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The human liver contains specialized subsets of mononuclear phagocytes (MNPs) and T cells, but whether these have
definitive features of tissue residence (long-term retention, lack of egress) and/or can be replenished from the circulation
remains unclear. Here we addressed these questions using HLA-mismatched liver allografts to discriminate the liver-resident
(donor) from the infiltrating (recipient) immune composition. Allografts were rapidly infiltrated by recipient leukocytes,
which recapitulated the liver myeloid and lymphoid composition, and underwent partial reprogramming with acquisition of
CD68/CD206 on MNPs and CD69/CD103 on T cells. The small residual pool of donor cells persisting in allografts for over a
decade contained CX3CR1"/CD163"/CD206" Kupffer cells (KCs) and CXCR3" tissue-resident memory T cells (Tgy). CD8* Tgm
were found in the local lymph nodes but were not detected egressing into the hepatic vein. Our findings inform organ
transplantation and hepatic immunotherapy, revealing remarkably long-lived populations of KCs and Tgy in human liver,
which can be additionally supplemented by their circulating counterparts.

Introduction
Tissue-specific leukocytes play vital roles in shaping the local
immune landscape, mediating protective and pathogenic re-
sponses to a variety of threats. Characterization of their
adaptations to specific niches will allow tailored manipulation
to optimize frontline immunosurveillance while preserving
organ integrity. It has long been recognized that each tissue
has its own specialized population of macrophages adapted to
perform unique functions, such as scavenging surfactant in
the lungs and microbial products or iron in the liver (Davies
et al., 2013; Ginhoux and Guilliams, 2016; Guilliams et al.,
2018). More recently, a number of innate-like tissue-
resident lymphocytes have also been recognized, as well as
large populations of classical afTCR memory CD4* and CD8*
T cells compartmentalized in both lymphoid and nonlymphoid
organs, that play critical roles in pathogen and tumor sur-
veillance (Fan and Rudensky, 2016; Masopust and Soerens,
2019; Szabo et al., 2019).

The liver acts as a central hub for many systemic metabolic
pathways and plays a key tolerogenic role in its position as a

firewall between the portal venous blood from the gut and the
systemic circulation (Protzer et al., 2012). It contains the largest
population of macrophages in the body, known as Kupffer cells
(KCs), which are typically identified by their characteristic
intra-sinusoidal location and distinct morphology (Krenkel
and Tacke, 2017). The intravascular localization of KCs and
the specialized liver sinusoidal endothelium equip this organ
with a unique capacity to prime T cells; KCs are able to prime
effective CD8* T cells, whereas priming by liver sinusoidal
endothelium or hepatocytes leads to dysfunctional responses
(Bénéchet et al., 2019; Limmer et al., 2000). Murine fate-
mapping studies have identified hepatic KCs as fetal yolk
sac-derived, sessile macrophages that are stable and long-
lived in homeostatic conditions (Schulz et al., 2012; Yona
et al., 2013). However, when murine liver-resident macro-
phages are experimentally depleted, the space in the niche can
then be efficiently replenished by peripheral bone marrow-
derived monocytes that acquire KC features (Klein et al., 2007;
Scott et al., 2016). Signals from the liver niche that are able to
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impose a KC-type phenotype on incoming mononuclear
phagocytes (MNP) have begun to be identified (Sakai et al.,
2019). Recent single-cell RNA-sequencing profiling of human
fetal and adult livers (Aizarani et al., 2019; MacParland et al.,
2018; Popescu et al., 2019; Ramachandran et al., 2019) has
revealed distinct clusters of macrophages, with some tran-
scriptional overlap with the hepatic yolk sac and peripheral
infiltrating subsets defined in mice. However, the local lon-
gevity and/or peripheral replenishment of hepatic macro-
phages in humans remain unclear.

Similarly, approaches such as intravital imaging and para-
biosis have defined the capacity of a subset of murine memory
CD8* T cells to mediate resident hepatic immunosurveillance,
patrolling the sinusoidal vasculature in a CXCR6-dependent
manner (Fernandez-Ruiz et al., 2016; Tse et al., 2014). We have
identified an analogous subset of CXCRéM CD69*CD103*CD8*
T cells in the human liver that are transcriptionally, phenotyp-
ically, and functionally distinct from memory CD8* T cells in the
periphery (Pallett et al., 2017). This liver-compartmentalized
population has been assumed to represent bona fide CD8*
tissue-resident memory T (Tgy) cells on the basis of its core
signatures (Kumar et al., 2017; Pallett et al., 2017), but it has not
been possible to formally determine whether it has the capacity
for long-lived tissue retention, nor whether it can be replenished
from the periphery.

