·3, αy = 0·5, αw = 0·2 and αz = 0·2. This yields about 45% missingness.
Four analyses were conducted: (a) the naive one which ignores both covariate measurement

error and missing responses, performed using the usual generalized estimating equations method
with an independence correlation matrix employed; (b) the analysis that takes missingness into
account but ignores measurement error in covariates; (c) the analysis that accounts for mea-
surement error effects but ignores missingness and (d) our method which accommodates both
measurement error and missingness.

In Table 1, we report on the case that (ρx , ρ) = (0·5, 0·5), the other configurations being simi-
lar. We displayed the biases of the estimates, their mean squared errors and also the coverage rates
of nominal 95% confidence intervals. As expected, the three analyses that do not accommodate
measurement error or missingness produce strikingly biased results. Their biases increase as the
degree of measurement error increases. Ignoring measurement error or missingness also has a
profound impact on coverage rates of confidence intervals, primarily because of the bias, and
the coverage rates decrease as the measurement error variance increases. Biases are also affected
by the correlations between the true and observed covariates. In contrast, our method is very
satisfactory, with coverage rates close to the nominal 95%.

These empirical studies demonstrate that ignoring either missingness or measurement or both
could result in visibly biased results. It is important to adjust for effects induced by measurement
error and missing data in inferential procedures, as does our method.

4·2. Sensitivity of our method

In this section, we assess the sensitivity of our method. In particular, we consider the case that
the missing data model is misspecified. To be specific, the missing data indicator for drop-outs
is generated from the model which depends on the true covariates Xi through

logit(πi j ) = α0 + αyYi, j−1 + αw Xi, j−1,1 + αz Zi , (7)

where the parameter values are the same as in § 4·1. However, when fitting the data, we use
the model (6) that depends on the observed surrogate variable Wi . All other aspects of the data
generation process are the same as in § 4·1 with the same parameter values, except when one
parameter value is changed intentionally to allow us to study its effect.
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Table 1. Results of the simulation study when both the covariates and the measurement errors
have nondiagonal covariance matrices with correlation ρx = ρ = 0·5

Method Bias MSE CVG (%) Bias MSE CVG (%)
σ1 = σ2 = 0·15

Naive βx1 −0·13 2·07 23·8 βx2 −0·26 7·05 0·9
βz −0·01 1·21 86·5 β0 −0·80 64·42 0·0

No error adjusted βx1 −0·04 0·72 89·8 βx2 −0·08 1·20 80·8
βz 0·01 1·45 94·9 β0 0·04 0·96 91·0

No missing adjusted βx1 −0·08 1·27 67·4 βx2 −0·15 2·87 39·6
βz −0·03 1·50 87·5 β0 −0·70 50·10 0·0

Our method βx1 0·00 0·85 94·3 βx2 0·01 0·99 95·0
βz 0·01 1·61 94·8 β0 0·01 0·96 93·7

σ1 = σ2 = 0·50
Naive βx1 −0·17 3·24 3·0 βx2 −0·34 12·13 0·0

βz −0·01 1·18 85·8 β0 −0·73 54·64 0·0
No error adjusted βx1 −0·11 1·56 58·5 βx2 −0·21 4·85 12·3

βz −0·00 1·40 94·1 β0 0·13 2·48 64·9
No missing adjusted βx1 −0·08 3·42 70·8 βx2 −0·14 5·48 49·9

βz −0·03 1·64 87·4 β0 −0·71 52·36 0·0
Our method βx1 −0·00 1·20 94·8 βx2 0·01 1·44 95·5

βz 0·02 1·82 95·0 β0 0·01 1·13 93·6
σ1 = σ2 = 0·75

Naive βx1 −0·19 3·92 0·3 βx2 −0·38 14·88 0·0
βz −0·02 1·10 88·0 β0 −0·70 50·10 0·0

No error adjusted βx1 −0·14 2·28 30·6 βx2 −0·27 7·55 0·7
βz −0·02 1·32 95·0 β0 0·17 3·76 43·1

No missing adjusted βx1 −0·06 15·99 68·0 βx2 −0·08 18·51 50·8
βz −0·02 4·24 86·9 β0 −0·72 57·23 0·5

Our method βx1 −0·02 3·16 95·3 βx2 −0·00 2·35 96·1
βz 0·01 1·78 95·7 β0 0·03 5·01 94·2

MSE, 100× mean squared error; (σ 2
1 , σ 2

2 ), the measurement error variances; BIAS, the bias; CVG, the actual coverage
of a nominal 95% confidence interval. Naive ignores both missing data and measurement error; No error adjusted
accommodates missing data but ignores the measurement error; No missing adjusted adjusts for measurement error
but ignores the missing data; Our method accounts for both features.

We performed extensive numerical experiments, but here we discuss just one case, when the
true covariates Xi j1 and Xi j2 are correlated with common variance σ 2

x = 1 and correlation 0·5,
and the measurement errors have correlation ρ = 0·5 and common variance σ 2

u .
First we examined the sensitivity of estimation of β relative to the error degree. In particular,

we varied the measurement error variance σ 2
u from 0·2 to 1·6 to represent a wide range of sce-

narios. Because the covariate variance σ 2
x = 1, when σ 2

u = 0·5, the corresponding error is already
nontrivial, while at σ 2

u = 1 the error variance is as large as the covariate variance, i.e., the noise
and the signal are roughly the same. For σ 2

u > 1, the measurement error dominates the signal, so
recovering the information in the covariates is not an easy task. The results on βx1 are displayed
in Fig. 1(a). It is seen that if the measurement error is not too large, our method possesses a
surprising robustness property, in that the average estimate is quite close to the true value. As
expected, when the measurement error increases, the bias increases.

We also experimented with different true values for βx1 in (5) and αw in (7). Figures 1(b) and
(c) contain the corresponding estimates of βx1 and their confidence intervals when the αw or
βx1 value changes, while all other parameters are kept at the original values. Results in Fig. 1
clearly suggest that the robustness property we observed does not rely on the specific values of
the parameters in either model.
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Fig. 1. Sensitivity analysis of our method. The three panels display the average estimates of βx1 (dotted curves) and
95% confidence intervals (dashed curves) as functions of σ 2

u (a), αw (b) and βx1 (c). Solid lines correspond to the
true values of βx1.

5. EMPIRICAL EXAMPLE

As an illustration, we applied our method to analyse a dataset arising from the Continuing
Survey of Food Intake by Individuals (Agricultural Research Service, 1997). The dataset consists
of repeated measurements for 1737 individuals with 24 hour recall food intake interviews taken
on four different days. Information on age, vitamin A intake, vitamin C intake, total fat intake
and total calorie intake is collected at each interview.

Individuals with high levels of fat in their diet have higher risks of outcomes such as obesity
and cancers. Let Y be the binary response variable to indicate whether or not an individual’s
reported percentage of calories exceeds 35%, a threshold that had been previously established,
see Food and Nutrition Board (2005, Ch. 8). Here we study how the fat intake changes with age
and how it is associated with the intakes of vitamin A and vitamin C.

Often in nutritional epidemiology, 24 hour recalls on caloric intake are treated as missing
when the values are physiologically implausible. While there is no universal agreement what val-
ues should be taken as implausible (Tooze et al., 2007), Beasley et al. (2008) state that reported
intakes of less than 500 calories for women and less than 800 calories for men are implausibly
low. Here we took their definition, and this yields about 4% missingness of the Yi j in the data we
analysed.

We considered the logistic regression model

logit(Yi j ) = β0 + βx1 Xi j1 + βx2 Xi j2 + βz Zi ( j = 1, . . . , 4; i = 1, . . . , 1737),

where Zi denotes the age for subject i , and Yi j , Xi j1 and Xi j2 represent the response, and intakes
of vitamins A and C for subject i at interview j , respectively.

Vitamins A and C are measured with substantial random error. We set Wi j1 to be the loga-
rithm of 0·005 plus the standardized reported vitamin A intake, Wi j2 to be similarly defined for
reported vitamin C intake and Zi to be the baseline age in years divided by 100. The transforma-
tion on the raw scales of the vitamins A and C values allows us to assume a normal error distri-
bution, with the Kolmogorov–Smirnov test yielding a p-value of around 0·2. However, the study
does not have sufficient information to estimate the covariance matrix of the measurement errors
directly. To obtain an approximate assessment, we first treated the four measurements of the vita-
mins A and C intakes as repeated measurements of an average intake value, and obtained that
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Table 2. Results for data analysis of § 5 using (2) as the measurement error structure
est s.e. p-value est s.e. p-value est s.e. p-value est s.e. p-value