Thus, studies in mice have allowed considerable insights into
the tissue residence, longevity, and replenishment of myeloid
and lymphoid cell types in different organs, including the liver.
The human counterparts of liver-resident macrophages and Try
cells have begun to be identified and profiled. An understanding
of the longevity of these frontline human liver sentinels and
their potential for egress or replenishment from peripheral
subsets is needed in order to harness them for immunotherapy.
To address this, we took advantage of the fact that the liver is
typically transplanted without human leukocyte antigen (HLA)
matching, allowing donor (liver-resident) and recipient (blood-
derived) leukocytes extracted from allografts months to years
later to be distinguished by HLA staining and flow-cytometric
analysis.

Results and discussion

Distinguishing the resident and infiltrating immune landscape
of the liver using HLA-mismatched allografts

We used HLA-specific monoclonal antibodies to distinguish
donor and recipient leukocytes from liver allografts explanted
months to years after transplantation into HLA-mismatched
individuals (schematic, Fig. 1 a; gating strategy, Fig. Sl a; ex-
ample HLA-staining, Fig S1 b). Liver allograft samples were
available from between 8 mo and >11 yr after initial transplan-
tation (at time of retransplantation for recurrent disease or
complications other than chronic rejection, see Table Sl for
patient characteristics). This approach allowed us to mark liver-
resident progeny of known minimum longevity (using donor-
HLA and time since transplant) and to investigate the influence
of liver homing on blood-derived cells (recipient-HLA cells in-
filtrating the liver allograft). The majority of the intrahepatic
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immune landscape was replaced with recipient-derived leuko-
cytes at the earliest time point examined (8 mo after transplan-
tation, Fig. SI c). However, a small population of donor-derived
leukocytes persisted within the liver, even in the two allografts
examined ~11 yr after initial transplantation. There was no re-
lationship between the frequency of persisting donor-origin
leukocytes and the time since transplantation in this small co-
hort (Fig. SI c). By contrast, there were negligible donor-derived
leukocytes detectable in the blood of any of the recipients (<0.1%
in all, representative stains in Fig. S1 b), arguing against systemic
chimerism accounting for intrahepatic persistence. The extensive
replacement of donor-derived leukocytes may have been accel-
erated by their rapid loss in the transplant setting, creating space
in the liver niche. Depletion of donor leukocytes could be facili-
tated by the intravascular localization of many immune pop-
ulations in the liver, allowing large numbers to be flushed out by
the organ perfusion that is performed before transplantation
(Pallett et al., 2017). This setting of organ transplantation with
recurrent liver disease and/or allogeneic responses precluded
direct extrapolation to the normal homeostatic turnover of in-
trahepatic populations. Instead, it provided an opportunity to
assess immune cell subsets able to withstand these adverse
challenges and persist long-term within the liver, and the po-
tential for repopulation from the periphery when there is space in
the niche.

We noted that within the small persisting pool of donor
leukocytes, there was preferential preservation of the myeloid
compartment (separated using lineage markers CD66b/CD56/
CD19/CD20/CD3 and HLA-DR; Fig. 1 b). Within the donor mye-
loid pool, CD14*CD16~ MNP survived long-term, whereas con-
ventional dendritic cells (DCs; CD11c*CD123-) and plasmacytoid
DCs (CD1lc"CD123*) were already undetectable in the earliest
sampled allograft (Fig. 1 ¢ and Fig. S1 d). However, recipient-
derived myeloid cells were able to repopulate the liver with the
spectrum of MNP and DC seen in control nontransplanted livers
and peripheral blood (Fig. 1 c and Fig. S1 d).

By contrast, the donor lymphoid compartment contained
persistent populations of T cells (CD3*CD567), natural killer
(NK) cells (CD3-CD56*) and NK-like T cells (CD3*CD56*; Fig. 1d).
Infiltrating recipient lymphocytes equilibrated to reflect the
cellular composition of control nontransplanted livers, with a
relative enrichment of NK and NK-like T cells compared with
blood (Fig. 1 d). These data suggested that the recipient-
derived fraction receives cues from the liver microenviron-
ment to recapitulate the composition of the endogenous
intrahepatic pool. To analyze this further, we compared the
ratio of CD4* to CD8* subsets within the CD3*CD56~ T cell
fraction, since a bias toward CD8* T cells is a well-recognized
feature of the liver (Norris et al., 1998). As expected, per-
sisting T cells of donor origin showed a striking enrichment of
CD8* T cells compared with blood. Interestingly, recipient-
derived T cells infiltrating the liver developed a similar en-
richment of CD8* over CD4* T cells to that seen in healthy
liver and the donor-derived fraction (Fig. 1 e). Taken together,
these data pointed to inherent cues in the liver microenvi-
ronment able to tightly regulate the composition of the lym-
phoid pool. This contrasted with the more biased maintenance
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of the myeloid compartment, with selective long-lived re-
tention of a CD14*CD16~ MNP subset.

The human hepatic myeloid compartment contains a
long-lived CX3CR1MCD163"CD14* subset and can be
repopulated with blood MNPs

We next aimed to better define the nature of the small popula-
tion of donor-derived CD14*CD16- MNPs that was still detectable
after more than 10 yr in the liver allograft, and to ascertain
whether the large fraction of peripheral, infiltrating MNPs could
acquire the same phenotype. Where sufficient cells were avail-
able, we compared the phenotypic profile of the long-lived
donor-derived CD14*CD16- MNP population to their counter-
parts repopulating the liver from the recipient circulation, as
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well as those present in control nontransplant livers and blood.
Donor and recipient-derived intrahepatic MNPs expressed the
prototypic KC marker CD68 at uniformly high levels (by per-
centage and mean fluorescence intensity [MFI| expression;
Fig. 2 a). CD68 was also seen in control nontransplanted liver
MNPs but was minimally expressed on CD14*CD16~ MNP from
the blood, implying that a population of recipient blood MNP
had acquired strong expression of this prototypic marker within
months of infiltrating the liver. This is in accordance with pre-
vious immunofluorescence staining of CD68 on recipient-
derived intra-sinusoidal cells in human liver transplants (Ng
et al., 2003) and with the recent demonstration of reprogram-
ming of infiltrating MNPs within the murine liver (Ng et al.,
2003; Scott et al., 2016; Sakai et al, 2019). Thus, CD68
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Figure 2. Phenotypic comparison of long-lived donor-derived and infiltrating recipient-derived MNP. (a-e) Representative flow-cytometric plots and
summary data showing the expression (MFI and %) of (a) CD68 (n = 3; three independent experiments); (b) CCR2 (n = 3; three independent experiments);
(c) CX3CR1 (n = 3; three independent experiments); (d) CD163 (n = 3; three independent experiments); and (e) CD206 (n = 3; three independent experiments) on
donor (blue) or recipient (red) origin “classical” Lin"HLA-DR*CD14*CD16~ MNPs within allografts, compared with control, nontransplanted liver tissue samples
obtained during surgical removal of colorectal carcinoma metastases or HCC (liver; n = 5; five independent experiments; gray) and peripheral blood (peripheral;
n = 9; nine independent experiments; gray) “classical” Lin"HLA-DR*CD14+*CD16~ MNP. Error bars, mean + SEM.

represents a marker acquired by MNP upon entry into the hu-
man liver, but not one that can be used to distinguish resident
embryonic progenitor-derived macrophages from infiltrating
bone marrow-derived MNPs.

We therefore investigated differential expression of other
flow-cytometric markers between donor- and recipient-derived
CD14*CD16~ MNPs. The chemokine receptor CCR2 drives
liver homing of scar-associated MNPs (Krenkel et al., 2018;
Ramachandran et al., 2019) and has been recently shown to
differentiate functionally distinct subsets of macrophages
within the transplanted human heart, with the CCR2- fraction
representing the bona fide tissue-resident subset and the CCR2*
a proinflammatory infiltrating MNP (Bajpai et al., 2018). How-
ever, CCR2 was not discriminatory in the transplanted liver,
with uniform expression found on blood, nontransplant livers,
recipient- and donor-derived MNPs within the allografts, and a
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tendency for highest expression on the latter (Fig. 2 b). By
contrast, the fractalkine receptor CX3CR1, required for the em-
bryonic seeding of murine tissue-resident macrophages in-
cluding KCs (Mass et al., 2016; Yona et al., 2013), was clearly
enriched on long-lived donor-derived human MNPs, compared
with the low expression observed on recipient infiltrating
counterparts or blood MNP (Fig. 2 c).

By examining transcripts distinguishing tolerogenic and
proinflammatory CD68* subsets in overlaid gene lists of recent
human liver MNP single-cell RNA profiles (Aizarani et al., 2019;
MacParland et al., 2018; Ramachandran et al., 2019), we selected
the mannose receptor CD206 and the scavenger receptor CD163
as candidates for further flow-cytometric analysis. Of 30 genes
shared between these lists, CD163 was among the 22 genes also
identified in the macrophage cluster of human fetal liver tran-
scripts (Popescu et al., 2019), further pointing to its potential
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utility in marking embryonic KCs. Consistent with this, donor-
derived MNPs tended to express more CD206 and CD163 (fre-
quently coexpressed with CX3CR1) than their recipient-derived
liver-infiltrating counterparts (Fig. 2, d and e; and Fig. S2, a and
b). Preliminary data also revealed preferential expression of
HMOX1 by donor compared with recipient-derived MNPs (Fig.
S2 c), consistent with the role of KCs in iron metabolism (Scott
and Guilliams, 2018; Scott et al., 2016); future studies could in-
clude additional emerging hepatic macrophage markers such as
Timd4, MARCO, VISG4, and CD207 (Aizarani et al, 2019;
MacParland et al., 2018; Mass et al., 2016; Popescu et al., 2019;
Ramachandran et al., 2019; Sierro et al., 2017). Taken together,
these data show for the first time that CD68-expressing MNPs
within the adult human liver include a long-lived and/or self-
renewing CD163MCD206MCX;CR1M subset, and can be supplemented
by peripheral MNPs that undergo phenotypic reprogramming to
partially resemble tissue-resident MNPs.