Naive No error adjusted No missing adjusted Our method
β0 0·21 0·14 0·14 0·21 0·15 0·14 0·31 0·15 0·04 0·26 0·16 0·09
βx1 0·17 0·03 0·00 0·12 0·03 0·00 0·39 0·07 0·00 0·28 0·07 0·00
βx2 −0·12 0·03 0·00 −0·13 0·03 0·00 −0·31 0·06 0·00 −0·31 0·07 0·00
βz 0·41 0·39 0·29 0·42 0·39 0·29 0·60 0·40 0·13 0·57 0·41 0·16
est, the estimate; s.e., the standard error of the estimate; p-value, the p-value when testing whether the corresponding
coefficient is zero; Naive ignores both missing data and measurement error; No error adjusted accommodates missing
data but ignores the measurement error; No missing adjusted adjusts for measurement error but ignores the missing
data; Our method accounts for both features.
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Fig. 2. Sensitivity analyses for the empirical example in § 5. (a) contains estimates
of βx1 (solid curve) and 95% confidence intervals (dashed curves), displayed as
a function of the correlation coefficient ρ. (b) contains the same information for

βx2.

σ 2
1 = 0·90, σ 2

2 = 0·84 and their correlation ρ = 0·36. Considering that the estimated variances we
have obtained in fact contain two sources of variability, the variability of the true vitamin intake
near the time of the visits and the measurement error variability, yet we do not have sufficient
information to separate these two, we decided to allocate half to each, so that the measurement
error variances are 0·45 and 0·42. Using this, we performed the corresponding analyses, and the
results are reported in Table 2. The analysis shows a significantly positive correlation between
vitamin A intake and over-consumption of fat, while this association is negative for vitamin C.
Considering that common sources of vitamin A are meat and animal organs, while that of vitamin
C are vegetables and fruits, these results are perhaps plausible. The consequence of ignoring the
measurement error is attenuation towards zero, while ignoring the missingness seems to result in
slightly overestimating the covariate effects.

We also conducted a sensitivity analysis to assess how different degrees of measurement error
correlation may affect estimation of the parameters. In this analysis, we fixed the error variances
as described above, and let the correlation vary from 0 to 1. Figure 2 shows that the error cor-
relation does have an effect on the quantitative level of the estimation, although its effect is not
dramatic and does not alter the qualitative aspects.
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6. EXTENSIONS

We have emphasized the marginal generalized linear model together with normally distributed
measurement error and corrected scores for functional measurement error estimation. However,
our basic methodology applies far more generally. For example, suppose that marginally, we
propose a parametric model at each time-point for Yi j given (Xi j , Zi j ) in terms of a parameter B.
Suppose further that one has a marginal parametric model for the measurement error in Wi j given
(Xi j , Zi j ), in terms of parameters ν j that are either known or estimated at the n1/2-rate: this does
not have to be an additive measurement error model, nor does it have to be a normal measurement
error model. Then Tsiatis & Ma (2004) show how to construct an unbiased estimating function
for B based on the observed data, generically denoted here as K(Yi j , Wi j , Zi j ,B, ν1, . . . , νm).
Replacing G∗

i j (Yi j , Wi j , Zi j ,B) with K(Yi j , Wi j , Zi j ,B, ν1, . . . , νm), all our developments in
§ 3 carry through. Hall & Ma (2007) show how to extend this to the case that the error model is
additive but estimated nonparametrically through replication. Even more generally, as long as one
can construct a marginal, unbiased estimating function, then our approach applies. Furthermore,
if a large number of covariates are present and there is need to select a subset from it, the method
in Ma & Li (2010) can be used to perform variable selection and estimation simultaneously.

Although extensive research has been directed to analysis of longitudinal data with either
missing values or measurement error, those methods cannot be immediately applied to handle
data with both features. Simultaneously, addressing missingness and measurement error is more
challenging because these two characteristics could interactively affect inference about response
parameters. Our method has applications in a broad variety of settings. It can be directly applied to
deal with correlated data, such as clustered data and multivariate data, with missing observations
and covariate measurement error. Our method can also be readily modified to handle data with
more complex association structures, such as longitudinal data arising in clusters or longitudinal
multivariate data.
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APPENDIX

A1. Proof of Lemma 1

We consider a simple counterexample where m = 2 and there is no Z . Suppose that Yi j = Xi jβ + εi j ,
j = 1, 2, (εi1, εi2)

T ∼ N (0, �ε) and (εi1, εi2)
T is independent of (Xi1, Xi2)