The hepatic lymphoid compartment contains long-lived global
and virus-specific Tgy that can be replenished from the blood
We recently identified a population of CD8* T cells in the human
liver with phenotypic and functional features of CD8* Tgry
(Pallett et al., 2017). To test the longevity of human liver CD8*
Trm we examined their persistence within the donor-derived
pool of leukocytes using the same HLA-mismatched allografts
characterized above. In all allografts examined, we were able to
detect a persisting population of CD8* T cells derived from the
donor liver (2-6% of CD8* T cells; Fig. S3 a). This donor-derived
population tended to account for a lower proportion of the total
intrahepatic CD8" T cells the longer the duration of the allograft,
but was still detectable in the two livers that had been trans-
planted 11 yr previously (Fig. S3 a), revealing for the first time
the remarkable longevity of human liver-resident CD8* T cell
progeny in vivo. The majority of donor-derived CD8* T cells
persisting in the allograft were either CD69*CD103* or
CD69*CD103- (Fig. 3 a), both of which are known to be charac-
terized by core CD8* Tgry transcriptional and functional sig-
natures, although the latter are not completely excluded from
the circulation (Kumar et al., 2017; Pallett et al., 2017). Such
extreme longevity has also been demonstrated for liver-resident
NK cells (Cuff et al., 2016), while human intestinal and lung
allograft Tgy have been documented to survive at least 1 yr after
transplantation (Bartolomé-Casado et al., 2019; Snyder et al.,
2019).

We then looked within the large recipient-derived fraction to
investigate whether T cells infiltrating from the circulation
could acquire a tissue-resident phenotype and replenish intra-
hepatic CD8* Tgy. Recipient-derived CD8* T cells infiltrating the
liver were capable of acquiring high levels of CD69, and a pro-
portion coexpressed CD103 (Fig. 3 a). These data suggest that
T cells that circulate within the liver sinusoids can receive sig-
nals from the local microenvironment that up-regulate expres-
sion of the retention molecules CD69 and CD103, compared with
recipient CD8* T cells in the blood (Fig. 3 a). As expected,
however, there tended to be a lower proportion of CD8* Tgy in
the recipient-derived pools than donor-derived pools. Moreover,
the blood-derived CD8* Tgy showed a less definitive residency
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profile, with lower levels of the liver-homing chemokine re-
ceptor CXCR3 than the donor-derived CD8" Tgy (Fig. 3 b).
CXCR3M CD8* Tgy may have been preferentially enriched
among the small persisting donor pool by being better equipped
for retention following the pretransplant perfusion procedure
(which removes large numbers of CD8" Tgyy; Pallett et al., 2017),
and/or equipped to receive additional signals for long-term
survival. Allograft studies in the intestine and lung have like-
wise found that circulating T cells replenishing the resident pool
have incomplete acquisition of the residency program (Bartolomé-
Casado et al., 2019; Snyder et al., 2019).

A small population of CD4* T cells persisting from the donor
leukocyte pool was also detectable in all liver allografts. The
majority of this long-lived population expressed high levels of
CD69 (Fig. 3 c), with minimal CD103 expression, in line with the
phenotype of CD4* Tgy in other human tissues (Turner and
Farber, 2014). As with CD8* T cells, a fraction of the periphe-
ral CD4* T cells infiltrating the liver allograft up-regulated CD69,
suggestive of acquisition of tissue residency (Fig. 3 c).

To study the potential for virus-specific T cells to acquire
long-term liver residence and/or be supplemented by peripheral
responses, we took advantage of access to an HLA-mismatched
liver from a donor with chronic hepatitis B virus (HBV) infection
(reactivated following immunosuppression and only partially
suppressed with antivirals). A population able to bind a panel of
HLA-A2/HBV peptide multimers (and not binding an irrelevant
peptide-loaded HLA-A2 multimer) was detectable among the
small fraction of CD8* T cells of donor (HLA-A2*) origin com-
partmentalized in the liver 11 yr after transplantation (Fig. 3 d).
In addition, a small percentage of the recipient-derived (HLA-
A27) CD8" T cells in both the blood and liver were able to bind
the HLA-A2/HBV peptide multimer panel (Fig. 3 d). Donor, and
to a slightly lesser extent, recipient intrahepatic (but not pe-
ripheral) HBV multimer-binding cells displayed a CD8* Tgym
phenotype (Fig. 3 d), compatible with local antigen recognition
(Kim et al., 2020). Donor and recipient-derived CD8* T cells
directed against a CMV epitope presented by the donor HLA
were also identified in another HLA-mismatched allograft;
recipient-derived infiltrating CMV-specific CD8* T cells did not
acquire a Ty phenotype, suggesting a lack of ongoing cognate
antigen recognition within the liver (Fig. 3 e). Although pre-
liminary, these findings suggest long-term persistence of donor-
derived virus-specific CD8* Tgy and potential supplementation
by recipient responses. The T cells we detected binding multi-
mers covering viral epitopes restricted by allogeneic HLA could
represent responses primed within the infected allograft (Rosen
et al., 2004) or the commonly recognized cross-reactivity be-
tween allograft-specific and virus-specific memory T cells (Amir
et al., 2010).

Taken together, these data show that tissue immunity can be
sustained by the progeny of, and/or long-lived, local intrahepatic
populations of CD4* and CD8* Tgry, supplemented by newly
recruited T cells from the blood that acquire at least some of the
characteristics of Try. The longevity of human Ty supports
their potential therapeutic utility in providing sustained im-
munosurveillance of residual virus (e.g., in the functional cure
of HBV) or tumor.
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Figure 3. Characterization of long-lived Tgy and their replenishment from the recipient-derived leukocyte pool. (a) Summary data and representative
flow-cytometric plots of CD69*CD103*/~ CD8* Ty within the donor-derived (blue) and recipient-derived (red) population (gated on live, singlet,
CD45*CD3*CD56CD19-CD47; n = 6; six independent experiments) compared with peripheral blood taken at time of allograft removal (peripheral; n = 5; five
independent experiments), using the gating strategy and HLA-class | antibody stain exemplified in Fig. S1, a and b. (b) CXCR3 expression (MFI; n = 6) on donor-
and recipient-derived CD69*CD103* CD8* Tgy cells. (c) Summary data and representative flow-cytometric plots of CD4* Tgy within the donor- and recipient-
derived leukocytes (gated on live, singlet, CD45*CD3*CD56-CD19-CD87; n = 6; six independent experiments) compared with peripheral blood taken at time of
allograft removal (peripheral; n = 5; five independent experiments). (d and e) Identification and assessment of retention signals CD69 and CD103 on peripheral
and intrahepatic CD8* T cells specific for (d) HBV in a case of reactivated HBV infection within the allograft (further details in Table S1), or (e) CMV in a separate
donor. Cells were stained with a panel of immunodominant epitope-based HLA-A*02-HBV or HLA-A*02-NLV peptide dextramers, and gated using an HLA-
A*02 irrelevant peptide dextramer (irrel. dex.). Error bars, mean + SEM.

Sampling hepatic vasculature and lymph nodes to test for
egress of hepatic CD8* Tgyn

The inability to detect CD69*CD103*CD8* T cells when sampling
blood taken from peripheral veins (Pallett et al., 2017) is highly
suggestive that they are unable to egress, representing a key
characteristic of tissue residency. However, it is difficult to de-
finitively conclude from this that they are completely com-
partmentalized in the human liver. CD8* Tgy leaving the liver
vasculature at low frequency would be difficult to detect fol-
lowing dilution in the peripheral circulation. We therefore made
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use of unusual access to the hepatic vasculature, allowing direct
sampling of hepatic venous blood, to test for low-level egress of
CD8* Ty (Fig. 4 a). Samples taken from 13 patients with liver
cirrhosis undergoing hepatic vein catheterization failed to detect
any CD69*CD103*CD8* Tgy. Inflation of a balloon to temporarily
obstruct the hepatic venous outflow permitted concentrated sam-
pling of the accumulated cellular contents effluxing hepatic sinus-
oids. This procedure again failed to reveal any low-level egress of
CD69*CD103*CD8* Tgy from the hepatic sinusoids (with frequen-
cies of <1%, equivalent to the matched peripheral blood; Fig. 4 b).
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Figure 4. Assessment of egress of CD8* Tgy, in vasculature and draining lymph nodes. (a) Schematic showing experimental sampling of peripheral blood
(A) compared with liver sinusoidal blood taken following hepatic vein catheterization, before (B) and during (C) balloon inflation to temporarily occlude the vein.
(b) Summary data of CD69* CD103* CD8* Tgy frequencies (gated on live, singlet, CD45*CD3*CD56-CD19-CD4; n = 13; 13 independent experiments) matched
peripheral blood and liver sinusoidal blood + balloon occlusion. (c) Schematic showing experimental sampling of peripheral (A), hepatic (B) and portal venous
(C) blood of individuals undergoing a TIPS procedure. (d) Summary data of CD69*CD103* CD8* Tgy in matched peripheral, hepatic, and portal vein samples
(n = 3; three independent experiments). (e) CD69*CD103*/~ CD8* Try in matched peripheral blood, resected liver tissue and hepatic hilar lymph nodes (n = 3;
three independent experiments). (f) CXCR6 expression (MFI) on CD69*CD103* CD8* Ty or CD69*CD103~ CD8* Ty isolated from liver or hepatic hilar lymph
node (compared with peripheral blood, where possible; n = 3; three independent experiments). Dotted line on figures represents the mean frequency of CD8*
Trm within control liver tissue (as previously published in Pallett et al., 2017). Error bars, mean + SEM.
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The liver is the only organ in the body that receives blood
from a dual source; in addition to the hepatic artery supply, a
large proportion of its blood is delivered by the portal vein,
draining directly from the intestinal and splenic veins. Leuko-
cytes coming into the liver via the portal vein could therefore
have transited through the gut first, which is also known
to contain a large population of CD69*CD103*CD8* Tgm
(Bartolomé-Casado et al., 2019; Szabo et al., 2019). Following
hepatic vein sampling, the transjugular intrahepatic portosys-
temic shunt (TIPS) procedure (performed in patients with liver
cirrhosis) then allowed access to blood samples from the portal
vein (schematic, Fig. 4 c). Portal and hepatic venous sampling
again gave the same phenotypic profile as matched peripheral
blood, with no detectable CD8* Try egressing from the gut or liver
(Fig. 4 d). These data therefore provide further support for the
tissue sequestration of human hepatic and intestinal CD8* Ty,
suggesting they are unable to egress into the draining vasculature.