T. Then the Type I assumption
holds for the regression mean of Yi j on (Xi1, Xi2), j = 1, 2. Suppose further that (Xi1, Xi2) ∼ N (0, I )
where I is the 2 × 2 identity matrix, and that (Wi1, Wi2)

T = (Xi1, Xi2)
T + (ei1, ei2)

T where (ei1, ei2) ∼
N (0, �e) with �e being not diagonal, and (Xi1, Xi2)

T and (ei1, ei2)
T are independent. Then it is eas-

ily seen that as long as �e is not diagonal and β |= 0, the Type I assumption fails for the observed
data. For example, since Xi j has mean zero, cov(Yi1, Yi2) = β2 I + �ε , cov(Wi1, Wi2) = I + �e and
cov{(Yi1, Yi2), (Wi1, Wi2)} = β I . The joint covariance matrix of (Yi1, Yi2, Wi1, Wi2) is

� =
(

β2 I + �ε β I
β I I + �e

)
.
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Hence, E{(Yi1, Yi2)
T | (Wi1, Wi2)} = β(I + �e)

−1(Wi1, Wi2)
T. If the diagonal elements of �e both equal

1, and if the correlation coefficient of ei1 and ei2 is ρe, then the regression mean of Yi1 on (Wi1, Wi2) is
β(2Wi1 − ρeWi2)/(4 − ρ2

e ), not a function of Wi1 alone. This proves Lemma 1.

A2. Error effect on the model for the missing data process

Lemma 2 follows from the following example that the underlying missingness process is missing-at-
random in Xi but not in Wi . There are no Zi covariates. Consider a case with drop-outs which is modelled
by a probit regression model

pr(Ri j = 1 | Yi , Xi ) = F(α0 + αyYi, j−1 + αx Xi j ), (A1)

where F(·) is the standard normal cumulative distribution function. Conditional on Yi and Xi , the Ri j

are assumed to be independent. Assume that conditional on Xi , the Yi j are independent having a N (β0 +
βx Xi j , σ

2) distribution, and that the Wi j are independent having a N (Xi j , σ
2
e ) distribution. Assume that

the Xi j are independent having a marginal distribution N (μx , σ
2
x ).

Now we show that although (A1) corresponds to missing at random if Xi were available, the conditional
distribution of the missing data indicator given the observed surrogate Wi is not missing-at-random. Indeed,
with the assumption analogous to nondifferential error that pr(Ri j = 1 | Yi , Xi , Wi ) = pr(Ri j = 1 | Yi , Xi ),
we obtain

pr(Ri j = 1 | Yi , Wi ) =
∫

pr(Ri j = 1 | Yi , Xi ) f (Xi | Yi , Wi ) d Xi

=
∫

F(α0 + αyYi, j−1 + αx Xi j ) f (Xi j | Yi j , Wi j ) d Xi j .

Since Xi j | (Yi j , Wi j ) ∼ N (a + bYi j + cWi j , d2) for some constants a, b, c, d that are determined by
β0, βx , σ

2
x , σ 2

e , σ 2 and μx , then using the identity
∫

(1/γ )F(δ + u)φ(u/γ ) du = F{δ/(1 + γ 2)1/2} for con-
stants γ and δ, where φ(·) is the standard normal density function, we can show that pr(Ri j = 1 | Yi , Wi ) =
F[{α0 + αyYi, j−1 + αx (a + bYi j + cWi j )}/(1 + α2

x d2)1/2]. The dependence of pr(Ri j = 1 | Yi , Wi ) on the
response measurement Yi j at time-point j shows that the missingness probability depends on a future unob-
served response component, suggesting that a missing-at-random structure is not true for the conditional
distribution pr(Ri j = 1 | Yi , Wi ).

A3. Sketch of the arguments for the asymptotic theory

Let Hi (B, α) = {�T
i (B, α), ST

i (α)}T. Then E{Hi (B, α)} = 0. By Newey & McFadden (1993,
Theorem 3.4), under standard regularity conditions there is a unique solution (B̂, α̂) to the equation∑n

i=1 Hi (B, α) = 0 with probability approaching 1, that satisfies n1/2{(B̂ − B)T, (α̂ − α)T}T =
−[E{∂ Hi (B, α)/∂(BT, αT)}]−1n−1/2

∑n
i=1 Hi (B, α) + op(1). For the estimator B̂ of central interest,

we have n1/2(B̂ − B) = −�−1n−1/2
∑n

i=1 Qi (B, α) + op(1). The central limit theorem then leads to the

asymptotic distribution for n1/2(B̂ − B).
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