Although hepatic CD8* T cells can reside within the sinus-
oidal vasculature (Fernandez-Ruiz et al., 2016), if some trans-
migrate through the hepatic endothelium, they would be
expected to exit the liver via the lymphatic drainage into local
lymph nodes, rather than directly into the hepatic vein. We
therefore examined hepatic hilar (liver-draining) lymph nodes
for evidence of CD8* Try. In three cases we were able to si-
multaneously extract leukocytes from blood, liver tissue, and
hepatic hilar lymph nodes for flow-cytometric assessment
(Fig. 4 e). In all cases, CD69*CD103*CD8" Tgy were detectable
in matched liver and these major liver-draining lymph nodes
(2-14% of CD8* T cells), but not in blood. The detection of CD8*
Trm in a liver-draining lymph node is in line with recent murine
data showing the capacity for emigrants from nonlymphoid
tissues to selectively acquire residence in the local organ-
draining lymph node (Beura et al., 2018). However the CD8*
Trm within the hepatic hilar lymph nodes lacked the expression
of CXCR6 seen on those within the liver (Fig. 4 f); this suggested
that either CD8* Ty capable of migrating from the liver to the
draining lymph node down-regulate CXCR6, or those within the
lymph node represented an independent population that had
developed residence in situ, in line with the identification of
CD8* T cells with a tissue-resident signature in many human
lymphoid sites (Buggert et al., 2018; Kumar et al., 2017; Miron
et al., 2018). Future studies could use TCR clonotype tracking of
donor allograft T cells in draining lymph nodes to distinguish
these two scenarios.

In summary, we have used HLA discordant donor-recipient
samples to probe the turnover of the liver myeloid and lymphoid
compartments in parallel. Within this small clinically hetero-
geneous cohort, we were able to characterize some consistent
features of the intrahepatic donor and recipient immune
landscape. The vast majority of liver leukocytes were rapidly
replenished from the blood, with recapitulation of the charac-
teristic composition of the liver myeloid and lymphoid pools.
However, despite the setting of disrupted homeostasis resulting
from transplantation, we were able to detect small long-lived
populations of liver MNPs and T cells. Subsets of MNP (CX;CR1Y/
CD163%/CD206MCD68*) and T cells (CXCR3MCD69*CD103+-), including
antigen-specific T cell responses, had the capacity for longevity/
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self-renewal for more than a decade in the human liver. In-
coming peripheral MNPs and T cells could acquire some features
of the persistent donor-derived populations (CD68/CD206 and/
or CD69+CD103, respectively) to replenish the resident pools,
and Tgry were detectable in the local draining lymph nodes but
not egressing into the hepatic vasculature. Our findings on the
dynamics of the human liver immune landscape, confirming
prototypic residency features of key frontline immune sentinels
(KCs and T cells), have direct implications for understanding
graft tolerance and advancing hepatic immunotherapy (Beura
et al., 2017).

Materials and methods

Ethical approval

This study complies with the declaration of Helsinki and was
approved by local ethics boards: (1) UK: National Health Service
Research Ethics Committee (REC) for the Royal Free Hospital
(RFH); and (2) Spain: National Board Comite Etico De Inves-
tigacion Clinica for Hospital Clinic de Barcelona.

All individuals recruited gave written informed consent be-
fore inclusion in the study. Tissue and peripheral blood samples
were obtained through the Tissue Access for Patient Benefit
scheme at the RFH, approved by the University College London
(UCL) RFH BioBank Ethical Review Committee (UCL/RFH Bio-
bank; REC reference 11/WA/0077) and included samples from
individuals undergoing retransplantation (i.e., receiving a sec-
ond liver transplant) for disease recurrence where the primary
donor organ was HLA-mismatched; control nontransplanted
liver tissue and paired peripheral blood from individuals un-
dergoing liver resection surgeries for colorectal metastatic liver
disease; and hepatic hilar lymph nodes (surplus to diagnostic
requirements) removed at the time of organ transplantation.
Blood samples obtained during hepatic vein catherization, with
and without additional balloon inflation to occlude the vein,
were obtained from the Hospital Clinic de Barcelona (approval
reference HCB/2017/0806). Further venous blood samples were
obtained from a peripheral vein, the hepatic vein and the portal
vein from individuals undergoing the TIPS procedure at the RFH,
approved by UCL/RFH Biobank (REC reference 16/WA/0289).

Sample collection
Explanted liver tissue samples obtained from patients under-
going retransplantation (i.e., receiving a second liver transplant)
were examined in the study where there was an HLA class I
mismatch between the initial liver donor and recipient, as de-
termined by HLA-haplotyping PCR by A. Nolan (National Health
Service, London, UK) or MRC Weatherall Institute of Molecular
Medicine Sequencing Facility (Oxford, UK). All transplant re-
cipients received a standard immunosuppressive regimen of
FK506 (Prograf). Matched peripheral blood samples were col-
lected at the time of retransplantation for peripheral blood
mononuclear cell (PBMC) isolation. Full details of transplant
recipients and donors including disease pathologies and treat-
ment regimen are included in Table S1.

For comparison, nontransplanted liver tissue samples distal
to the tumor site were also obtained from individuals
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undergoing surgery for a number of indications, including co-
lorectal metastatic liver disease and hepatocellular carcinoma
(HCC; referred to as liver).

13 blood samples were obtained from the hepatic veins of
individuals with liver cirrhosis undergoing hepatic vein cathe-
terization (for transjugular liver biopsy or hepatic venous
pressure gradient measurement). Blood samples leaving the si-
nusoids were collected from the hepatic vein with and without
additional balloon inflation to temporarily occlude the vein,
permitting measurement of leukocyte accumulation (see car-
toon in Fig. 4 a).

Further blood samples were taken from three individuals
who had undergone a TIPS procedure, providing access to the
portal and hepatic veins, alongside a matched peripheral blood
sample (see cartoon in Fig. 4 c).

PBMC/intrahepatic leukocyte (IHL)/lymph node

sample processing

PBMC were isolated from heparinized blood by density cen-
trifugation using Pancoll (Pan Biotech) and used immediately for
flow-cytometric analysis.

Resected/explanted livers were processed to isolate IHLs.
Liver samples were dissected into smaller pieces and enzymat-
ically digested in 0.01% collagenase IV (Thermo Fisher Scien-
tific) and 0.001% DNase I (Sigma-Aldrich). A GentleMACs
(Miltenyi Biotech) was used to further mechanically digest the
liver material, which was then filtered through 70-pM cell
strainers to remove debris. The resulting single-cell suspension
underwent centrifugation on a 30% Percoll (GE Healthcare)
gradient to remove parenchymal cells. IHLs were then isolated
by density centrifugation using Pancoll.

Leukocytes from hepatic hilar lymph nodes were obtained by
dissecting the tissue into smaller pieces and filtering through 70-
MM cell strainers to remove debris. The resulting single-cell
suspension underwent centrifugation on a Pancoll gradient, as
before.

In all cases, samples not used immediately were frozen in 10%
DMSO (Sigma-Aldrich) in FBS (Sigma-Aldrich) and stored in
accordance with the Human Tissue Act.

Flow cytometry

Multi-parametric flow cytometry was used for the phenotypic
and functional analysis of PBMCs/IHLs/lymph node leukocytes.
Cells were stained with saturating concentrations of surface
monoclonal antibodies diluted in 50%-Brilliant Violet Buffer (BD
Bioscience):50%-1x PBS (Thermo Fisher Scientific). Dead cells
were excluded from analysis using a fixable viability dye
(Thermo Fisher Scientific). Following surface staining, cells
were fixed (and permeabilized) with Cytofix/Cytoperm (BD
Bioscience).

Where necessary, intracellular proteins were detected using
saturating concentrations of monoclonal antibodies in a 0.1%
saponin-based buffer (Sigma-Aldrich). All samples were ac-
quired on a BD Bioscience Fortessa-X20 and analyzed using
FlowJo v.9 (TreeStar/BD Bioscience). Full details of all mono-
clonal antibodies used for flow-cytometric analysis are given in
Table S2.
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Dextramer staining for the identification of virus-specific

T cells

The frequency and phenotype of HBV-specific T cells was ana-
lyzed using HLA-A*02-restricted HBV dextramers (Immudex)
against the following specificities: core 18-27 (FLPSDFFPFV),
envelope 183-191 (FLLTRILTI), envelope 335-342 (WLSLLVPFV),
envelope 348-357 (GLSPTVWLSV), polymerase 455-463 (GLSRY-
VARL), and polymerase 502-510 (KLHLYSHPI). For CMV-specific
T cells, the HLA-A*02-restricted NLVPMVATV peptide dextramer
(Immudex) was used. Cells were stained with dextramers at 37°C in
1x PBS, washed twice in RPMI-1640, and left to rest for 1 h before
further staining. Samples were then stained with phenotypic mark-
ers, including HLA class I antibodies, as above. Dextramers loaded
with an irrelevant peptide were used in parallel to control for non-
specific binding. Dead cells, doublets, and CD19* B cells were removed
during analysis to minimize nonspecific binding contamination.

Online supplemental material

Fig. S1 provides representative gating strategies used to identify
donor- and recipient-derived CD45* leukocytes, MNPs, and DC
subsets, based on HLA-class I monoclonal antibody staining. The
frequency of donor-derived CD45* leukocytes identified in the
allograft in relation to time to explant is also plotted (Fig. S1 c).
Fig. S2 contains data characterizing the coexpression of pheno-
typic markers on MNP profiled in Fig. 3, and the expression of
HMOX], on long-lived donor-derived and infiltrating recipient-
derived MNP. Fig. S3 shows the frequency of donor-derived
CD8* T cells identified in the allograft, plotted in relation to
time to explant. Table S1 provides clinical characterization of the
patients undergoing liver retransplantation included in this
study. Table S2 lists details of the monoclonal antibodies used.
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Figure S1. Identification of donor-derived CD45* leukocytes by flow cytometry. (a) Representative sequential gating strategy for the identification of
CD45* leukocytes in human peripheral blood, liver tissue, and hepatic hilar lymph nodes (live, singlet cells) using 16-color flow cytometry. FSC-A, forward
scatter; SSC-A, side scatter; Live/dead, fixable dead cell stain. (b) Two representative flow-cytometric plots showing identification of donor- and recipient-
derived CD45* leukocytes using HLA-class | monoclonal antibodies, gated using a fluorescence minus one (FMO) control. (c) Frequency of donor-derived CD45*
leukocytes (gated on live, singlet cells; n = 6; six independent experiments) identified in the allograft for each individual in relation to time to explant, based on
monoclonal antibody staining for donor-derived HLA-class | haplotype exemplified in panel b. (d) Representative flow-cytometric plots showing donor and
recipient HLA-class | haplotype staining exemplified in panel b on “classical” Lin"HLA-DR*CD14*CD16~ MNPs and DC subsets (Lin"HLA-
DR*CD14-CD16-CD123*CD11c™ plasmacytoid DCs [pDCs], Lin"HLA-DR*CD14-CD16-CD123-CD11c* conventional DCs [cDCs]) within an allograft.
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Figure S2. Co-expression profiling of long-lived donor-derived and infiltrating recipient-derived MNP. (a) Representative flow-cytometric plots and
summary data showing coexpression of CD163 and CX3CR1 on donor (blue) or recipient (red) origin “classical” Lin"HLA-DR*CD68*CD14*CD16~ MNPs within
allografts (n = 3; three independent experiments). (b) Representative flow-cytometric plots showing CD206, CX3CR1, and CD163 coexpression on CD68* donor
and recipient origin MNPs. (c) Representative flow-cytometric plots showing expression of HMOX1 on donor (blue) or recipient (red) origin “classical” Lin"HLA-
DR*CD14*CD16~ MNP within allografts (n = 2; one independent experiment). Error bars, mean + SEM.
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Figure S3. Frequency of donor-derived CD8* T cells by flow cytometry. Frequency of donor-derived CD8" T cells (gated on live, singlet,
CD45*CD3*CD56CD19-CD47; n = 6; six independent experiments) identified in the allograft for each individual in relation to time of explant based on
monoclonal antibody staining for donor-derived HLA-class | haplotype exemplified in Fig. S1 b.

Tables S1 and S2 are provided online. Table S1 shows clinical details of patients undergoing re-transplantation where there was an

HLA-class | mismatch between the initial liver donor and recipient. Table S2 shows details of monoclonal antibodies used for flow-
cytometric analysis.
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